
PyMoDAQ Documentation
Release 4.2.0

Weber Sebastien

Apr 21, 2024

CONTENTS:

1 Training 3

2 Information 5

3 Credits 7

4 Contribution 9

5 They use it 11

6 Citation 13

7 Changelog 15
7.1 PyMoDAQ’s overview . 15
7.2 What’s new in PyMoDAQ 4 . 17

7.2.1 Package hierarchy . 17
7.2.2 Data Management . 20
7.2.3 DAQ_Scan . 20

7.3 User’s Guide . 20
7.3.1 Installation . 20
7.3.2 How to Start . 26
7.3.3 Configuration . 27
7.3.4 DashBoard and Control Modules . 30
7.3.5 Extensions . 45
7.3.6 Data Management . 93
7.3.7 Useful Modules . 124
7.3.8 TCP/IP communication . 133

7.4 Developer’s Guide . 139
7.4.1 Contributing . 139
7.4.2 Plugins . 143
7.4.3 Custom App . 157
7.4.4 Managers and Mixin Objects . 160

7.5 Tutorials . 160
7.5.1 Git/GitHub . 160
7.5.2 How to modify existing PyMoDAQ’s code? . 193
7.5.3 How to create a new plugin/package for PyMoDAQ? . 205
7.5.4 Story of an instrument plugin development . 211
7.5.5 How to contribute to PyMoDAQ’s documentation? . 237
7.5.6 Updating your instrument plugin for PyMoDAQ 4 . 243
7.5.7 Tutorial On Data Manipulation and analysis . 244

7.6 Who use it? . 258

i

7.6.1 Institutions using PyMoDAQ . 258
7.6.2 What they think of PyMoDAQ? . 258
7.6.3 Some Scientific publication on/using PyMoDAQ . 259

7.7 Glossary Terms . 259
7.8 Library Reference . 261

7.8.1 Control modules . 261
7.8.2 Extensions . 288
7.8.3 Utility Modules . 295
7.8.4 Utility Libraries . 331

8 Indices and tables 367

Python Module Index 369

Index 371

ii

PyMoDAQ Documentation, Release 4.2.0

PyMoDAQ is an open-source software, officially supported by the CNRS, to perform modular data acquisition with
Python. It proposes a set of modules used to interface any kind of experiments. It simplifies the interaction with
detector and actuator hardware to go straight to the data acquisition of interest.

French version here

CONTENTS: 1

https://youtu.be/TrRy6HL3h3c

PyMoDAQ Documentation, Release 4.2.0

2 CONTENTS:

CHAPTER

ONE

TRAINING

Fig. 1.1: Training sessions announcement and PyMoDAQ’s days

Note:

• Second edition of the PyMoDAQ’s Days: Paris 16/17 October 2023. Register on https://pymodaq-jt2022.
sciencesconf.org/

• Training session in Paris, France 18/19/20 October 2023

PyMoDAQ has two purposes:

3

https://pymodaq-jt2022.sciencesconf.org/
https://pymodaq-jt2022.sciencesconf.org/

PyMoDAQ Documentation, Release 4.2.0

• First, to provide a complete interface to perform automated measurements or logging data without having to
write a user/interface for each new experiment.

• Second, to provide various tools (User interfaces, classes dedicated to specific tasks. . .) to easily build a Custom
App

It is divided in two main components as shown on figure Fig. 1.2

• The DashBoard and its control modules: DAQ Move and DAQ Viewer

• Extensions such as the DAQ Scan or the DAQ Logger

Fig. 1.2: PyMoDAQ’s Dashboard and its extensions: DAQ_Scan for automated acquisitions, DAQ_Logger for data
logging and many other.

The Control modules are interfacing real instruments using user written plugins. The complete list of available plugins
is maintained on this GitHub repository and installabled using the Plugin Manager

4 Chapter 1. Training

https://github.com/PyMoDAQ/pymodaq_plugin_manager/blob/main/README.md

CHAPTER

TWO

INFORMATION

GitHub repo: https://github.com/PyMoDAQ

Documentation: http://pymodaq.cnrs.fr/

Scientific article on Review of Scientific Instruments journal

General public article on Scientia

List of available plugins

Video tutorials here

Mailing List: https://listes.services.cnrs.fr/wws/info/pymodaq

5

https://github.com/PyMoDAQ
http://pymodaq.cnrs.fr/
https://doi.org/10.1063/5.0032116
https://www.scientia.global/dr-sebastien-weber-pymodaq-navigating-the-future-of-data-acquisition/
https://github.com/PyMoDAQ/pymodaq_plugin_manager/
https://youtube.com/playlist?list=PLGdoHByMKfIdn-N51goippSSP_9iG4wds
https://listes.services.cnrs.fr/wws/info/pymodaq

PyMoDAQ Documentation, Release 4.2.0

6 Chapter 2. Information

CHAPTER

THREE

CREDITS

Based on the pyqtgraph library : http://www.pyqtgraph.org by Luke Campagnola.

PyMoDAQ is written by Sébastien Weber: sebastien.weber@cemes.fr under a MIT license.

7

http://www.pyqtgraph.org
mailto:sebastien.weber@cemes.fr

PyMoDAQ Documentation, Release 4.2.0

8 Chapter 3. Credits

CHAPTER

FOUR

CONTRIBUTION

If you want to contribute see this page: Contributing

9

PyMoDAQ Documentation, Release 4.2.0

10 Chapter 4. Contribution

CHAPTER

FIVE

THEY USE IT

See Who use it?

11

PyMoDAQ Documentation, Release 4.2.0

12 Chapter 5. They use it

CHAPTER

SIX

CITATION

By using PyMoDAQ, you are being asked to cite the article published in Review of Scientific Instruments RSI 92,
045104 (2021) when publishing results obtained with the help of its interface. In that way, you’re also helping in its
promotion and amelioration.

13

https://doi.org/10.1063/5.0032116
https://doi.org/10.1063/5.0032116

PyMoDAQ Documentation, Release 4.2.0

14 Chapter 6. Citation

CHAPTER

SEVEN

CHANGELOG

Please see the changelog.

7.1 PyMoDAQ’s overview

Fig. 7.1: PyMoDAQ control of an experimental setup using the Dashboard and a set of DAQ_Viewer and DAQ_Move
modules

PyMoDAQ is an advanced user interface to control instruments (casually called Detectors) and actuators (sometimes
called Moves for historical reasons). Each of these will have their own interface called DAQ Viewer and DAQ Move that
are always the same (only some specifics about communication with the controller will differ), so that a PyMoDAQ’s
user will always find a known environment independent of the kind of instruments it controls. These detectors and
actuators are grouped together in the DashBoard and can then be controlled manually by the user: acquisition of
images, spectra. . . for various positions of the actuators (see Fig. 7.1). The Dashboard has functionalities to fully
configure all its detectors and actuators and save the configuration in a file that will, at startup, load and initialize all
modules. Then Dashboard’s extensions can be used to perform advanced and automated tasks on the detectors and
actuators (see Fig. 7.2):

• The first of these extensions is called DAQ Scan and is used to perform automated and synchronized data ac-
quisition as a function of multiple actuators positions. Many kind of scans are possible: 1Ds, 2Ds, NDs, set of
points and many ways to perform each of these among which Adaptive scan modes have been recently developed
(from version 2.0.1).

15

PyMoDAQ Documentation, Release 4.2.0

• The second one is the DAQ Logger. It is a layer between all the detectors within the dashboard and various ways
to log data acquired from these detectors. As of now, one can log to :

– a local binary hdf5 file

– a distant binary hdf5 file or same as hdf5 but on the cloud (see HSDS from the HDF group and the h5pyd
package)

– a local or distant SQL Database (such as PostgreSQL). The current advantage of this solution is to be able
to access your data on the database from a web application such as Grafana. Soon a tutorial on this!!

• Joystick control of the dashboard actuators (and eventually detectors).

• PID closed loop interface

• Direct code execution in a Console

Fig. 7.2: PyMoDAQ’s Dashboard and its extensions: DAQ_Scan for automated acquisitions, DAQ_Logger for data
logging and many other.

16 Chapter 7. Changelog

https://www.hdfgroup.org/solutions/highly-scalable-data-service-hsds/
https://github.com/HDFGroup/h5pyd
https://grafana.com/grafana/

PyMoDAQ Documentation, Release 4.2.0

7.2 What’s new in PyMoDAQ 4

The main modifications in PyMoDAQ 4 is related to the hierarchy of the modules in the source code and the data
management.

The feel and shape of the control modules and the way the DAQ_Scan work have been reworked. A new extension is
introduced: the Console.

7.2.1 Package hierarchy

Before many modules where stored in a generic daq_utils module. It was kind of messy and the development of
much nicer code for pymo4 was the occasion to reshape the package and its modules. Figure Fig. 7.3 shows the new
layout of the package.

Fig. 7.3: Layout of the PyMoDAQ 4 package.

The only python file at the root is the dashboard.py that contains the code about the dashoard, the starting point of
PyMoDAQ usage.

Note: There is a daq_utils.py file here as well to provide some back compatibility with pymodaq v3 but this file will
soon be deprecated (when all plugins will be updated according to this tutorial)

Then you’ll find modules for:

• Control modules: the DAQ_Viewer and the DAQ_Move and their utility modules

• Example module: contains some executable code to illustrate some features

• Extension module: contains the main extension of the DashBoard: DAQ_Scan, DAQ_Logger, PID and
H5Browser

• Post-Treatment modules: utilities to process PyMoDAQ’s data

• Resources module: contains the UI icons, templates for configuration and presets

• Utils module: contains all utility modules, see Fig. 7.4.

7.2. What’s new in PyMoDAQ 4 17

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.4: Layout of the utils module

18 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

This last utils module contains many other module needed for PyMoDAQ to run smoothly. They can also be used in
some other programs to use their features. Below is a short description of what they are related to:

• abstract: contains abstract classes (if not stored in another specific module)

• db: module related to data logging towards database (postgresql for instance)

• gui_utils: usefull UI widgets and related objects to build quickly and nicely user interfaces

• h5modules: everything related to the saving and browsing of data in hdf5 files

• managers: integrated objects managing various thing, for instance, control modules, presets, roi. . . In general
they have a specific UI (that you can incorporate in your main UI) and the code to interact with whatever is related
to it.

• parameter: extensions of the pyqtgraph Parameter introducing other widgets and Parameter types. Includes also
serializers from/to Parameter to/from XML

• plotting: everything related to the plotting of data: including the 4 main data viewers, see Plotting Data

• scanner: objects related to the DAQ_Scan defining and managing the scans. The different types of scans are
defined using a factory pattern.

• svg: under tests to plot svg

• array_manipulation: utility functions to create, manipulate and extract info from numpy arrays

• calibration_camera: utility UI to get a calibration file from a Camera compatible with pymodaq (to use real
physical axes and not pixels in the data viewers). Old code, maybe to update for it to work

• chrono_timer: user interface to be used for timing things, see ChronoTimer

• config: objects dealing with configuration files (for instance the main config for pymodaq). Can be used else-
where, for instance in instrument plugin

• conftests: configuration file for the test suite

• daq_utils: deprecated

• data: module containing all objects related to Data Management

• enums: base class and method to ease the use of enumerated types

• exceptions: contains some shared exceptions. But exceptions should be in their related module. . .

• factory: base class to be used when defining a factory pattern

• logger: methods to initialize the logging objects in the various modules

• math_utils: a set of useful mathematical functions

• messenger: function to be used when one want to display messages (in the log or in popups)

• qvariant: definition of a QVariant object. To be used in PySide as it is not defined there. . .

• slicing: definition of slicing objects used in the data management to slice data

• tcp_server_client: set of classes to build TCP/IP communication

• units: methods for conversion between physical units (especially photon energy in eV, nm, cm, J. . .)

7.2. What’s new in PyMoDAQ 4 19

PyMoDAQ Documentation, Release 4.2.0

7.2.2 Data Management

See data management.

7.2.3 DAQ_Scan

See DAQ Scan.

7.3 User’s Guide

7.3.1 Installation

• Preamble

• Setting up a new environment

• Installing PyMoDAQ

• Creating shortcuts on Windows

• Plugin Manager

• What about the Hardware

Preamble

PyMoDAQ is written in Python and uses Python 3.7+. It uses the Qt5 library (and a python Qt5 backend, see Qt5
backend) and the excellent pyqtgraph package for its user interface. For PyMoDAQ to run smoothly, you need a
Python distribution to be installed. Here are some advices.

On all platforms Windows, MacOS or Linux, Anaconda or Miniconda is the advised distribution/package manager.
Environments can be created to deal with different version of packages and isolate the code from other programs.
Anaconda comes with a full set of installed scientific python packages while Miniconda is a very light package manager.

Setting up a new environment

• Download and install Miniconda3.

• Open a console, and cd to the location of the condabin folder, for instance: C:\Miniconda3\condabin

• Create a new environment: conda create -n my_env python=3.8, where my_env is your new environment
name, could be pymodaq353 if you plan to install PyMoDAQ version 3.5.3 for instance.. This will create the
environment with python version 3.8 that is currently the recommended one, see Python Versions.

• Activate your environment so that only packages installed within this environment will be seen by Python: conda
activate my_env

20 Chapter 7. Changelog

https://docs.python-guide.org/
http://doc.qt.io/qt-5/qt5-intro.html
http://www.pyqtgraph.org/
https://www.anaconda.com/download/
https://docs.conda.io/en/latest/miniconda.html

PyMoDAQ Documentation, Release 4.2.0

Installing PyMoDAQ

Easiest part: in your newly created and activated environment enter: pip install pymodaq. This will install the
latest PyMoDAQ available version and all its dependencies. For a specific version enter: pip install pymodaq==x.
y.z.

Qt5 backend

PyMoDAQ source code uses a python package called qtpy that add an abstraction layer between PyMoDAQ’s code
and the actual Qt5 python implementation (either PyQt5 or PySide2, and soon PyQt6 and PySide6). Qtpy will look on
what is installed on your environment and load PyQt5 by default (see the PyMoDAQ configuration for default values to
change this default behaviour). This means you have to install one of these backends on your environment using either:

• pip install pyqt5

• pip install pyside2 (still some issues with some parts of pymodaq’s code. If you want to help fix them,
please, don’t be shy!)

• pip install pyqt6 (not tested yet)

• pip install pyside6 (not tested yet)

Linux installation

For Linux installation, only Ubuntu operating system are currently being tested. In particular, one needs to make sure
that the QT environment can be used. Running the following command should be sufficient to start with:

sudo apt install libxkbcommon-x11-0 libxcb-icccm4 libxcb-image0 libxcb-keysyms1
libxcb-randr0 libxcb-render-util0 libxcb-xinerama0 libxcb-xfixes0 x11-utils

It is also necessary to give some reading and writing permission access to some specific folders. In particular, Py-
MoDAQ creates two folders that are used to store configurations files, one assigned to the system in /etc/.pymodaq/
and one assigned to the user ~/.pymodaq/. We need to give reading/writing permission acess to the system folder. One
should then run before/after installing pymodaq:

• sudo mkdir /etc/.pymodaq/

• sudo chmod uo+rw /etc/.pymodaq

As a side note, these files are shared between different pymodaq’s versions (going from 3 to 4 for example). It is
suggested to delete/remake the folder (or empty its content) when setting up a new environment with a different pymodaq
version.

Creating shortcuts on Windows

Python packages can easily be started from the command line (see How to Start). However, Windows users will
probably prefer using shortcuts on the desktop. Here is how to do it (Thanks to Christophe Halgand for the procedure):

• First create a shortcut (see Fig. 7.5) on your desktop (pointing to any file or program, it doesn’t matter)

• Right click on it and open its properties (see Fig. 7.6)

• On the Start in field (“Démarrer dans” in french and in the figure), enter the path to the condabin folder of your
miniconda or anaconda distribution, for instance: C:\Miniconda3\condabin

7.3. User’s Guide 21

https://pypi.org/project/QtPy/

PyMoDAQ Documentation, Release 4.2.0

• On the Target field, (“Cible” in french and in the figure), enter this string: C:\Windows\System32\cmd.exe
/k conda activate my_env & python -m pymodaq.dashboard. This means that your shortcut will open
the windows’s command line, then execute your environment activation (conda activate my_env bit), then finally
execute and start Python, opening the correct pymodaq file (here dashboard.py, starting the Dashboard module,
python -m pymodaq.dashboard bit)

• You’re done!

• Do it again for each PyMoDAQ’s module you want (to get the correct python file and it’s path, see From command
line tool:).

Fig. 7.5: Create a shortcut on your desktop

22 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.6: Shortcut properties

7.3. User’s Guide 23

PyMoDAQ Documentation, Release 4.2.0

Plugin Manager

Any new hardware has to be included in PyMoDAQ within a plugin. A PyMoDAQ’s plugin is a python package
containing several added functionalities such as instruments objects. A instrument object is a class inheriting from either
a DAQ_Move_Base or a DAQ_Viewer_Base class and implements mandatory methods for easy and quick inclusion of
the instrument within the PyMoDAQ control modules.

The complete list of available Instrument Plugins is maintained on this GitHub repository.

While you can install them manually (for instance using pip install plugin_name), from PyMoDAQ 2.2.2 a plugin
manager is available. You can open it from the Dashboard in the help section or directly using the command line:
python -m pymodaq_plugin_manager.manager or directly plugin_manager

This will open the Plugin Manager User Interface as shown on figure Fig. 7.7 listing the available plugins packages that
can be either installed, updated or removed. It includes a description of the content of each package and the instruments
it interfaces. For instance, on figure Fig. 7.7, the selected Andor plugin package is selected and includes two plugins:
a Viewer1D to interface Andor Shamrock spectrometers and a Viewer2D to interface Andor CCD camera.

Fig. 7.7: Plugin Manager interface

24 Chapter 7. Changelog

https://github.com/PyMoDAQ/pymodaq_plugin_manager

PyMoDAQ Documentation, Release 4.2.0

What about the Hardware

So far, you’ve installed all the software layer managing Instrument control from the user up to the manufacturer driver.
This means you still have to install properly your specific hardware. For this, there is no general recipe but below you’ll
find some advices/steps you can follow.

Serial/GPIB based hardware

In the case where your instrument is controlled using ASCII commands (basically strings), no more steps than plugging
you instrument is needed. Just make sur the COM port or GPIB address is correct.

Library based hardware

In the case of instruments using a specific manufacturer driver (.dll, .so or .NET libraries) then you could follow these
steps:

• Install the SDK/dll driver from the manufacturer

• Test the communication is fine using the software provided by the manufacturer (if available)

• Make sure your OS (Windows, Mac or linux) is able to find the installed library (if needed add the path pointing
to your library in the PATH environment variable of your operating system

• Install the right PyMoDAQ’s plugin

• You should be good to go!

Warning: From Python 3.8 onwards, the way python looks for dlls on your system changed causing issues on
existing plugins using them. So far the right way was to add the path pointing to your dll in the system PATH
environment variable. This no longer works and ctypes LoadLibrary function raises an error. A simple solution
to this issue, is to add in the preamble of my/your plugins this instruction:

import os
os.add_dll_directory(path_dll)

where path_dll is the path pointing to your dll.

Note: Example: if you want to use a NI-DAQ instrument. You’ll have to first install their driver Ni-DAQmx, then test
you hardware using their MAX software and finally configure it using pymodaq_plugins_daqmx plugin.

Python Versions

As of today (early 2022), PyMoDAQ has been efficiently used on python 3.8 up to 3.9 versions. It’s source code is
regularly tested against those versions. Work is in progress to make it working with python 3.10/3.11, but some of
PyMoDAQ’s dependencies are not yet available for these versions.

7.3. User’s Guide 25

PyMoDAQ Documentation, Release 4.2.0

7.3.2 How to Start

Various ways are possible in order to start modules from PyMoDAQ. In all cases after installation of the package (using
pip or setup.py, see Installation) all the modules will be installed within the site-packages folder of python.

From command line tool:

Open a command line and activate your environment (if you’re using anaconda, miniconda, venv. . .):

Load installed scripts

During its installation, a few scripts have been installed within you environment directory, this means you can start
PyMoDAQ’s main functionalities directly writing in your console either:

• dashboard

• daq_scan

• daq_logger

• daq_viewer

• daq_move

• h5browser

• plugin_manager

Execute a given python file

If you knwow where, within PyMoDAQ directories, is the python file you want to run you can enter for instance:

• python -m pymodaq.dashboard

• python -m pymodaq.extensions.daq_scan

• python -m pymodaq.extensions.daq_logger

• python -m pymodaq.control_modules.daq_viewer

• python -m pymodaq.control_modules.daq_move

• python -m pymodaq.extensions.h5browser

• python -m pymodaq_plugin_manager.manager

for PyMoDAQ’s main modules. The -m option tells python to look within its site-packages folder (where you’ve
just installed pymodaq) In fact if one of PyMoDAQ’s file (xxx.py) as an entry point (a if __name__='__main__:'
statement at the end of the file), you can run it by calling python over it. . .

26 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Create windows’s shortcuts:

See Creating shortcuts on Windows !

7.3.3 Configuration

All configuration files used by PyMoDAQ will be located within two folders each called .pymodaq. One is system wide
and located in one of these locations:

• Windows: ProgramData folder

• Mac: Library/Application Support folder

• Linux: /etc

while the other is restricted to the current user and located in the user’s home folder.

All configuration files that should be shared between users are in the system wide folder, for instance all files related to
the dashboard, see Fig. Fig. 7.8:

• preset configs: preset file defining the type and numbers of control modules for a given experiment

• batch configs: file describing the batch of scans to do

• layout configs: store the user interface docks arrangement

• overshoot configs: store the files defining overshoots

• remote configs: store the files defining the remote control actions

• roi configs: store the overall ROI in all DAQ_Viewers on the dashboard

Fig. 7.8: Local folder to store configuration files

7.3. User’s Guide 27

PyMoDAQ Documentation, Release 4.2.0

Configs from Managers

Each folder contains dedicated files: the log as text file and all module configuration files as xml files. These files are
generated by dedicated managers when the user is configuring one aspect of PyMoDAQ, for instance using the Preset
manager for defining Actuators and Detectors in the Dashboard. Apart the log, a user should not interact directly with
those but use their respective manager user interface to create and modify them.

PyMoDAQ configuration for default values

The config_pymodaq.toml file is the only exception. It is there so that a particular user could enter specific personal
information such as the name that will be used by default in the metadata, default preset file to load if executing directly
the DAQ_Scan extension, default type of Scan and so on. The file can be directly modified but should be accessed within
the Dashboard in the file menu.

The configuration file located in the system wide folder is the default one, see below, but when a user override the
default values, they will be stored in another config_pymodaq.toml in the user .pymodaq folder. In this way, if the
computer is shared among multiple users, each can specify their own metadata, UI feel and shape, default presets, . . .

Below is a non exhaustive list of configuration entries stored in the config_pymodaq.toml file:

Listing 7.1: Default Configuration file of PyMoDAQ that will be copied
on the local folder where the user can modify it

[data_saving]
[data_saving.h5file]
save_path = "C:\\Data" #base path where data are automatically saved
compression_level = 5 # for hdf5 files between 0(min) and 9 (max)

[data_saving.hsds] #hsds connection option (https://www.hdfgroup.org/solutions/
→˓highly-scalable-data-service-hsds/)

#to save data in pymodaq using hpyd backend towards distant server or cloud␣
→˓(mimicking hdf5 files)

root_url = "http://hsds.sebastienweber.fr"
username = "pymodaq_user"
pwd = "pymodaq"

[general]
debug_level = "DEBUG" #either "DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"
debug_levels = ["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"]
check_version = true #automatically check version at startup

[user]
name = "User name" # default name used as author in the hdf5 saving files

[network]
[network.logging]

[network.logging.user]
username = "pymodaq_user"
pwd = "pymodaq"

[network.logging.sql] #location of the postgresql database server and options␣
→˓where the DAQ_Logger will log data

ip = "10.47.3.22"
port = 5432

(continues on next page)

28 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

[network.tcp-server]
ip = "10.47.0.39"
port = 6341

[presets]
default_preset_for_scan = "preset_default"
default_preset_for_logger = "preset_default"

Plugins configuration for default values

In the same way, the file config_pymodaq.toml stores (system/user wide) default configuration values, plugins benefits
of the same features. The mechanism is as follow. The plugin package should contain (PyMoDAQ >= 4) a resources
folder containing at least the VERSION file and a config_template.toml file, see Fig. 7.9.

Fig. 7.9: Files in the resources folder of each plugin (well that should be like this as of october 2023)

This config_template.toml file holds any mandatory config values needed from within you plugin package scripts. The
first time the plugin package is imported, this config will be copied into the system wide/user folders, to be used by the
plugins scripts. They can be manually amended by each user in their .pymodaq user folder.

Another file is mandatory, the utils.py at the root of the plugin package, see Fig. 7.9. In there, will be defined the
particular Config object to be used with each script of the package plugin:

class Config(BaseConfig):
"""Main class to deal with configuration values for this plugin"""
config_template_path = Path(__file__).parent.joinpath('resources/config_template.toml

→˓')
config_name = f"config_{__package__.split('pymodaq_plugins_')[1]}"

This object will automatically be linked to the system wide/user .pymodaq folder where the template will be copied
and renamed from the plugin name. For instance, the plugin package, pymodaq_plugins_optimisation will produce a
configuration file called config_optimisation.toml

7.3. User’s Guide 29

PyMoDAQ Documentation, Release 4.2.0

7.3.4 DashBoard and Control Modules

DashBoard

This module is the heart of PyMoDAQ, it will:

• Help you declare the list of actuators and detectors to be used for a given experiment (Preset manager)

• Setup automatic data acquisition of detectors as a function of one or more actuators using its DAQ_Scan extension

• Log data into advanced binary file or distant database using its DAQ_Logger extension

The flow of this module is as follow:

• At startup you have to define/load/modify a preset (see Preset manager) representing an ensemble of actuators
and detectors

• Define/load/modify eventual overshoots (see Overshoot manager)

• Define/load/modify eventual ROI (Region of interests) selections (see ROI manager)

• Use the actuators and detectors manually to drive your experiment

• Select an action to perform: automated scan (DAQ_Scan) and/or log data (DAQ_Logger)

Introduction

This module has one main window, the dashboard (Fig. 7.10) where a log and all declared actuators and detectors will
be loaded as instances of DAQ_Move and DAQ_Viewer. The dashboard gives you full control for manual adjustments
of each actuator, checking their impact on live data from the detectors. Once all is set, one can move on to different
actions.

Menu Bar Description

Figure Fig. 7.11 displays the menu of the Dashboard window with access to all the Managers useful within PyMoDAQ
and described below:

The file menu will allow you to quickly display, in a default text editor, the current log file (older logs can be found in the
pymodaq_local folder, see Configuration. The user can also access and edit the general configuration file config.toml
selecting the Show configuration file entry that will open a popup window (see Fig. Fig. 7.12) allowing the user to
modify all its fields. Finally, the user can Quit the application or Restart it if changes have to be applied (for instance
when modifying a Preset)

The Settings menu is allowing the user to save/load layouts of docked windows within the Dashboard.

Note: Docked Windows Layout: when a Preset has been loaded and if the arrangement of the Control Modules (their
docked panels) is modified, then a layout configuration file whose name derive from the loaded preset filename will be
created. At each later loading of this preset, the Control Modules arrangement will then be restored.

The Preset Modes menu enables to create or modify (using the Preset manager) presets that are XML files defining a
set of actuators and detectors used for a given experiment. Each experiment has therefore a corresponding preset file.
At startup, the program checks for existing preset files and create a menu entry for each of them.

30 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.10: Dashboard user interface containing all declared control modules (actuators/detectors) and some initializa-
tion info.

Fig. 7.11: Dashboard menu bar.

7.3. User’s Guide 31

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.12: Configuration popup window.

32 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

The Overshoot Modes menu is used to configure actions like stoping the acquisition orseting hte value of a given
actuator when a detected value (from a running detector module) gets out of range with respect to some predefined
bounds. For details, see Overshoot manager.

The ROI Modes menu, see ROI manager, is used to save the state of all regions of interest defined by a user within the
1D or 2D viewers declared in the DAQ_Viewers control modules in the Dashboard. You can then, in one go, recall a
particular complex configuration for data acquisition.

The Remote/Shortcuts Control menu, see Remote Manager, is used to define key sequences on a keyboard or but-
tons/joysticks on a gamepad to trigger specific actions from the Control modules, for instance jogging of the actuator
values using a joystick or grabing data from a detector using a button.

The Extensions menu let the user load a specific installed extensions. Default ones are the DAQ_Scan and DAQ_Logger
ones. More specific ones can be installed, for instance the package Pymodaq Femto

Multiple hardware from one controller

Sometimes one hardware controller can drive multiple actuators and sometimes detectors (for instance a XY translation
stage). For this particular case the controller should not be initialized multiple times. One should identify one actuator
referred to as Master and the other ones will be referred to as Slave. They will share the same controller address
represented in the settings tree by the Controller ID entry. These settings will be activated within the plugin script
where one can define a unique identifier for each actuator (U or V for the conex in Fig. 7.16). This feature can be
enabled for both DAQ_Move and DAQ_Viewer modules but will be most often encountered with actuators, so see for
more details: Multiaxes controller. This has to be done using the Preset Manager

Control Modules

DAQ_Move and DAQ_Viewer can be used as stand alone user interface to manually control hardware. DAQ_Viewer
can be used like this to monitor and/or log data from a specific detector. However, the main use is through the DashBoard
module and its extensions (such as the DAQ Scan that will be used to perform automatic data acquisition)

DAQ Move

This module is to be used to control any Actuator hardware. An Actuator is, in a general sense, any parameter that one
can control and may vary during an experiment. The default actuator is a Mock one (a kind of software based actuator
displaying a position and accepting absolute or relative positioning).

Introduction

This module has a generic interface in the form of a dockable panel containing the interface for initialization, the manual
control of the actuator position and a side tree like interface displaying all the settings. Fig. 7.13 shows the minimal
interface of the module (in order to take minimal place in the Dashboard)

7.3. User’s Guide 33

https://pymodaq-femto.readthedocs.io/en/latest/

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.13: Minimal DAQ_Move user interface

Hardware initialization

• Actuator: list of available instrument plugins of the DAQ_Move type, see Fig. 7.14.

• : Initialize the hardware with the given settings (see Instrument Plugins for details on how
to set hardware settings.)

• : De-initialize the hardware and quit the module

Fig. 7.14: Menu list displaying the available instrument plugin of type DAQ_Move

34 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Positioning

Once the hardware is initialized, the actuator’s value is displayed on the Current value display (bottom of Fig. 7.13)
while the absolute value can be set using one of the top spinbox (respectively green or red) and apply it using respectively

the or button. This double positioning allows to quickly define two values and switch between them.

Advanced positioning

More options can be displayed in order to precisely control the actuator by pressing the button. The user interface
will then look like Fig. 7.15.

Fig. 7.15: DAQ_Move user interface with finer controls

The two new displayed spinbox relate to Absolute positioning and Relative one.

• : the actuator will try to reach a home position (known position or physical switch limit)

• : the actuator will try to reach the set absolute position

• : the actuator will try to reach a relative position (+increment)

• : the actuator will try to reach a relative position (-increment)

• : will update the current actuator’s value display

• : stop the current motion (if possible)

7.3. User’s Guide 35

PyMoDAQ Documentation, Release 4.2.0

Settings

The hardware and module settings can be displayed by pressing the button. The user interface will then look like
Fig. 7.16.

In the settings tree, there is two sections. The first relates to the Main settings of the actuator while the second relates to
the hardware settings (the ones the hardware will need in order to initialize. . .). There is also specific settings explained
below.

(not much there for the moment apart for the selected stage type and Controller ID that is related to multi-axes controller.

Main Settings

• Actuator type: is recalling the instrument plugin class being selected

• Actuator name: is the name as defined in the preset (otherwise it is defaulted to test)

• Controller ID: is related to multi-axes controller (see Multiaxes controller)

• Refresh value: is the timer duration when grabbing the actuator’s current value (see Grabing the actuator’s value).

Multiaxes controller

Sometimes one hardware controller can drive multiple actuators (for instance a XY translation stage). In the simplest
use case, one should just initialize the instrument plugin and select (in the settings) which axis to use, see Fig. 7.17.

Then the selected axis can be driven normally and you can switch at any time to another one.

It is more complex when you want to drive two or more of these multi-axes during a scan. Indeed, each one should
be considered in the Dashboard as one actuator. But if no particular care is taken, the Dashboard will try to initialize
the controller multiple times, but only one communication channel exists, for instance a COM port. The solution in
PyMoDAQ is to identify one actuator (one axis) as Master and the other ones will be referred to as Slave. They will
share the same controller address (and actual driver, wrapper, . . .) represented in the settings tree by the Controller ID
entry. These settings will be activated within the instrument plugin class where one can define a unique identifier for
each actuator (U or V for the conex in Fig. 7.16).

• Controller ID: unique identifier of the controller driving the stage

• is Multiaxes: boolean

• Status: Master or Slave

• Axis: identifier defined in the plugin script

These settings are really valid only when the module is used within the Dashboard framework that deals with multiple
modules at the same time as configured in the Preset manager interface.

36 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.16: Full DAQ_Move user interface with controls and settings

7.3. User’s Guide 37

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.17: Selection of one of the axis this controller is able to drive.

38 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Bounds

if this section is activated (by clicking the Set Bounds entry) then the actuator positions will be software limited between
min and max. This can be used to prevent the actuator to reach dangerous values for the experiment or anything else.

Scaling

If this section is activated (by clicking the Use scaling entry) then the set and displayed positions will be scaled as:

new_position=scaling*old_position+offset

This can be useful for instance when one deals with translation stage used to delay a laser pulse with respect to another.
In that case it is easier to work with temporal units such as femtoseconds compared to mm or other native controller
unit.

Other settings

• epsilon: -very important feature- the actuator will try to reach the target position with a precision epsilon. So
one could use it if one want to be sure the actuator really reached a given position before moving on. However if
the set precision is too small, the actuator may never reached it and will issue a timeout

• Timeout: maximum amout of time the module will wait for the actuator to reach the desired position.

Grabing the actuator’s value

DAQ Viewer

This module is to be used to interface any detector. It will display hardware settings and display data as exported by
the hardware plugins (see Emission of data). The default detector is a Mock one (a kind of software based detector
generating data and useful to test the program development). Other detectors may be loaded as plugins, see Instrument
Plugins.

Introduction

This module has a generic interface comprised of a dockable panel related to the settings and one or more data viewer
panels specific of the type of data to be acquired (see Plotting Data). For instance, Fig. 7.18 displays a typical
DAQ_Viewer GUI with a settings dockable panel (left) and a 2D viewer on the right panel.

Settings

The settings panel is comprised of 3 sections, the top one (red rectangle) displays a toolbar with buttons to grab/snap
data, save them, open other settings sections and quit the application. Two types of settings can be shown/hidden:
for hardware choice/initialization (green rectangle) and advanced settings to control the hardware/software (purple
rectangle).

7.3. User’s Guide 39

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.18: Typical DAQ_Viewer GUI with a dockable panel for settings (left) and a 2D data viewer on the right panel.
Red, green and purple rectangles highlight respectively the toolbar, the initialization and hardware settings.

40 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Toolbar

Fig. 7.19: DAQ_Viewer toolbar

The toolbar, Fig. 7.19 allows data acquisition and other actions as described below:

• : Start a continuous grab of data. Detector must be initialized.

• : Start a single grab (snap). Strongly advised for the first time data is acquired after initialization.

• : Save current data

• : Do a new snap and then save the data

• : Load data previously saved with the save button

• : Display or hide initialization and background settings

• : Display or hide hardware/software advanced settings

• : quit the application

• : open the log in a text editor

• : LED reflecting the data grabbed status (green when data has been taken)

Hardware initialization

Fig. 7.20: Hardware choice, initialization and background management

The second section, Fig. 7.20 allows the choice of the instrument plugin of type detector selection. They are subdivided
by dimensionality of the data they are generating (DAQ2D for cameras, DAQ1D for waveforms, timeseries. . . and

DAQ0D for detectors generating scalars such as powermeter, voltmeter. . .). Once selected, the button will
start the initialization using eventual advanced settings. If the initialization is fine, the corresponding LED will turn
green and you’ll be able to snap data or take background:

• : do a specific snap where the data will be internally saved as a background (and saved in a hdf5
file if you save data)

• : use the background previously snapped to correct the displayed (only displayed, saved data are still
raw data) data.

7.3. User’s Guide 41

PyMoDAQ Documentation, Release 4.2.0

The last section of the settings (purple rectangle) is a ParameterTree allowing advanced control of the UI and of the
hardware.

Main settings

Main settings refers to settings common to all instrument plugin. They are mostly related to the UI control.

Fig. 7.21: Typical DAQ_Viewer Main settings.

• DAQ type: readonly string recalling the DAQ type used

• Detector type: readonly string recalling the selected plugin

42 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

• Detector Name: readonly string recalling the given name of the detector (from the preset)

• Controller ID: integer used to deal with a controller controlling multiple hardware, see Multiple hardware from
one controller

• Show data and process: boolean for plotting (or not data in the data viewer)

• Refresh time: integer used to slow down the refreshing of the display (but not of the eventual saving. . .)

• Naverage: integer to set in order to do data averaging, see Hardware averaging.

• Show averaging: in the case of software averaging (see Hardware averaging), if this is set to True, intermediate
averaging data will be displayed

• Live averaging: show averaging must be set to False. If set to True, a live grabwill perform non-stop averaging
(current averaging value will be displayed just below). Could be used to check how much one should average,
then set Naverage to this value

• Wait time (ms): Extra waiting time before sending data to viewer, can be used to cadence DAQ_Scan execution,
or data logging

• Continuous saving: useful for data logging. Will display new options below in order to set a h5 file to log live
data, see Continuous Saving.

• Overshoot options: useful to protect the experiment. If this is activated, then as soon as any value of the datas
exported by this detector reaches the overshoot value, the module will throw a overshoot_signal (boolean
PyQtSignal). The overshoot manager of the Dashboard generalize this feature (see Overshoot manager) by
triggering actions on actuators if overshoot signals are detected. Other features related will soon be added (action
triggered on a DAQ_Move, for instance a shutter on a laser beam)

• Axis options: only valid for 2D detector. You can add labels, units, scaling and offset (with respect to pixels) to
both x and y axis of the detector. Redundant with the plugin data export feature (see Emission of data)

Data Viewers

Data Viewers presented in section Plotting Data are the one used to display data from detectors controlled from the
DAQ_Viewer. By default, one viewer will be set with its type (0D, 1D, 2D, ND) depending on the detector main
dimensionality (DAQ_type: DAQ0D, DAQ1D, DAQ2D. . .) but in fact the data viewers are set depending on the data
exported from the detector plugin using the data_grabed_signal or data_grabed_signal_temp signals.

These two signals emit a list of DataFromPlugins objects. The length of this list will set the number of dedicated
data viewers. In general one, but think about data from a Lockin amplifier generating an amplitude in volt and a phase
in degrees. They are unrelated physical values better displayed in separated axes or viewers. The DataFromPlugins’s
attribute dim (a string either equal to Data0D, Data1D, Data2D, DataND) will determine the data viewer type to set.

This code in a plugin

self.data_grabed_signal.emit([
DataFromPlugins(name='Mock1', data=data1, dim='Data0D'),
DataFromPlugins(name='Mock2', data=data2, dim='Data2D')])

will trigger two separated viewers displaying respectively 0D data and 2D data.

7.3. User’s Guide 43

PyMoDAQ Documentation, Release 4.2.0

Other utilities

There are other functionalities that can be triggered in specific conditions. Among those, you’ll find:

• The LCD screen to display 0D Data

• The ROI_select button and ROI on a Viewer2D

Saving data

Data saved from the DAQ_Viewer are data objects has described in What is PyMoDAQ’s Data? and their saving
mechanism use one of the objects defined in Module Savers. There are three possibilities to save data within the
DAQ_Viewer.

• The first one is a direct one using the snapshots buttons to save current or new data from the detector, it uses a
DetectorSaver object to do so. The private method triggering the saving is _save_data.

• The second one is the continuous saving mode. It uses a DetectorEnlargeableSaver object to continuously
save data within enlargeable arrays. Methods related to this are: append_data and _init_continuous_save

• The third one is not used directly from the DAQ_Viewer but triggered by extensions such as the DAQ_Scan. Data
are indexed within an already defined array using a DetectorExtendedSaver. Methods related to this are:
insert_data and some code in the DAQ_Scan, see below.

for det in self.modules_manager.detectors:
det.module_and_data_saver = module_saving.DetectorExtendedSaver(det, self.scan_shape)

self.module_and_data_saver.h5saver = self.h5saver # will update its h5saver and all␣
→˓submodules's h5saver

Snapshots

Datas saved directly from a DAQ_Viewer (for instance the one on Fig. 7.27) will be recorded in a h5file whose structure
will be represented like Fig. 7.71 using PyMoDAQ’s h5 browser.

Continuous Saving

When the continuous saving parameter is set, new parameters are appearing on the DAQ_Viewer panel (see Fig. 7.22).
This is in fact the settings associated with the H5Saver object used under the hood, see H5Saver.

• Base path: indicates where the data will be saved. If it doesn’t exist the module will try to create it

• Base name: indicates the base name from which the save file will derive

• Current Path: readonly, complete path of the saved file

• Do Save: Initialize the file and logging can start. A new file is created if clicked again.

• Compression options: data can be compressed before saving, using one of the proposed library and the given
value of compression [0-9], see pytables documentation.

The saved file will follow this general structure:

D:\Data\2018\20181220\Data_20181220_16_58_48.h5

44 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.22: Continuous Saving options

With a base path (D:\Data in this case) followed by a subfolder year, a subfolder day and a filename formed from a
base name followed by the date of the day and the time at which you started to log data. Fig. 7.23 displays the tree
structure of such a file, with two nodes (prefixed as enlargeable, EnlData) and a navigation axis corresponding to the
timestamps at the time of each snapshot taken once the continuous saving has been activated (ticking the Do Save
checkbox)

7.3.5 Extensions

The DashBoard module can load extensions to perform dedicated tasks, such as automated data acquisition.

DAQ Scan

This module is an extension of the DashBoard but is the heart of PyMoDAQ, it will:

• setup automatic data acquisition of detectors as a function of one or more actuators

• save datas in hierarchical hdf5 binary files (compatible with the H5Browser used to display/explore data)

The flow of this module is as follow:

• at startup you have to define/load a preset (see Preset manager) in the Dashboard

• Select DAQ_Scan in the actions menu

• A dataset will be declared the first time you set a scan. A dataset is equivalent to a single saved file containing
multiple scans. One can see a dataset as a series of scans related to single subject/sample to be characterized.

• Metadata can be saved for each dataset and then for each scan and be later retrieved from the saved file (see
Module Savers and H5Browser)

7.3. User’s Guide 45

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.23: Continuous Saving options

46 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

• Performs multiple scans exploring all the parameters needed for your experiment

Introduction

The dashboard gives you full control for manual adjustments (using the UI) of each actuator, checking their impact on
live data from the detectors. Once all is set, one can move to an automated scan using the main control window of the
DAQ_Scan, see Fig. 7.24.

Main Control Window

The main control window is comprised of various panels to set all parameters and display live data taken during a scan.

Fig. 7.24: Main DAQ_Scan user interface.

• The instrument selection panel allows to quickly select the detectors and the actuators to use for the next scan

• The settings panel is divided in three sections (see Settings for more details):

– Scanner settings: select and set the next scan type and values.

– General settings: options on timing, scan averaging and plotting.

7.3. User’s Guide 47

PyMoDAQ Documentation, Release 4.2.0

– Save settings: everything about what should be saved, how and where.

• The Live plots selection panel allows to select which data produced from selected detectors should be rendered
live

• The Live Plots panels renders the data as a function of varying parameters as selected in the Live plots selection
panel

Scan Flow

Performing a scan is typically done by:

• Selecting which detectors to save data from

• Selecting which actuators will be the scan varying parameters

• Selecting the type of scan (see Selecting the type of scan): 1D, 2D, . . . and subtypes

• For a given type and subtype, settings the start, stop, . . . of the selected actuators

• Selecting data to be rendered live (none by default)

• Starting the scan

Selecting detectors and actuators

The Instrument selection panel is the user interface of the module manager (see Module Manager for details). It
allows the user to select the actuators and detectors for the next scan (see Fig. 7.25). This interface is also used for the
DAQ_Logger extension.

Selecting the type of scan

All specifics of the upcoming scan are configured using the scanner_paragrah module interface as seen on Fig. 7.26 in
the case of a spiral Scan2D scan configuration.

Selecting the data to render live

For a data acquisition system to be efficient, live data must be plotted in order to follow the experiment behaviour and
check if something is going wrong or successfully without the need to perform a full data analysis. For this PyMoDAQ
live data display will allows the user to select data to be plotted from the selected detectors.

The list of all possible data to be plotted can be obtained by clicking on the button. All data will be
classified by dimensionality (0D, 1D). The total dimensionality of the data + the scan dimensions (1 for scan1D and 2
for Scan2D. . .) should not exceed 2 (this means one cannot plot more complex plots than 2D intensity plots). It also
means that you should use ROI to generate lower dimensionality data from your raw data for a proper live plot.

For instance, if the chosen detector is a 1D one, see Fig. 7.27. Such a detector can generate various type of live data.

It will export the raw 1D data and the 1D lineouts and integrated 0D data from the declared ROI as shown on Fig. 7.28

48 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.25: List of declared modules from a preset

7.3. User’s Guide 49

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.26: The Scanner user interface set on a Scan2D scan type and an adaptive scan subtype and its particular settings.

50 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.27: An example of a 1D detector having 2 channels. 0D data are generated as well from the integration of channel
CH0 within the regions of interest (ROI_00 and ROI_01).

Fig. 7.28: An example of all data generated from a 1D detector having 2 channels. 0D data and 1D data are generated
as well from the integration of channel CH0 within the regions of interest (ROI_00 and ROI_01).

7.3. User’s Guide 51

PyMoDAQ Documentation, Release 4.2.0

Given these constraints, one live plot panel will be created by selected data to be rendered with some specificities. One
of these is that by default, all 0D data will be grouped on a single viewer panel, as shown on Fig. 7.24 (this can be
changed using the General Settings)

The viewer type will be chosen (Viewer1D or 2D) given the dimensionality of the data to be ploted and the number of
selected actuators.

• if the scan is 1D:

– exported 0D datas will be displayed on a Viewer1D panel as a line as a function of the actuator position,
see Fig. 7.24.

– exported 1D datas will be displayed on a Viewer2D panel as color levels as a function of the actuator
position, see Fig. 7.29.

• if the scan is 2D:

– exported 0D datas will be displayed on a Viewer2D panel as a pixel map where each pixel coordinates
represents a scan coordinate. The color and intensity of the pixels refer to channels and data values, see
Fig. 7.30 for a linear 2D scan.

So at maximum, 2D dimensionality can be represented. In order to see live data from 2D detectors, one should therefore
export lineouts from ROIs or integrate data. All these operations are extremely simple to perform using the ROI features
of the data viewers (see Plotting Data)

Various settings

Toolbar

The toolbar is comprised of buttons to start and stop a scan as well as quit the application. Some other functionalities
can also be triggered with other buttons as described below:

• : will shut down all modules and quit the application (redundant with: File/Quit menu)

• Init. Positions: will move all selected actuators to their initial positions as defined by the currently set scan.

• : will start the currently set scan (first it will set it then start it)

• : stop the currently running scan (in case of a batch of scans, it will skips the current one).

• : when checked, allows currently actuators to be moved by double clicking on a position in the live plots

• : opens the logs in a text editor

52 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.29: An example of a detector exporting 1D live data plotted as a function of the actuator position. Channel CH0
is plotted in red while channel CH1 is plotted in green.

7.3. User’s Guide 53

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.30: An example of a detector exporting 0D live data plotted as a function of the 2 actuators’s position. Integrated
regions of channel CH0 are plotted in red and green.

54 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Menu Bar Description

There are two entries in the menu bar: File and Settings

The File entry will let you:

• load a previously saved scan file (and keep saving scans on it)

• Save the current file in another filename than the default one

• Load the content of the current file into the H5Browser

The Settings entry will let you:

• display the Navigator see Navigator

• Display and activate the Scan Batch Manager

Settings

The settings tree as shown on Fig. 7.24 is actually divided in a few subtrees that contain everything needed to define a
given scan, save data and plot live information.

General Settings

The General Settings are comprised of:

• Time Flow

– Wait time step: extra time the application wait before moving on to the next scan step. Enable rough timing
if needed

– Wait time between: extra time the application wait before starting a detector’s grab after the actuators
reached their final value.

– timeout: raise a timeout if one of the scan step (moving or detecting) is taking a longer time than timeout
to respond

• Scan options :

– N average: Select how many scans to average. Save all individual scans.

• Scan options : * Get Data probe selected detectors to get info on the data they are generating (including pro-
cessed data from ROI) * Group 0D data: Will group all generated 0D data to be plotted on the same viewer
panel (work only for 0D data) * Plot 0D shows the list of data that are 0D * Plot 1D shows the list of data that are
1D * Prepare Viewers generates viewer panels depending on the selected data to be live ploted * Plot at each
step

– if checked, update the live plots at each step in the scan

– if not, display a Refresh plots integer parameter, say T. Will update the live plots every T milliseconds

• Save Settings: See h5saver_settings

7.3. User’s Guide 55

PyMoDAQ Documentation, Release 4.2.0

Saving: Dataset and scans

DAQ_Scan module will save your data in datasets. Each dataset is a unique h5 file and may contain multiple scans.
The idea behind this is to have a unique file for a set of related data (the dataset) together with all the meta information:
logger data, module parameters (settings, ROI. . .) even png screenshots of the various panels.

Fig. 7.31 displays the content of a typical dataset file containing various scans and how each data and metadata is used
by the H5Browser to display the info to the user.

Fig. 7.31: h5 browser and arrows to explain how each data or metadata is being displayed

The Save Settings (see Fig. 7.32) is the user interface of the H5Saver, it is a general interface to parametrize data saving
in the hdf5 file:

In order to save correctly your datas, saving modules are to be used, see Module Savers.

Scanner

The Scanner module is an object dealing with configuration of scan modes and is mainly used by the DAQ_Scan
extension. It features a graphical interface, see Fig. 7.34, allowing the configuration of the scan type and all its particular
settings. The Scan type sets the type of scan, Scan1D for a scan as a function of only one actuator, Scan2D for a scan
as a function of two actuators, Sequential for scans as a function of 1, 2. . .N actuators and Tabular for a list of points
coordinates in any number of actuator phase space. All specific features of these scan types are described below:

56 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.32: Save settings for the DAQ_Scan extension

7.3. User’s Guide 57

PyMoDAQ Documentation, Release 4.2.0

Scan1D

The possible settings are visible on Fig. 7.33 and described below:

• scan subtype: either Linear (usual uniform 1D scan), Back to start (the actuator comes back to the initial
position after each linear step, for a referenced measurement for instance), Random same as Linear except the
predetermined positions are sampled randomly and from version 2.0.1 Adaptive that features no predetermined
positions. These will be determined by an algorithm influenced by the signal returned from a detector on the
previously sampled positions (see Adaptive)

• Start: Initial position of the selected actuator (in selected actuator controller unit)

• Stop: Last position of the scan (in selected actuator controller unit)

• Step: Step size of the step (in selected actuator controller unit)

For the special case of the Adaptive mode, one more feature is available: the Loss type*. It modifies the algorithm
behaviour (see Adaptive)

Fig. 7.33: The Scanner user interface set on a Scan1D scan type and the visible list of scan subtype.

Scan2D

The possible settings are visible on Fig. 7.34 and described below:

• Scan subtype: See Fig. 7.35 either linear (scan line by line), linear back and forth (scan line by line but in
reverse direction each 2 lines), spiral (start from the center and scan as a spiral), Random (random sampling of
the linear case) and Adaptive (see Adaptive)

• Start, Stop, Step: for each axes (each actuators)

58 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.34: The Scanner user interface set on a Scan2D scan type and a Spiral scan subtype and its particular settings.

7.3. User’s Guide 59

PyMoDAQ Documentation, Release 4.2.0

• Rmax, Rstep, Npts/axis: in case of spiral scan only. Rmax is the maximum radius of the spiral (calculated),
and Npts/axis is the number of points for both axis (total number of points is therefore Npts/axis2).

• Selection: see Scan Selector

Fig. 7.35: The main Scan2D subtypes: Linear, Back and Forth and Spiral.

Sequential

The possible settings are visible on Fig. 7.36 and described below:

• Scan subtype: only linear this means the scan have a sequence of Scan1D of the last specified actuator (on Fig.
7.36, it is Xaxis) for all positions of the last but end actuator (here Yaxis) and so on. So on Fig. 7.36 there will
be 11 steps for Xaxis times 11 steps for Yaxis times 10 steps for Theta axis so in total 11x11x10=1210 total steps
for this 3 dimensions scan.

Note: If only 1 actuator is selected, then the Sequential scan is identical to the Scan1D scan but where only the linear
subtype is available. If 2 actuators are selected, then the Sequential scan is identical to the Scan2D scan but where only
the linear subtype is available.

Tabular

The tabular scan type consists of a list of positions (for each selected actuators).

Tabular Linear/Manual case

In the Linear/Manual case, the module will move actuators on each positions and grab datas. On Fig. 7.37, a list of 79
positions has been set. By right clicking on the table, a context manager pops up and gives the possibility to:

• add one more position in the list

• remove the selected position

• clear all the positions

• load positions from a text file (as many columns as selected actuators with their positions separated by a tab)

• save the current list of positions in a text file (for later quick loading of positions)

One can also drag and drop elements of the list at a different index in the list.

60 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.36: The Scanner user interface set on a Sequential scan type with a sequence of three actuators

7.3. User’s Guide 61

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.37: The Scanner user interface set on a Tabular scan type with a list of points for 2 actuators. A context menu
with other options is also visible (right click on the table to show it)

62 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Tabular Linear/Polylines case

In the particular case of 2 selected actuators, it could be more interesting to draw the positions for the tabular scan.
One possibility is to draw segments on a 2D viewer (see Fig. 7.38) and positions will be points along these segments
(it will be a kind of 1D cuts within a 2D phase space). A new setting, Curvilinear step appears. The positions will be
points starting from the start of the first segment and then step along them by the value of this setting. That gives, for
Fig. 7.38, 40 points defined along the segments.

Fig. 7.38: An example of 1D complex sections selected within a 2D area

Tabular Adaptive case

Valid for 1 or 2 selected actuators. The tabular adaptive case will be similar to scan1D adaptive mode, except that
one adaptive Scan1D will be done for each segments defined by the list of positions in the table. For instance, Fig.
7.39 shows a list of 4 positions defining 4 segments in a 2D space. The adaptive scan will be done on/along these 4
segments. Positions can be set manually or from a Polylines selection as seen on Fig. 7.38.

7.3. User’s Guide 63

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.39: The Scanner user interface set on a Tabular scan type with a list of points for 2 actuators. A context menu
with other options is also visible (right click on the table to show it)

Adaptive

All the adaptive features are using the python-adaptive package (Parallel active learning of mathematical functions,
10.5281/zenodo.1182437). And the reader is invited to explore their tutorials to discover how these algorithms work.
In PyMoDAQ the learner1D algorithm is used for the Scan1D and Tabular scan types while the learner2D one is used
for Scan2D scan type.

Bounds

As a general rule, the adaptive algorithm will need bounds to work with. For Scan1D scan type, these will be defined
from the start and stop settings. For Tabular, it is the start and ends of the segments. Finally for Scan2D, it is the: Start
Ax 1, Stop Ax 1 and Start Ax 2, Stop Ax 2 that are defining scan bounds.

Feedback

The adaptive algorithm will need for each probed positions a feedback value telling it the fitness of the probed points.
From these on all previous points, it will determine the best next points to probe. In order to provide such a feedback,
on has to choose a signal among all available from the DashBoard detectors. It has to be a Scalar so originate from a
0D detector or integrated ROI from 1D or 2D detectors. The module manager user interface (right most setting tree
in the DAQ_Scan module ,see Fig. 7.88) will let you probe available datas exported from currently selected detectors.
You can then pick the Data0D one you want to use as the Adaptive feedback. For instance, on Fig. 7.88, three Data0D
are available, one from a 0D detector (CH000) and 2 from the Measurements ROIs of a 1D detector. In that case the
CH000 data has been selected and will therefore be use as feedback for the Adaptive algorithm.

64 Chapter 7. Changelog

https://adaptive.readthedocs.io/en/latest/
https://adaptive.readthedocs.io/en/latest/tutorial/tutorial.Learner1D.html
https://adaptive.readthedocs.io/en/latest/tutorial/tutorial.Learner2D.html

PyMoDAQ Documentation, Release 4.2.0

Loss

All the Adaptive options are called Loss on the Scanner UI. These influence the adaptive algorithm, using previously
probed positions and their feedback to guess the next point to probe. See the Adaptive documentation on loss to
understand all the possibilities.

Navigator

From version 1.4.0, a new module has been added: the Navigator (daq_utils.plotting.navigator). It is most useful when
dealing with 2D scans such as XY cartography. As such, it is not displayed by default. It consists of a tree like structure
displaying all currently saved 2D scans (in the current dataset) and a viewer where selected scans can be displayed at
their respective locations. It can be displayed using the Settings menu, Show Navigator option. Fig. 7.40 shows the
DAQ_scan extension with activated Navigator and a few scans. This navigator can also be used as a Scan Selector
viewer to quickly explore and select areas to scan on a 2D phase space.

Fig. 7.40: An example of dataset displaying several 2D scans at their respective locations (up and right axis)

7.3. User’s Guide 65

https://adaptive.readthedocs.io/en/latest/tutorial/tutorial.custom_loss.html

PyMoDAQ Documentation, Release 4.2.0

Scan Batch Manager

If the Scan Batch Manager is activated, a new menu entry will appear: Batch Configs, that let the user define, modify
or load scan batch configurations. When loaded, a particular configuration will be displayed in the batch window. This
window (see Fig. 7.41) displays (in a tree) a list of scans to perform. Each scan is defined by a set of actuators/detectors
to use and scan settings (Scan1D, Linear. . . just as described in Settings).

Fig. 7.41: An example of a Scan Batch configuration displaying several scans to perform

A new start button will also appear on the main window to start the currently loaded scan batch.

DAQ Logger

This module is an extension of the dashboard, it will:

• ask you where to log data from all selected detectors

• save log datas in hierarchical binary files (compatible with the H5Browser)

The flow of this module is as follow:

• at startup you have to define/load a preset (see Preset manager) in the Dashboard

• Select DAQ_Logger in the actions menu

• Select the destination of the logged data: binary hdf5 file or SQL database

66 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Introduction

In construction

Main Control Window

In construction

H5 saving

In construction

SQL Database saving

In construction

PID Module

Note: For now this module is not compatible with PyMoDAQ 4. Please use the PyMoDAQ 3.6.8 version, as
mentioned latter in this documentation. We are currently working on to update the PID extension.

Introduction

This documentation is complementary to the video on the module :

https://www.youtube.com/watch?v=u8ifY4WqQEA

The PID module is useful if you would like to control a parameter of a physical system (a temperature, the length of an
interferometer, the beam pointing of a laser. . .). In order to achieve this, you need a set of detectors to read the current
state of the system, an interpretation of this reading, and a set of actuators to perform the correction.

Note: Notice that the speed of the corrections that can be achieved with this module are inherently limited below 100
Hz, because the feedback system uses a computer. If you need a faster correction, you should probably consider an
analogic solution.

First example: a boiler

Let consider this physical system. Some water is put in a jar, let say we want to keep the temperature of the water to
40°C, this is our setpoint. The system is composed of a heating element (an actuator), and a thermometer (a detector).

The control of the heater and the thermometer is a prerequisite to achieve the control of the temperature, but we also
need a logic. For example:

• if T - T_setpoint < 5°C then heater is ON

7.3. User’s Guide 67

https://www.youtube.com/watch?v=u8ifY4WqQEA

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.42: The boiler system.

• if T - T_setpoint > 5°C then heater is OFF

With this logic, when the hot water will have dissipated enough energy in its environment to reach 35°C, the heater
will be switch on to heat it up to 45°C and then switch off. The temperature of the water will then be oscillating
approximatelly around 40°C.

The difference between the setpoint and the current value of the control parameter, here T - T_setpoint, is called the
error signal.

The PID Model

Depending on the system you want to control, there will be a different number of actuators or detectors, and a different
logic. For example, if you want to control the pointing of a laser on a camera, you will need a motorized optical mount
to hold a mirror with two actuators that control the tip and tilt axes, what we call a beam steering system. The way you
calculate your error signal will be different: you will need a way to define the center of the laser beam on the camera,
like the barycenter of the illuminated pixels, and the error signal will be a 2D vector, one for the vertical and one for
the horizontal direction.

Fig. 7.43: The beam steering scheme.

Another exemple consists it propagating a continuous laser in the two arms of an interferometer to produce an inter-
ference pattern. The phase of the fringes depending on the difference in the arms’ lengths, it is possible to retrieve an
error signal from this interference pattern to lock the interferometer, or even to sweep its length while it is locked.

The PID Model is a configuration of the PID module which depends on the physical system we want to control. It
contains:

• the number and the dimensionality of the required detectors

• the number of actuators

68 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.44: The interferometer scheme.

• the number of setpoints

• the logic to calculate the error signal from the detectors’ signals

A PID model is associated to each different physical system we want to control.

Demonstration with a virtual beam steering system

Lucky you, you do not need a real system to test the PID module! A computer and an internet connection are
enough. For our demonstration, we will install some mock plugins that simulate a beam steering system.

Let us start from scratch, we follow the installation procedure of PyMoDAQ that you can find in the installation page:
https://pymodaq.cnrs.fr/en/latest/usage/Installation.html

We suppose that you have Miniconda3 or Anaconda3 installed.

In a console, first create a dedicated environment and activate it

conda create -n mock_beam_steering python=3.8

conda activate mock_beam_steering

Install PyMoDAQ with the version that have been tested while writing this documentation

pip install pymodaq==3.6.8

and the Qt5 backend

pip install pyqt5

We also need to install (from source) another package that contains all the mock plugins to test the PID module. This
step is optional if you wish to use the PID module with real actuators and detectors.

pip install git+https://github.com/PyMoDAQ/pymodaq_plugins_pid.git

7.3. User’s Guide 69

https://pymodaq.cnrs.fr/en/latest/usage/Installation.html

PyMoDAQ Documentation, Release 4.2.0

Preset configuration

Launch a dashboard

dashboard

Note: If at this step you get an error from the console, try to update to a newest version of the package “tables”, for
instance pip install tables==3.7 and try again to launch a dashboard.

In the main menu go to

Preset Modes > New Preset

Let us choose a name, for example preset_mock_beam_steering.

Under the Moves section add two actuators by selecting BeamSteering in the menu, and configure them as follow.
The controller ID parameter could be different from the picture in your case. Let this number unchanged for the first
actuator, but it is important that all the two actuators and the detector have the same controller ID number. It is also
important that the controller status of the first actuator be Master, and that the status of the second actuator and the
detector be Slave. (This configuration is specific to the demonstration. Underneath the actuators and the detector share
a same virtual controller to mimic a real beam steering system, but you do not need to understand that for now!)

Now, add a 2D detector by selecting DAQ2D/BeamSteering in the menu, and configure it as follow

and click SAVE.

Back to the dashboard menu

Preset Modes > Load preset > preset_mock_beam_steering

Your dashboard should look like this once you have grabbed the camera and unwrapped the option menus of the
actuators.

If you now try a relative move with Xpiezo or Ypiezo, you will see that the position of the laser spot on your virtual
camera is moving horizontally or vertically, as if you were playing with a motorized optical mount.

Our mock system is now fully configured, we are ready for the PID module!

PID module

The loading of the PID module is done through the dashboard menu

Extensions > PID Module

It will popup a new window, in Model class select PIDModelBeamSteering and (1) initialize the model.

Configure it as follow:

• camera refresh time (in the dashboard) = 200 ms

• PID controls/sample time = 200 ms

• PID controls/refresh plot time = 200 ms

• threshold = 2

70 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.45: The mock actuators configuration.

7.3. User’s Guide 71

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.46: The mock camera configuration.

72 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.47: The dashboard after loading the preset.

7.3. User’s Guide 73

PyMoDAQ Documentation, Release 4.2.0

Then (2) intialize the PID and (3) start the PID loop with the PLAY button. Notice that at this stage the corrections
are calculated, but the piezo motors are not moving. It is only when you will (4) untick the PAUSE button that the
corrections will be applied.

Fig. 7.48: The PID module interface.

PID configuration

Output limits

The output limits are here mainly to prevent the feedback system to send crazy high corrections and move our beam
out of the chip.

If we put them too low, the feedback system will only send tiny corrections, and it will take a long time to correct an
error, or if we change the setpoint.

If we increase them, then our system will be able to move much faster.

The units of the output limits are the same as the piezo motors, let say in microns. Put an output limit to +500 means
“If at any time the PID outputs a correction superior to 500 microns, then only correct 500 microns.”

The output limits are not here to slow down the correction, if we want to do that we can decrease the proportional
parameter (see next section). They are here to define what we consider as a crazy correction.

To define them we can pause the PID loop and play manually with the piezo actuators. We can see that if we do a 10000
step, we almost get out of the chip of the camera, thus an output limit of 1000 seems reasonable.

74 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

If we do a big change of setpoint and see that every step of the piezo corresponds to the output limit we configured,
then it means the corrections are saturated by the output limits.

Configuring the PID parameters

The proportional, integral, derivative parameters of the PID filter, respectively Kp, Ki and Kd, will dictate the behavior
of the feedback system.

Stay at a fixed position while the correction loop is closed, and start with Kp = 1, Ki = 0, Kd = 0. Then change the
setpoint to go close to an edge of the camera. We see that the system is doing what it is supposed to do: the beam goes
to the setpoint. . . but veeeeeeeeeeeeery slowly. This is not necessarily bad. If your application does only need to keep
the beam at a definite position (e.g. if you inject an optical fiber), this can be a good configuration. If we take a look at
the PID input display, which is just the measured position of the beam on the chip in pixel, we can see that reducing
Kp will decrease the fluctuations of the beam around the target position. Thus a low Kp can increase the stability of
your pointing.

Let say now that we intend to move regularly the setpoint. We need a more reactive system. Let us increase progressively
the value of Kp until we see that the beam start to oscillate strongly around the target position (this should happen for Kp
close to 200 - 300). We call this value of Kp the ultimate gain. Some heuristic method says that dividing the ultimate
gain by 2 is a reasonable value for Kp. So let us take Kp = 100.

We will not go further in this documentation about how to configure a PID filter. For lots of applications, having just
Kp is enough. If you want to go further you can start with this Wikipedia page: https://en.wikipedia.org/wiki/PID_
controller.

Automatic control of the setpoints

Let us imagine now that we want to use this beam to characterize a sample, and that we need a long acquisition time at
each position of the beam on the sample to perform our measurement. Up to now our feedback system allows to keep
a stable position on the sample, which is nice. But it would be even better to be able to scan the surface of the sample
automatically rather than moving the setpoints manually. That is the purpose of this section!

In order to do that, we will create virtual actuators on the dashboard that will control the setpoints of the PID module.
Then, PyMoDAQ will see them as standard actuators, which means that we will be able to use any of the other modules,
and in particular, perform any scan that can be configured with the DAQ_Scan module.

Preset configuration

Start with a fresh dashboard, we have to change a bit the configuration of our preset to configure this functionality. Go
to

Preset Modes > Modify preset

and select the one that we defined previously. You just need to tick Use PID as actuator and save it.

Moving the setpoints from the dashboard

Load this new preset. Notice that it now automatically loaded the PID module, and that our dashboard got two more
actuators of type PID named Xaxis and Yaxis. If you change manually the position of those actuators, you should see
that they control the setpoints of the PID module.

Moving the setpoints with the DAQ Scan module

Those virtual actuators can be manipulated as normal actuators, and you can ask PyMoDAQ to perform a scan of those
guys! Go to

Extensions > Do scans

7.3. User’s Guide 75

https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/PID_controller

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.49: Configuration of the preset for automatic control of the setpoints.

Fig. 7.50: Virtual actuators on the dashboard control the setpoints of the PID module.

76 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.51: Configuration of a scan with the DAQ_Scan module.

Some popup windows will ask you to name your scan. This is not important here. Configure the scan as follow

(1) Select Camera, Xaxis, Yaxis (maintain Ctrl command to select several actuators)

(2) Click Probe detector’s data

(3) Click Test actuators and select a position at the center of the camera

(4) Define a 2D scan as follow. Notice that Ax1 (associated to the Xaxis) corresponds to the main loop of the scan:
its value is changed, then all the values of Ax2 are scanned, then the value of Ax1 is changed, and so on. . .

(5) Set scan

(6) Start and look at the camera

The beam should follow automatically the scan that we have defined. Of course in this demonstration with a virtual
system, this sounds quite artificial, but if you need to perform stabilized scans with long acquisition times, this feature
can be very useful!

7.3. User’s Guide 77

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.52: Movement of the beam on the camera with a scan of the setpoints.

How to write my own PID application?

Package structure for a PID application

To write your own PID application, you should create a package with a similar structure as a standard py-
modaq_plugins_xxx package. There are few modifications. Let us have a look at the pymodaq_plugins_pid.

Notice there is a models folder next to the hardware folder, at the root of the package. This folder will contains the PID
models.

Then python will be able to probe into those as they have been configured as entry points during installation of the
package. You should check that those lines are present in the setup.py file of your package.

This declaration allows PyMoDAQ to find the installed models when executing the PID module. Internally, it will call
the get_models method that is defined in the daq_utils.

In order to use the PID module for our specific physical system, we need:

78 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.53: Structure of a package containing PID models.

Fig. 7.54: Declaration of entry points in the setup.py file.

Fig. 7.55: The get_models method in the daq_utils.

7.3. User’s Guide 79

PyMoDAQ Documentation, Release 4.2.0

• A set of detector and actuator plugins that is needed to stabilize our system.

• A PID model to implement the logic that is needed to translate the detectors’ signals into a correction.

Detector/actuator plugins

In the beam steering example, this corresponds to one actuator plugin (if you use the same motor model for horizontal
and vertical axis), and a camera plugin.

The first thing to do is to check the list of readily available plugins.

The easy scenario is that you found that the plugins for your hardware are already developped. You then just have to
test if they properly move or make an acquisition with the DAQ Move and DAQ Viewer modules. That’s it!

If there is no plugin developped for the hardware you want to use, you will have to develop your own. Don’t panic, that’s
quite simple! Everything is explained in the Plugins section of the documentation, and in this video. Moreover, you
can find a lot of examples for any kind of plugins in the list given above and in the GitHub repository of PyMoDAQ. If
at some point, you stick on a problem, do not hesite to raise an issue in the GitHub repository or address your question
to the mailing list pymodaq@services.cnrs.fr.

Note: It is not necessary that the plugins you use are declared in the same package as your model. Actually a model
is in principle independent of the hardware. If you use plugins that are declared in other packages, you just need them
to be installed in your python environment.

How to write a PID model?

Naming convention

Similarly to plugins, there exist naming conventions that you should follow, so that PyMoDAQ will be able to parse
correctly and find the classes and the files that are involved.

• The name of the file declaring the PID model should be named PIDModelXxxx.py

• The class declared in the file should be named PIDModelXxxx

Number of setpoints and naming of the control modules

The number of setpoints, their names, and the naming of the control modules are declared at the begining of the class
declaration. It is important that those names are reported in the preset file associated to the model. We understand
now that those names are actually set in the PID model class.

The required methods of a PID model class

There are two required methods in a PID model class:

• convert_input that will translate the acquisitions of the detectors into an understandable input for the PID filter
(which is defined in an external package).

• convert_output that will translate the output of the PID filter(s) into an understandable order for the actuators.

In this example of the PIDModelBeamSteering, the convert_input method get the acquisition of the camera, remove
the threshold value defined by the user through the UI (this is to remove the background noise), calculate the center of
mass of the image, and send the coordinates as input to the PID filter.

80 Chapter 7. Changelog

https://github.com/CEMES-CNRS/pymodaq_plugin_manager/blob/main/doc/PluginList.md
https://pymodaq.cnrs.fr/en/latest/usage/modules/DAQ_Move.html
https://pymodaq.cnrs.fr/en/latest/usage/modules/DAQ_Viewer.html
https://pymodaq.cnrs.fr/en/latest/usage/modules/Plugins.html
https://www.youtube.com/watch?v=9O6pqz89UT8
https://github.com/orgs/PyMoDAQ/repositories?type=all
mailto:pymodaq@services.cnrs.fr
https://pymodaq.cnrs.fr/en/latest/usage/modules/Plugins.html#naming-convention

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.56: Configuration of a PID model.

Fig. 7.57: The important methods of a PID model class.

7.3. User’s Guide 81

PyMoDAQ Documentation, Release 4.2.0

Note: The PID filter is aware of the setpoints values, thus you just have to send him absolute values for the positioning
of the system. He will calculate the difference himself.

As for the convert_output method, it only transferts the output of the PID filter directly as relative orders to the actuators.

Note: The output of the PID filter is a correction that is relative to the current values of the actuators.

That’s it!

Note: In this example, there is actually no other methods defined in the model, but you can imagine more complex
systems where, for example, the translation from the detectors acquisitions to the input to the filter would need a
calibration scan. Then you will probably need to define other methods. But, whatever it is, all the logic that is specific
to your system should be defined in this class.

If you want to go deeper, the next section is for you!

PID module internals

This section is intended for the advanced user that intend to develop its custom application based on the PID module,
or the one that is simply curious about the PID module internals. We will try to introduce here the main structure of
the module, hoping that it will help to graps the code more easily :)

Files locations

The files regarding the PID module are stored in the /src/pymodaq/pid/ folder which contains:

• utils.py which defines some utility classes, and in particular the PIDModelGeneric class from which all PID
models inherit.

• daq_move_PID.py which defines a virtual actuator that control the setpoint of the PID module. This is useful
for example if the user wants to scan the control parameter while it is locked.

• pid_controller.py. It is the core file of the module that defines the DAQ_PID and the PIDRunner classes that
will be presented below.

Packages

• PyMoDAQ/pymodaq_plugins_pid This package contains some mock plugins and models to test the module
without hardware. It is for development purposes and thus optional.

• PyMoDAQ/pymodaq_pid_models This package stores the PID models that have already been developped. Bet-
ter to have a look before developping its own!

82 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

General structure of the module

Fig. 7.58: The structure of the PID module.

The DAQ_PID class is the main central class of the module. It manages the initialization of the program: settings of
the user interface, loading of the PID model, instanciation of the PIDRunner class. . . It also makes a bridge between
the user, who acts through the UI, and the PIDRunner class, which is the one that is in direct relation with the detectors
and the actuators.

Since each of those classes is embbeded in a thread, the communication between them is done through the com-
mand_pid_signal and the queue_command method.

The PIDRunner class is created and configured by the DAQ_PID at the initialization of the PID loop. It is in charge
of synchronizing the instruments to perform the PID loop.

A PIDModel class is defined for each physical system the user wants to control. Here are defined the actuator/detector
modules involved, the number of setpoints, and the methods to convert the information received from the detectors as
orders to the actuators to perform the desired control.

The PID loop

The conductor of the PID loop is the PIDRunner, in particular the start_PID method. The workflow for each iteration
of the loop can be mapped as in the following figure.

Fig. 7.59: An iteration of the PID loop.

The starting of the PID loop is triggered by the user through the PLAY button.

The PIDRunner will ask the detector(s) to start an acquisition. When all are done, the wait_for_det_done method will
send the data (det_done_datas) to the PIDModel class.

A PIDModel class should be defined for each specific physical system the user wants to control. Here are defined how
much detectors/actuators are involved, and how the information sent by the detector(s) should be converted as orders
to the actuators (output_to_actuators) to reach the targeted position (the setpoint). The PIDModel class is thus an
iterface between the PID class and the detectors/actuators. The important methods of those classes are convert_input,
which will convert the detectors data to an input for the PID object, and the convert_output method which will translate
the output of the PID object to the actuators.

The PID class is defined in an external package (simple_pid: https://github.com/m-lundberg/simple-pid). It imple-
ments a pid filter. The tunnings (Kp, Ki, Kd) and the setpoint are configured by the user through the user interface.
From the input, which corresponds to the current position of the system measured by the detectors, it will return an
output that corresponds to the order to send to the actuators to stabilize the system around the setpoint (given that the
configuration has been done correctly). Notice that the input for the PID object should be an absolute value, and not a
relative value from the setpoint. The setpoint is entered as a parameter of the object so it can make the difference itself.

7.3. User’s Guide 83

https://github.com/m-lundberg/simple-pid

PyMoDAQ Documentation, Release 4.2.0

Bayesian Optimisation

First of all, this work is heavily supported by the work of Fernando Nogueira through its python package: bayesian-
optimization and the underlying use of Gaussian Process regression from scikit-learn.

Introduction

You’ll find below, a very short introduction, for a more detailed one, you can also read this article from Okan Yenigun
from which this introduction is derived.

Bayesian optimization is a technique used for the global optimization (finding an optimum) of black-box functions.
Black box functions are mathematical functions whose internal details are unknown. However given a set of input
parameters, one can evaluate the possibly noisy output of the function. In the PyMoDAQ ecosystem, such a black box
would often be the physical system of study and the physical observation we want to optimize given a certain number
of parameters. Two approaches are possible: do a grid search or random search using the DAQ_Scan extension that can
prove inefficient (you can miss the right points) and very lengthy in time or do a more intelligent phase space search by
building a probabilistic surrogate model of our black box by using the history of tested parameters.

Gaussian Processes:

The surrogate model we use here is called Gaussian Process, GP. A Gaussian process defines a distribution of functions
potentially fitting the data. This finite set of function values follows a multivariate Gaussian distribution. In the context
of Bayesian optimization, a GP is used to model the unknown objective function, and it provides a posterior distribution
over the function values given the observed data.

From this distribution, a mean value (µ) and standard deviation (std) of the function distribution is computed. These
are then used to model our black box system. To go one step beyond, the algorithm should predict which parameters
should be probed next to optimize the mean and std. For this we’ll construct a simple function based on the probability
output of the GP: the acquisition function.

Note: GPs are themselves based on various kernels (or covariance matrix or function generator). Which kernel to use
may depend on your particular problem, even if the standard ones (as provided in PyMoDAQ) should just work fine. If
you want to know more on this just browse this thesis.

Acquisition function:

Choosing which point to probe next is the essential step in optimizing our black box. It should quantify the utility of the
next point either to directly optimize our problem or to increase the fitness of the model. Should it favor the exploration
of the input parameters phase space? Should it perform exploitation of the known points to find the optimum?

All acquisition function will allow one or the other of these, or propose an hyperparameter to change the behaviour
during the process of optimisation. Among the possibilities, you’ll find:

• The Expected Improvement function (EI)

• The Upper Confidence Bound function (UCB)

• The Probability of Improvement function (PI)

• . . .

You can find details and implementation of each in here. PyMoDAQ uses by default the Upper Confidence Bound
function together with its kappa hyperparameter, see Settings and here.

84 Chapter 7. Changelog

https://github.com/bayesian-optimization/BayesianOptimization
https://github.com/bayesian-optimization/BayesianOptimization
https://scikit-learn.org/stable/modules/gaussian_process.html
https://medium.com/@okanyenigun/step-by-step-guide-to-bayesian-optimization-a-python-based-approach-3558985c6818
https://www.cs.toronto.edu/~duvenaud/thesis.pdf
https://medium.com/@okanyenigun/step-by-step-guide-to-bayesian-optimization-a-python-based-approach-3558985c6818
http://bayesian-optimization.github.io/BayesianOptimization/exploitation_vs_exploration.html

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.60: Illustration of Gaussian process regression in one dimension. Gaussian processes are specified by an esti-
mation function and the uncertainty function evolving constantly as more and more points are being tested. Source

7.3. User’s Guide 85

https://www.researchgate.net/publication/327613136_Bayesian_optimization_for_likelihood-free_cosmological_inference

PyMoDAQ Documentation, Release 4.2.0

Note: You can find a notebook illustrating the whole optimisation process on PyMoDAQ’s Github: here, where you
can define your black box function (that in general you don’t know) and play with kernels and utility functions.

Usage

Fig. 7.61 shows the GUI of the Bayesian Optimisation extension. It consists of three panels:

• Settings (left): allow configuration of the model, the search bounds, the acquisition function, selection of which
detector and actuators will participate to the optimisation.

• Observable (middle): here will be plotted the evolution of the result of the optimisation. On the top, the best
reached target value will be plotted. On the bottom, the coordinates (value) of the input parameters that gave the
best reached target will be plotted.

• Probed Data: this is a live plotter of the history of tested input parameters and reached target

Fig. 7.61: User Interface of the Bayesian Optimization extension.

86 Chapter 7. Changelog

https://github.com/PyMoDAQ/notebooks/blob/main/notebooks/gaussian_process.ipynb

PyMoDAQ Documentation, Release 4.2.0

Toolbar:

• : quit the extension

• : Initialise the selected model

• : Initialise the Bayesian algorithm with given settings

• : Run the Bayesian algorithm

• : Move the selected actuators to the values given by the best target reached by the algorithm

Settings

1. Actuators and detectors

First of all, you’ll have to select the detectors and actuators that will be used by the algorithm, see Fig. 7.62.

Fig. 7.62: Zoom on the settings of the GUI for selection of the detectors and actuators to be used in the optimization.

2. Model selection

Then you have to select a model (see Fig. 7.63 and Models) allowing the customization of the extension with respect
of what is the signal to be optimized, which particular plot should be added. . . . If the signal to be optimized is just
one of the 0D data generated by one of the selected detector, then the BayesianModelDefault is enough and no model
programming is needed. If not, read Models. In the case of the BayesianModelDefault, you’ll have to select a 0D signal
to be used as the target to be optimized, see bottom of Fig. 7.63.

3. Algorithm parameters

Then, you’ll have to specify the number of initial random state. This number means that before running a fit using the
GPs, the first N iteration will be made using a random choice of input parameters among the considered bounds. This
allows for a better initial exploration of the algorithm.

7.3. User’s Guide 87

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.63: Zoom on the settings of the GUI.

88 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

The value of the bounds is a crucial parameter. You have to enter the limits (min/max) for each selected actuator. The
algorithm will then optimize the signal on this specified phase space.

Then you can run the algorithm, button, and see what happens. . .

Note: Some parameters of the algorithm can be changed on the fly while the algorithm is running. This is the case
for:

• the bounds

• the utility function hyper parameters

Observable and Probed Data

Once you run the algorithm, the plots will be updated at each loop. The observable will update the current best reached
target value (fitness) and corresponding values of the actuators (input parameters). The right panel will plot all the
collected targets at their respective actuators value. In the case of a 2D optimisation, it will look like on figure Fig.
7.64. The white crosshair shows the current tested target while the yellow crosshair shows the best reached value.

Fig. 7.64: User Interface of the Bayesian Optimization extension during a run.

7.3. User’s Guide 89

PyMoDAQ Documentation, Release 4.2.0

Once you stop the algorithm (pause it in fact), the button will be enabled allowing to move the actuators to the

best reached target values ending the work of the algorithm. If you want you can also restart it. If you press the

button, the algorithm will begin where it stops just before. It you want to reinitialize it, then press the button
twice (eventually changing some parameters in between).

Models

In case the default model is not enough. It could be because what you want to optimize is a particular mathematical
treatment of some data, or the interplay of different data (like the ratio of two regions of interest) or whatever complex
thing you want to do.

In that case, you’ll have to create a new Bayesian model. To do so, you’ll have to:

1. create a python script

2. place it inside the models folder of a PyMoDAQ plugin (it could be a plugin you use with custom instruments, or
you could devote a plugin just for holding your models: PID, Optimization. . . In that case, no need to publish it
on pypi. Just hosting it locally (and backed up on github/gitlab) will do. You’ll find an example of such a Model
in the pymodaq_plugins_mockexamples

3. create a class (your model) with a name in the form BayesianModelXXX (replace XXX by what you want). This
class should inherit a base model class either BayesianModelDefault or BayesianModelGeneric to properly work
and be recognized by the extension.

4. Re-implement any method, property you need. In general it will be the convert_input one. This method
receive as a parameter a DataToExport object containing all the data acquired by all selected detectors and should
return a float: the target value to be optimized. For more details on the methods to be implemented, see The
Bayesian Extension and utilities.

Fig. 7.65: Example of a custom Bayesian model.

90 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

H5Browser

Exploring data

The h5 browser is an object that helps browsing of data and metadata. It asks you to select a h5 file and then display a
window such as Fig. 7.66. Depending the element of the file you are selecting in the h5 file tree, various metadata can
be displayed, such as scan settings or module settings at the time of saving. When double clicking on data type entries
in the tree, the data viewer (type Plotting all other data that can display data dimensionality up to 4) will display the
selected data node .

Fig. 7.66: h5 browser to explore saved datas

Some options are available when right clicking on a node, see Fig. 7.67.

• Export as: allow exporting of the data in the selected node to another known file format

• Add Comment: add a comment into the metadata of the node

• Plot Node: plot data (equivalent as double clicking)

• Plot Nodes: plot data hanging from the same channel

• Plot Node with Bkg: plot data with subtracted background (if present)

• Plot Nodes with Bkg: plot data hanging from the same channel with subtracted background (if present)

7.3. User’s Guide 91

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.67: h5 browser options

92 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Associating H5Browser with .h5 files

By default, the H5Browser always asks the user to select a file. One can instead open a specified .h5 file directly, using
the –input optional command line argument as follows:

h5browser --input my_h5_file.h5.

One can also associate H5Browser to all .h5 file so that it directly opens a file when double clicking on it. Here is
how to do it on Windows. Let us assume that you have a conda environment named my_env, in which PyMoDAQ is
installed.

In Windows, the path to your conda executable will be something like:

C:\Miniconda3\condabin\conda.bat

Now that you have written down this path, open your favorite text editing tool (e.g. notepad) and create a file called
H5Opener.bat (for instance) with the following contents:

@ECHO OFF
call C:\Miniconda3\condabin\conda.bat activate my_env
h5browser --input %1

Note: The precise path of your environment may be different from the one we wrote just above. Check your conda
installation to verify this: conda info and conda env list

After creating the file, simply right click on any .h5 file, choose Open with, Try an app on this PC, you should see a
list of programs, at the bottom you have to tick Always use this app to open .h5 files and then click Look for another
app on this PC. You can browse to the location of H5Opener.bat and you are done. Double clicking any .h5 file will
now open the H5Browser directly loading the selected file.

Console

Under construction

7.3.6 Data Management

Data are at the center of the PyMoDAQ ecosystem. From their acquisition up to their saving and plotting, you’ll
be confronted with them. It is therefore of paramount importance that data objects be well understood and be used
transparently by all of PyMoDAQ’s modules.

What is PyMoDAQ’s Data?

Data in PyMoDAQ are objects with many characteristics:

• a type: float, int, . . .

• a dimensionality: Data0D, Data1D, Data2D and we will discuss about DataND

• units

• axes

• actual data as numpy arrays

• uncertainty/error bars

7.3. User’s Guide 93

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.68: What is PyMoDAQ’s data?.

Because of this variety, PyMoDAQ introduce a set of objects including metadata (for instance the time of acquisition)
and various methods and properties to manipulate those (getting name, slicing, concatenating. . .). The most basic
object is DataLowLevel whose all data objects will inherit. It is very basic and will only store a name as a string and
a timestamp from its time of creation.

Then one have DataBase objects that stores homogeneous data (data of same type) having the same shape as a list of
numpy arrays.

Numpy is fundamental in python and it was obvious to choose that. However, instruments can acquire data having the
same type and shape but from different channels. It then makes sense to have a list of numpy arrays.

Figure Fig. 7.69 presents the different types of data objects introduced by PyMoDAQ, which are also described below
with examples on how to use them.

DataBase

DataBase, see Data Management, is the most basic object to store data (it should in fact not be used for real cases,
please use DataWithAxes). It takes as argument a name, a DataSource, a DataDim, a DataDistribution, the actual data
as a list of numpy arrays (even for scalars), labels (a name for each element in the list), eventually an origin (a string
from which module it originates) and optional named arguments.

>>> import numpy as np
>>> from pymodaq.utils.data import DataBase, DataSource, DataDim, DataDistribution
>>> data = DataBase('mydata', source=DataSource['raw'],\

(continues on next page)

94 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.69: Zoology of PyMoDAQ’s data objects.

7.3. User’s Guide 95

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

distribution=DataDistribution['uniform'], data=[np.array([1,2,3]), np.array([4,5,6])],\
labels=['channel1', 'channel2'], origin="documentation's code")

When instantiated, some checks are performed:

• checking the homogeneity of the data

• the consistency of the dimensionality and the shape of the numpy arrays

• if no dimensionality is given, it is inferred from the data’s shape

Useful properties can then be used to check and manipulate the data. For instance one can check the length of the
object (number of numpy arrays in the list), the size (number of elements in the numpy arrays), the shape (shape of the
numpy arrays).

>>> data.dim
<DataDim.Data1D: 1>
>>> data.source
<DataSource.raw: 0>
>>> data.shape
(3,)
>>> data.length
2
>>> data.size
3

One can also make mathematical operations between data objects (sum, substraction, averaging) or appending numpy
arrays (of same type and shape) to the data object and iterating over the numpy arrays with the standard for loop.

>>> for subdata in data:
print(subdata)
print(subdata.shape)

[1 2 3]
(3,)
[4 5 6]
(3,)

For a full description see What is PyMoDAQ’s Data?.

Of course for data that are not scalar, a very important information is the axis associated with the data (one axis for
waveforms, two for 2D data or more for hyperspectral data). PyMoDAQ therefore introduces Axis and DataWithAxes
objects.

Axis

The Axis object stores the information about the data’s axis

>>> from pymodaq.utils.data import Axis
>>> axis = Axis('myaxis', units='seconds', data=np.array([3,7,11,15]), index=0)
>>> axis
Axis: <label: myaxis> - <units: seconds> - <index: 0>

It has a name, units, actual data as a numpy array and an index referring to which dimension of Data the axis is referring
to. For example, index=0 for the vertical axis of 2D data and index=1 for the horizontal (or inversely, it’s up to you. . .).

96 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Because there is no need to store a linearly spaced array, when instantiated, the Axis object will, for linear axis’s data
replace it by None but compute an offset and a scaling factor

>>> axis.data
None
>>> axis.offset
3
>>> axis.scaling
4.0
>>> axis.size
4

Axis object has also properties and methods to manipulate the object, for instance to retrieve the associated numpy
array:

>>> axis.get_data()
array([3., 7., 11., 15.])

and mathematical methods:

>>> axis.mean()
11.0
>>> axis.find_index(11.0)
2

and a special slicer property to get subparts of the axis’s data (but as a new Axis object):

>>> axis.iaxis[2:].get_data()
array([11., 15.])

DataWithAxes

When dealing with data having axes (even 0D data can be defined as DataWithAxes), the DataBase object is no
more enough to describe the data. PyMoDAQ therefore introduces DataWithAxes which inherits from DataBase and
introduces more metadata and functionalities.

>>> from pymodaq.utils.data import DataWithAxes
>>> data = DataWithAxes('mydata', source=DataSource['raw'], dim=DataDim['Data2D'], \
distribution=DataDistribution['uniform'], data=[np.array([[1,2,3], [4,5,6]])],\
axes=[Axis('vaxis', index=0, data=np.array([-1, 1])),
Axis('haxis', index=1, data=np.array([10, 11, 12]))])
>>> data
<DataWithAxes, mydata, (|2, 3)>
>>> data.axes
[Axis: <label: vaxis> - <units: > - <index: 0>,
Axis: <label: haxis> - <units: > - <index: 1>]

This object has a few more methods and properties related to the presence of axes. It has in particular an AxesManager
attribute that deals with the Axis objects and the Data’s representation (|2, 3) Here meaning the data has a signal
shape of (2, 3). The notion of signal will be highlighted in the next paragraph.

It also has a slicer property to get subdata:

7.3. User’s Guide 97

PyMoDAQ Documentation, Release 4.2.0

>>> sub_data = data.isig[1:, 1:]
>>> sub_data.data[0]
array([5, 6])
>>> sub_data = data.isig[:, 1:]
>>> sub_data.data[0]
array([[2, 3],

[5, 6]])

Uncertainty/error bars

The result of a measurement can be captured through averaging of several identical data. This batch of data can be
saved as a higher dimensionality data (see DAQ Scan averaging). However the data could also be represented by the
mean of this average and the standard deviation from the mean. DataWithAxes introduces therefore this concept as
another object attribute: errors.

data = DataWithAxes('mydata', source=DataSource['raw'], dim=DataDim['Data1D'],
data=[np.array([1,2,3])],
axes=[Axis('axis', index=0, data=np.array([-1, 0, 1])),
errors=[np.array([0.01, 0.03, 0,1])])

The errors parameter should be either None (default) or a list of numpy arrays (list as long as there are data numpy
arrays) having the same shape as the actual data.

DataWithAxes and signal/navigation axes

Signal and Navigation is a term taken from the hyperspy package vocabulary. It is useful when dealing with multidi-
mensional data. Imagine data you obtained from a camera (256x1024 pixels) during a linear 1D scan of one actuator
(100 steps). The final shape of the data would be (100, 256, 1024). The first dimension corresponds to a Navigation
axis (the scan), and the rest to Signal axes (the real detector’s data). The corresponding data has a dimensionality of
DataND and a representation of (100|256,1024).

This is why DataWithAxes can be instantiated with another parameter: nav_indexes. This is a tuple containing the
index of the axes that should be considered as Navigation. For instance:

>>> data = DataWithAxes('mydata', source=DataSource['raw'], dim=DataDim['Data2D'], \
distribution=DataDistribution['uniform'], data=[np.array([[1,2,3], [4,5,6]])],\
axes=[Axis('vaxis', index=0, data=np.array([-1, 1])),
Axis('haxis', index=1, data=np.array([10, 11, 12]))],
nav_indexes = (1,))

here because I specified nav_indexes as a non-empty tuple, the dimensionality of the data is actually DataND:

>>> data.dim
<DataDim.DataND: 3>

and the representation shows the navigation/signal parts of the data

>>> data
<DataWithAxes, mydata, (3|2)>

That is completely controlled from the nav_indexes attribute and the corresponding Axis’s attribute: ìndex.

98 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

>>> data.nav_indexes = (0,)
>>> data
<DataWithAxes, mydata, (2|3)>
>>> data.sig_indexes
(1,)

>>> data.nav_indexes = (0, 1)
>>> data
<DataWithAxes, mydata, (2,3|)>
>>> data.sig_indexes
()

>>> data.nav_indexes = ()
>>> data
<DataWithAxes, mydata, (|2, 3)>
>>> data.dim
<DataDim.Data2D: 2>
>>> data.sig_indexes
(0, 1)

When using DataND another slicer property can be used:

>>> data.nav_indexes = (0, 1)
>>> sub_data = data.inav[1:, 1:]
>>> sub_data
<DataWithAxes, mydata, (2|)>
>>> sub_data.data[0]
array([5, 6])

but sub_data is a DataWithAxes so could be further sliced also along the signal dimension:

>>> data.nav_indexes = (0,)
>>> data
<DataWithAxes, mydata, (2|3)>
>>> data.inav[0]
<DataWithAxes, mydata, (|3)>
>>> data.inav[0].isig[2]
<DataWithAxes, mydata, (|1)>

Uniform and Spread Data

So far, everything we’ve said can be well understood for data taken on a uniform grid (1D, 2D or more). But some
scanning possibilities of the DAQ_Scan (Tabular) allows to scan on specifics (and possibly random) values of the
actuators. In that case the distribution is DataDistribution['spread']. Such distribution will be differently plotted
and differently saved in a h5file. It’s dimensionality will be DataND and a specific AxesManager will be used. Let’s
consider an example:

One can take images data (20x30 pixels) as a function of 2 parameters, say xaxis and yaxis non-uniformly spaced

>>> data.shape = (150, 20, 30)
>>> data.nav_indexes = (0,)

7.3. User’s Guide 99

PyMoDAQ Documentation, Release 4.2.0

The first dimension (150) corresponds to the navigation (there are 150 non uniform data points taken) The second and
third correspond to signal data, here an image of size (20x30 pixels) so:

• nav_indexes is (0,)

• sig_indexes is (1, 2)

>>> xaxis = Axis(name=xaxis, index=0, data=...)
>>> yaxis = Axis(name=yaxis, index=0, data=...)

both of length 150 and both referring to the first index (0) of the shape

In fact from such a data shape the number of navigation axes is unknown . In our example, they are 2. To somehow
keep track of some ordering in these navigation axes, one adds an attribute to the Axis object: the spread_order

>>> xaxis = Axis(name=xaxis, index=0, spread_order=0, data=...)
>>> yaxis = Axis(name=yaxis, index=0, spread_order=1, data=...)

This ordering will be very important for plotting of the data, see for instance below for an adaptive scan:

Fig. 7.70: Non uniform 2D plotting of Spread DataWithAxes.

100 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Special DataWithAxes

For explicit meaning, several classes are inheriting DataWithAxes with adhoc attributes such as:

• DataRaw: DataWithAxes with its source set to DataSource['raw']

• DataFromPlugins: explicit DataRaw to be used within Instrument plugins

• DataCalculated: DataWithAxes with its source set to DataSource['calculated']

• DataFromRoi: explicit DataCalculated to be used when processing data using ROI.

DataToExport

In general a given instrument (hence its PyMoDAQ’s Instrument plugin) will generate similar data (for instance several
Data1D waveforms for each channel of an oscilloscope). Such data can be completely defined using DataWithAxes
as we saw above.

However, when then plotting such data, the user can decide to use ROI to extract some meaningfull information to be
displayed in a live DAQ_Scan plot. This means that the corresponding DAQ_Viewer will produce both Data1D’s data
but also several Data0D’s ones depending on the number of used ROIs. To export (emit signals) or save (to h5), it would
be much better to have a specialized object to deal with these non-similar data. This is the role of the DataToExport
object.

DataToExport is a DataLowLevel object with an extra attribute data, that is actually a list of DataWithAxes objects:

>>> from pymodaq.utils.data import DataToExport, DataRaw
>>> dwa0D = DataRaw('dwa0D', data=[np.array([1]), np.array([2]) , np.array([3])])
>>> dwa1D = DataRaw('dwa1D', data=[np.array([1, 2 , 3])])
>>> dte = DataToExport(name='a_lot_of_different_data', data=[dwa0D, dwa1D])
>>> dte
DataToExport: a_lot_of_different_data <len:2>

It has a length of 2 because contains 2 DataWithAxes objects (dwa). One can then easily get the data from it :

>>> dte[0]
<DataRaw, dwa0D, (|1)>

or get dwa from their dimensionality, their name, the number of axes they have . . .

>>> dte.get_data_from_dim('Data1D').data[0]
<DataRaw, dwa1D, (|3)>
>>> dte.get_names()
['dwa0D', 'dwa1D']
>>> dte.get_data_from_name('dwa0D')
<DataRaw, dwa0D, (|1)>

Dwa can also be appended or removed to/from a DataToExport.

For more details see Union of Data

7.3. User’s Guide 101

PyMoDAQ Documentation, Release 4.2.0

Saving and loading data

Datas saved using PyMoDAQ, either the DAQ_Scan or the DAQ_Viewer modules or others, use a binary format known
as hdf5. This format was originally developed to save big volume of datas from large instruments. Its structure is
hierarchical (a bit as folder trees) and one can add metadata to all entries in the tree. For instance, the data type, shape
but also some more complex info such as all the settings related to a module or an instrument plugin. This gives a
unique file containing both data and metadata.

Python wrappers around the HDF5 library (hdf5 backends) are available, such as h5py or pytables (default one used
by PyMoDAQ). For an even easier use, PyMoDAQ also has a dedicated object allowing a transparent use of any hdf5
backend: Hdf5 backends. It also has an object used for saving data: Low Level saving and browsing data: H5Browser.

These low level objects allow to interact with PyMoDAQ’s data and hdf5 file but because displaying and loading
correctly data need a specific layout and metadata in the hdf5 file, higher level objects should be systematically used
to save and load data. They insure that any data loaded from the hdf5 file will have a correct type: DataWithAxes
or DataToExport and that these data objects will be saved with the appropriate layout and metadata to insure their
reconstruction when loading. These objects are defined in the pymodaq.utils.h5modules.data_saving module.
Their specificity is described below but for a more detailed description, see High Level saving/loading.

All these high level saving objects have under the hood a H5Saver object dealing with the actual saving. User in-
terface related to saving in PyMoDAQ all use the H5Saver ParameterTree and settings associated with to control
what/where/how to save data, see H5Saver.

DataSaver/DataLoader

Saving and loading data objects is a symmetrical action, therefore PyMoDAQ defines objects to do both. These objects
all derive from a base class allowing the manipulation of the node (DataManagement object), then the child class
should define a data type and will be responsible for saving and loading such data. Data type means here one of the three
main type of PyMoDAQ’s data system: Axis, DataWithAxes or DataToExport. These child objects are respectively:
AxisSaverLoader, DataSaverLoader and DataToExportSaver.

They all take as initial parameter a h5saver object (used to initialize a hdf5 file, see Low Level saving), then define
specific methods to save their data type. Examples:

AxisSaverLoader

First I create a hdf5 file using the H5Saver (here H5SaverLowLevel because I’m not in a Qt event loop)

>>> import numpy as np
>>> from pathlib import Path
>>> from pymodaq.utils.data import Axis
>>> from pymodaq.utils.h5modules.saving import H5SaverLowLevel
>>> h5saver = H5SaverLowLevel()
>>> h5saver.init_file(Path('atemporaryfile.h5'))

Then I create the Axis object and its saver/loader

>>> from pymodaq.utils.h5modules.data_saving import AxisSaverLoader
>>> axis = Axis('myaxis', units='seconds', data=np.array([3,7,11,15]), index=0)
>>> axis_saver = AxisSaverLoader(h5saver)

I save the Axis object in the /RawData node (always created using H5Saver)

102 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

>>> axis_saver.add_axis('/RawData', axis)
/RawData/Axis00 (CARRAY) 'myaxis'

shape := (4,)
dtype := float64

I can check the content of the file:

>>> for node in h5saver.walk_nodes('/'):
>>> print(node)
/ (GROUP) 'PyMoDAQ file'
/RawData (GROUP) 'Data from PyMoDAQ modules'
/RawData/Logger (VLARRAY) ''
/RawData/Axis00 (CARRAY) 'myaxis'

And load back from it, an Axis object identical to the initial one (but not the same one)

>>> loaded_axis = axis_saver.load_axis('/RawData/Axis00')
>>> loaded_axis
Axis: <label: myaxis> - <units: seconds> - <index: 0>
>>> loaded_axis == axis
True
>>> loaded_axis is axis
False

DataSaverLoader

The DataSaverLoader object will behave similarly with DataWithAxes objects, introducing the methods:

• add_data

• load_data

with a slight asymmetry between the two if one want to load background subtracted data previously saved using the
specialized BkgSaver. This guy is identical to the DataSaverLoader except it considers the DataWithAxes to be
saved as background data type.

Here I create my data and background object:

>>> from pymodaq.utils.data import DataWithAxes, DataSource, DataDim, DataDistribution
>>> data = DataWithAxes('mydata', source=DataSource['raw'], dim=DataDim['Data2D'], \
distribution=DataDistribution['uniform'], data=[np.array([[1,2,3], [4,5,6]])],\
axes=[Axis('vaxis', index=0, data=np.array([-1, 1])),
Axis('haxis', index=1, data=np.array([10, 11, 12]))])
>>> bkg = data.deepcopy()
>>> data
<DataWithAxes, mydata, (|2, 3)>
>>> bkg
<DataWithAxes, mydata, (|2, 3)>

I add a detector node in the h5file:

>>> h5saver.add_det_group('/RawData', 'Example')
/RawData/Detector000 (GROUP) 'Example'
children := []

7.3. User’s Guide 103

PyMoDAQ Documentation, Release 4.2.0

and save in this node the data:

>>> from pymodaq.utils.h5modules.data_saving import DataSaverLoader
>>> datasaver = DataSaverLoader(h5saver)
>>> datasaver.add_data('/RawData/Detector000', data)

and check the file content:

>>> for node in h5saver.walk_nodes('/'):
>>> print(node)
/ (GROUP) 'PyMoDAQ file'
/RawData (GROUP) 'Data from PyMoDAQ modules'
/Axis00 (CARRAY) 'myaxis'
/RawData/Logger (VLARRAY) ''
/RawData/Detector000 (GROUP) 'Example'
/RawData/Detector000/Data00 (CARRAY) 'mydata'
/RawData/Detector000/Axis00 (CARRAY) 'vaxis'
/RawData/Detector000/Axis01 (CARRAY) 'haxis'

It saved automatically the Axis objects associated with the data

>>> loaded_data = datasaver.load_data('/RawData/Detector000/Data00')
>>> loaded_data
<DataWithAxes, mydata, (|2, 3)>
>>> loaded_data == data
True
>>> loaded_data is data
False

Now about the background:

>>> from pymodaq.utils.h5modules.data_saving import BkgSaver
>>> bkgsaver = BkgSaver(h5saver)
>>> bkgsaver.add_data('/RawData/Detector000', data, save_axes=False)

no need to save the axes as they are shared between data and its background

>>> for node in h5saver.walk_nodes('/RawData/Detector000'):
>>> print(node)
/RawData/Detector000 (GROUP) 'Example'
/RawData/Detector000/Data00 (CARRAY) 'mydata'
/RawData/Detector000/Axis00 (CARRAY) 'vaxis'
/RawData/Detector000/Axis01 (CARRAY) 'haxis'
/RawData/Detector000/Bkg00 (CARRAY) 'mydata'

I now have a Bkg data type and can load data with or without bkg included:

>>> loaded_data_bkg = datasaver.load_data('/RawData/Detector000/Data00', with_bkg=True)
>>> loaded_data_bkg
<DataWithAxes, mydata, (|2, 3)>
>>> loaded_data_bkg == loaded_data
False
>>> loaded_data_bkg.data[0]
array([[0, 0, 0],

(continues on next page)

104 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

[0, 0, 0]])
>>> loaded_data.data[0]
array([[1, 2, 3],

[4, 5, 6]])

DataToExportSaver

Finally the same apply for DataToExport containing multiple DataWithAxes. Its associated DataToExportSaver
will save its data into different channel nodes themselves filtered by dimension. The only difference here, is that it won’t
be able to load the data back to a dte

Let’s say I create a DataToExport containing 0D, 1D and 2D DataWithAxes (see the tests file):

>>> dte = DataToExport(name='mybigdata', data=[data2D, data0D, data1D, data0Dbis])
>>> from pymodaq.utils.h5modules.data_saving import DataToExportSaver
>>> dte_saver = DataToExportSaver(h5saver)

>>> h5saver.add_det_group('/RawData', 'Example dte')
/RawData/Detector001 (GROUP) 'Example dte'

children := []

>>> dte_saver.add_data('/RawData/Detector001', dte)

>>> for node in h5saver.walk_nodes('/RawData/Detector001'):
>>> print(node)
/RawData/Detector001 (GROUP) 'Example dte'
/RawData/Detector001/Data0D (GROUP) ''
/RawData/Detector001/Data1D (GROUP) ''
/RawData/Detector001/Data2D (GROUP) ''
/RawData/Detector001/Data0D/CH00 (GROUP) 'mydata0D'
/RawData/Detector001/Data0D/CH01 (GROUP) 'mydata0Dbis'
/RawData/Detector001/Data1D/CH00 (GROUP) 'mydata1D'
/RawData/Detector001/Data2D/CH00 (GROUP) 'mydata2D'
/RawData/Detector001/Data2D/CH00/Data00 (CARRAY) 'mydata2D'
/RawData/Detector001/Data2D/CH00/Data01 (CARRAY) 'mydata2D'
/RawData/Detector001/Data2D/CH00/Axis00 (CARRAY) 'myaxis0'
/RawData/Detector001/Data2D/CH00/Axis01 (CARRAY) 'myaxis1'
/RawData/Detector001/Data1D/CH00/Data00 (CARRAY) 'mydata1D'
/RawData/Detector001/Data1D/CH00/Data01 (CARRAY) 'mydata1D'
/RawData/Detector001/Data1D/CH00/Axis00 (CARRAY) 'myaxis0'
/RawData/Detector001/Data0D/CH00/Data00 (CARRAY) 'mydata0D'
/RawData/Detector001/Data0D/CH00/Data01 (CARRAY) 'mydata0D'
/RawData/Detector001/Data0D/CH01/Data00 (CARRAY) 'mydata0Dbis'
/RawData/Detector001/Data0D/CH01/Data01 (CARRAY) 'mydata0Dbis'

Here a bunch of nodes has been created to store all the data present in the dte object.

7.3. User’s Guide 105

PyMoDAQ Documentation, Release 4.2.0

DataLoader

If one want to load several nodes at ones or include the navigation axes saved at the root of the nodes, one should use
the DataLoader that has methods to load one DataWithAxes (including eventual navigation axes) or a bunch of it into
a DataToExport:

• load_data -> DataWithAxes

• load_all -> DataToExport

Special DataSaver

Some more dedicated objects are derived from the objects above. They allow to add Extended arrays (arrays that will
be populated after creation, for instance for a scan) and Enlargeable arrays (whose final length is not known at the
moment of creation, for instance when logging or continuously saving) see Specific data class saver/loader.

Module Savers

Data saved from the various PyMoDAQ’s modules should follow a particular layout. For instance grouped in a Detector
node for data from the DAQ_Viewer modules or a Scan node for data from the DAQ_Scan module. This node also has
metadata such as the settings of the DAQ_Viewer at the time when the data have been saved. Special layouts and special
saver objects are available for each module able to save data: DAQ Viewer, DAQ Move, DAQ Scan and DAQ Logger.
See Module savers for the related objects.

All of these objects inherit from the ModuleSaver base class that implements common methods for all savers. Specific
saver, such as the DetectorSaver then defines a GroupType:

class GroupType(BaseEnum):
detector = 0
actuator = 1
data = 2
ch = 3
scan = 4
external_h5 = 5
data_dim = 6
data_logger = 7

This correspond to a particular type of group node in the h5 file. For what we are discussing the relevant group types
are detector, actuator, scan and data_logger. For the DetectorSaver the group type is therefore: detector. Once
instanced these objects can be attributed with a given H5Saver instance. for instance, when saving snapshots from the
DAQ_Viewer, this code is called:

path = 'a/custom/path/for/a/hdf5/file.h5'

h5saver = H5Saver(save_type='detector')
h5saver.init_file(update_h5=True, custom_naming=False, addhoc_file_path=path)

self.module_and_data_saver = module_saving.DetectorSaver(self)
self.module_and_data_saver.h5saver = h5saver

Then self.module_and_data_saver will automatically create a dedicated group node in the h5 file. Then it can
call specific methods to add properly formatted data in the hdf5 file:

106 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

detector_node = self.module_and_data_saver.get_set_node(where)
self.module_and_data_saver.add_data(detector_node, data, **kwargs)

where data is a DataToExport object (containing possibly multiple DataWithAxes objects). The content of such a
file can be displayed using the H5Browser as shown on figure Fig. 7.71

Fig. 7.71: HDF5 file content containing a single DataWithAxes (with two channels) saved using the DetectorSaver
object

One clearly see the layout with the Detector000 group node (with the setting metadata displayed on the right in a
ParameterTree), the grouping of data by dimensionality, both channels having the same Axis grouped in the CH00
group node. Both channels are plotted on the right panel in a Viewer1D object.

If multiple DataWithAxes where contained in the DataToExport they would be stored within CH00 and CH01 group
nodes as shown in Fig. 7.72 together with their axes and even here with their background

The code used to add the background is:

self.module_and_data_saver.add_bkg(detector_node, self._bkg)

where self._bkg is a DataToExport similar to the one we saved but containing background data.

7.3. User’s Guide 107

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.72: HDF5 file content containing two DataWithAxes (with one channel each) saved using the DetectorSaver
object. They are stored within CH00 and CH01 group nodes each with their axes and even here with their background.

108 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Plotting Data

Data in PyMoDAQ are featured with a lot of metadata, allowing their proper description and enabling seamlessly
saving/loading to hdf5 files. But what about representation? Analysis? Exploration?

With Python you usually do this by writing a script and manipulate and plot your data using your favorite backend
(matplotlib, plotly, qt, tkinter, . . .) However because PyMoDAQ is highly graphical you won’t need that. PyMoDAQ is
featured with various data viewers allowing you to plot any kind of data. You’ll see below some nice examples of how
to plot your PyMoDAQ’s data using the builtin data viewers.

Note: The content of this chapter is available as a notebook.

To execute this notebook properly, you’ll need PyMoDAQ >= 4.0.2 (if not released yet, you can get it from github)

Plotting scalars: Viewer0D

Scalars or Data0D data are the simplest form of data. However, just displaying numbers is somewhat lacking (in
particular when one want to compare data evolution over time, or parameter change. . .). This is why it is important to
keep track of the history of the scalar values. The Viewer0D, see below, has such an history as well as tools to keep
track of the maximal reached value.

%gui qt
import numpy as np

from pymodaq.utils.plotting.data_viewers.viewer0D import Viewer0D
from pymodaq.utils.data import DataRaw

dwa = DataRaw('my_scalar', data=[np.array([10.6]), np.array([-4.6])],
labels=['scalar1', 'scalar2'])

viewer0D = Viewer0D()

viewer0D.show_data(dwa)

Fig. 7.73: Showing scalars in a Viewer0D

Well not much can be seen except for the numbers printed on the right (shown by clicking on the dedicated button

). But what if I call several times the show_data method to display evolving signal?

7.3. User’s Guide 109

https://github.com/PyMoDAQ/notebooks/tree/main/notebooks

PyMoDAQ Documentation, Release 4.2.0

Note: We recall that a DataRaw is a particular case of a more generic DataWithAxes (dwa in short) having its source
set to raw

for ind in range(100):
dwa = DataRaw('my_scalar', data=[np.sin([ind / 100 * 2*np.pi]),

np.sin([ind / 100 * 2*np.pi + np.pi/4])],
labels=['mysinus', 'my_dephased_sinus'])

viewer0D.show_data(dwa)

Fig. 7.74: Showing an history of scalars, together with their min and max values (dashed lines)

You immediately see the usefulness of such an history, allowing for instance to optimize signals when tweaking a

parameter especially if you use the dashed lines, triggered by , showing the values of the min and max reached
values.

Plotting vectors/waveforms: Viewer1D

When increasing complexity, one get one dimensional data. It has one more important metadata, its axis. Properly
defining the data object will translate into rich plots:

from pymodaq.utils import math_utils as mutils
from pymodaq.utils.data import Axis

axis = Axis('my axis', units='my units', data=np.linspace(-10000, 10000, 100))

dwa1D = DataRaw('my_1D_data', data=[mutils.gauss1D(axis.get_data(), 3300, 2500),
mutils.gauss1D(axis.get_data(), -4000, 1500) * 0.5],

labels=['a gaussian', 'another gaussian'],
axes=[axis],

(continues on next page)

110 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

errors=[0.1* np.random.random_sample((axis.size,)) for _ in range(2)])
dwa.plot('qt')

Note: One can directly call the method plot on a data object, PyMoDAQ will determine which data viewer to use.

Fig. 7.75: Showing Data1D

You can see the legends correspond to the data labels, while the axis shows both the label and the units in scientific
notation (notice the k before ‘my units’ standing for kilo).

As for the buttons in the toolbar (you can try them from the notebook):

• : opens the ROI (region of interest) manager, to load, save and define ROI to apply to the data. This will
create cropped Data0D from the application of an operation on the cropped data such as mean, sum, std. . . See
figure below, showing the mean value on the bottom panel. ROI can be applied to one of the trace or to both as
reflected by the legends

• : activate the crosshair (yellow vertical line) that can be grabed and translated. The data at the crosshair
position is printed on the right of the toolbar.

7.3. User’s Guide 111

PyMoDAQ Documentation, Release 4.2.0

• : fix the horizontal/vertical aspect ratio (usefull for xy plot see below)

• : as shown on the figure below, one can switch between solid line or only dots.

• : when data contains two waveforms, using this button will display them in XY mode.

• : when activated, an overlay of the current data will be depicted with a dash line.

• : if the axis data is not monotonous, data will be represented as a scrambled solid line, using this button
will reorder the data by ascending values of its axis. See below and figure xx

• : when activated, will display errors (error bars) in the form of a area around the curve

• : extra ROI that can be used independantly of the ROI manager

Fig. 7.76: Showing Data1D as dots and with an activated ROI and crosshair

If Uncertainty/error bars are defined in the data object, the Viewer1D can easily plot them:

If the axis data is not monotonous, data will be represented as a scrambled solid line, for instance:

112 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.77: Showing Data1D with error bars as an area around the curves.

7.3. User’s Guide 113

PyMoDAQ Documentation, Release 4.2.0

axis_shuffled_array = axis.get_data()
np.random.shuffle(axis_shuffled_array)
axis_shuffled = Axis('my axis', units='my units', data=axis_shuffled_array)

dwa = DataRaw('my_1D_data', data=[mutils.gauss1D(axis_shuffled.get_data(), 3300, 2500),
mutils.gauss1D(axis_shuffled.get_data(), -4000, 1500)␣

→˓* 0.5],
labels=['a gaussian', 'another gaussian'],
axes=[axis_shuffled])

dwa.plot('qt')

Fig. 7.78: Showing Data1D Spread. The scrambled lines (left) still represents Gaussians, it is just that the random
ordering scrambled the lines. If one remove the lines by clicking the dot only button, the Gaussians reappear (middle).
They reappear also after pressing the sort button (right).

Plotting 2D data

2D data can be either an image (pixels on a regular grid) or a collection of scalars with XY coordinates. PyMoDAQ
introduce therefore the notion of “uniform” data for the former and “spread” data for the later. They can however be
transparently plotted on the same Viewer2D data viewer. One will first show both cases before discussing the Viewer2D
toolbar.

Uniform data

Let’s generate data displaying 2D Gaussian distributions:

generating uniform 2D data
NX = 100
NY = 50
x_axis = Axis('xaxis', 'xunits', data=np.linspace(-20, 20, NX), index=1)
y_axis = Axis('yaxis', 'yunits', data=np.linspace(20, 40, NY), index=0)

data_arrays_2D = [mutils.gauss2D(x_axis.get_data(), -5, 10, y_axis.get_data(), 25, 2) +
mutils.gauss2D(x_axis.get_data(), -5, 5, y_axis.get_data(), 35, 2) * 0.

→˓01,
mutils.gauss2D(x_axis.get_data(), 5, 5, y_axis.get_data(), 30, 8)]

data2D = DataRaw('data2DUniform', data=data_arrays_2D, axes=[x_axis, y_axis],
(continues on next page)

114 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

labels=['red gaussian', 'green gaussian'])
data2D.plot('qt')

Fig. 7.79: Showing uniform Data2D

The bottom and left axes correspond to the image pixels while the right and top ones correspond to the real physical
axes defined in the data object. When several arrays are included into the data object, they will be displayed as RGB
layers. Data visibility can be set using the red/green (blue) buttons. If only one array is used, the color will be white.

Spread Data

Spread 2D data are typically what you get when doing a Spread or Tabular 2D scan, see Scanner. By the way, Spread
or Tabular 1D scan would typically give the scrambled plot on figure Fig. 7.78. Let’s generate and plot such 2D data

generating Npts of spread 2D data
N = 100
x_axis_array = np.random.randint(-20, 50, size=N)
y_axis_array = np.random.randint(20, 40, size=N)

x_axis = Axis('xaxis', 'xunits', data=x_axis_array, index=0, spread_order=0)
y_axis = Axis('yaxis', 'yunits', data=y_axis_array, index=0, spread_order=1)

(continues on next page)

7.3. User’s Guide 115

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

data_list = []
for ind in range(N):

data_list.append(mutils.gauss2D(x_axis.get_data()[ind], 10, 15,
y_axis.get_data()[ind], 30, 5))

data_array = np.squeeze(np.array(data_list))

data2D_spread = DataRaw('data2DSpread', data=[data_array],
axes=[x_axis, y_axis],
distribution='spread',
nav_indexes=(0,))

data2D_spread.plot('qt')

Fig. 7.80: Showing Data2D Spread. Each point in the spread collection is a vertex in the mesh while the color of the
triangle is given by the mean of the three vertex.

If we go back to the construction of the data object, you may have noticed the introduction of a nav_indexes parameter
and a distribution parameter. The latter is usually and by default equal to uniform but here we have to specify that the
data will be a collection of spread points.

By construction, spread data have navigation axes, the coordinates of the points (note that the scalar points in our
example could also be Data1D or Data2D points, we’ll see that with the ViewerND) and specifying the distribution to
spread allows PyMoDAQ to handle this properly compared to the uniform case.

But then, the parameter nav_indexes is used to specify which dimension of the data array will be considered navigation,
the rest beeing signal. However in our collection, the shape of the data is only (100,) so nav_indexes is (0,). But still,

116 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

we do have two axes: the X and Y coordinates of our points. . . To handle this, the Axis object has to include a new
parameter, the spread_order specifying which axis corresponds to which coordinate but both refering to the same
navigation dimension of the data.

Toolbar

As for the buttons in the toolbar (you can try them from the notebook):

• : Show/Hide the corresponding data

• : Autoscale on the color scale (between 0 and max or between -max and max)

• : display the histogram panel, allowing manual control of the colors and color saturation. See figure below.

• : Open the ROI manager allowing to load, save and define rectangular of elliptical regions of interest.
Each of these ROI will produce Data1D data (lineouts by vertical and horizontal application of a mathematical
function: mean, sum. . . along horizontal or vertical axis of the ROI) and Data0D by application of the same
mathematical function along both axes of the ROI.

• : shows an isocurve specified by the position of a green line on the histogram

• : set the aspect ratio to one

• : activate the crosshair (see figure below)

• : extra rectangular ROI that can be used independently of the ROI manager

• : flip or rotate the image

• : show/hide the legend (see figure below)

On figure Fig. 7.81, the histogram has been activated and we rescaled the red colorbar to saturate the red plot and make
the tiny Gaussian that was hidden to appear. We also activated the crosshair that induced the plotting of Data1D (taken
for both channel along the crosshair lines) and Data0D (at the crosshair position and plotted on the bottom right).

Plotting all other data

All data that doesn’t fit the explanations above should be plotted using the ViewerND. This viewer is a combination of
several Viewer0D, Viewer1D and Viewer2D allowing to plot almost any kind of data. The figure below shows the basic
look of the ViewerND. It consists in a Navigation panel and a Signal panel, dealing with the notion of signal/navigation,
see DataND.

from pymodaq.utils.plotting.data_viewers.viewerND import ViewerND
viewerND = ViewerND()

7.3. User’s Guide 117

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.81: Viewer2D with toolbar buttons activated and image saturation from the histogram.

Fig. 7.82: An empty ViewerND

118 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Not much yet to say about it, but let’s load some complex data and plot it with this viewer. For the first example, we’ll
get tomographic data (3D) from the human brain. We’ll get that from the Statistical Parametric Mapping software
website hosted here.

import tempfile
from pathlib import Path
import zipfile
from urllib.request import urlretrieve
import nibabel

Create a temporary directory
with tempfile.TemporaryDirectory() as directory_name:

directory = Path(directory_name)
Define URL
url = 'http://www.fil.ion.ucl.ac.uk/spm/download/data/attention/attention.zip'

Retrieve the data, it takes some time
fn, info = urlretrieve(url, directory.joinpath('attention.zip'))

Extract the contents into the temporary directory we created earlier
zipfile.ZipFile(fn).extractall(path=directory)

Read the image
struct = nibabel.load(directory.joinpath('attention/structural/nsM00587_0002.hdr'))

Get a plain NumPy array, without all the metadata
array_3D = struct.get_fdata()

dwa3D = DataRaw('my brain', data=array_3D, nav_indexes=(2,))
dwa3D.create_missing_axes()

viewerND.show_data(dwa3D) # or just do dwa3D.plot('qt')

Fig. 7.83: Showing brain 3D data on a ViewerND

Here you now see the image of the brain (signal part) at a certain height (12.17, navigation part) within the skull. The

7.3. User’s Guide 119

http://www.fil.ion.ucl.ac.uk/spm

PyMoDAQ Documentation, Release 4.2.0

signal data is taken at the height corresponding to the crosshair vertical line within the navigation panel. Moving it
laterally will display a different brain z-cut. The navigation 1D plot is calculated from the white ROI on the signal
panel, applying the mathematical function to it (here mean see on top of the plot) and displaying this for all z-cut on
the navigation panel. Therefore, moving this ROI will change the printed navigation plot. Another widget (on the left)
displays information on the data: its shape and navigation/signal dimensions. From this, one can also change which
axes are navigation (here this is axis 2 as specified when the data object has been constructed). In the notebook, you
can change this, selecting one, two or even the three indexes and see how it’s impacting on the ViewerND.

Some buttons in the toolbar can be used to better control the data exploration:

• : opens a side window to control navigation axes

• : select which mathematical operator to apply to the signal ROI in order to plot meaningfull nav-
igation data

• : if activated, another signal plot will be generated depicting not the data indexed at the position of the
crosshair but integrated over all navigation axes

Signal data dimension cannot exeed 2, meaning you can only plot signal that are Data0D, Data1D or Data2D which
make sense as only this kind of data are produced by usual detectors. On the navigation side however, on can have as
many navigation axes as needed. Below you’ll see some possibilities.

Uniform Data

Le’ts first create a 4D Data object, we’ll then see various representations as a function of its navigation indexes

x = mutils.linspace_step(-10, 10, 0.2)
y = mutils.linspace_step(-30, 30, 1)
t = mutils.linspace_step(-100, 100, 2)
z = mutils.linspace_step(0, 50, 0.5)

data = np.zeros((len(y), len(x), len(t), len(z)))
amp = np.ones((len(y), len(x), len(t), len(z)))
for indx in range(len(x)):

for indy in range(len(y)):
data[indy, indx, :, :] = amp[indy, indx] * (

mutils.gauss2D(z, 0 + indx * 1, 20,
t, 0 + 2 * indy, 30)

+ np.random.rand(len(t), len(z)) / 5)

dwa = DataRaw('NDdata', data=data, dim='DataND', nav_indexes=(0, 1),
axes=[Axis(data=y, index=0, label='y_axis', units='yunits'),

Axis(data=x, index=1, label='x_axis', units='xunits'),
Axis(data=t, index=2, label='t_axis', units='tunits'),
Axis(data=z, index=3, label='z_axis', units='zunits')])

dwa.plot('qt')

We use here (but it’s done automatically from the metadata) two Viewer2D to plot both navigation and signal data. If
we increase the number of navigation axes, it is no more possible to use the same approach.

120 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.84: Showing 4D uniform data on a ViewerND with two navigation axes

dwa.nav_indexes = (0, 1, 2)
dwa.plot('qt')

In that case where there are three (it could be any number >2) navigation axes. Each axis is plotted into a dedicated
viewer together with a vertical yellow line allowing to index (and slice) data at this position, updating accordingly the
depicted signal data

Spread Data

For Spread data, things are different because all navigation axes have the same length (they are the ND-coordinates of
the signal data), they can therefore be plotted into the same Viewer1D:

N = 100

x = np.sin(np.linspace(0, 4 * np.pi, N))
y = np.sin(np.linspace(0, 4 * np.pi, N) + np.pi/6)
z = np.sin(np.linspace(0, 4 * np.pi, N) + np.pi/3)

Nsig = 200
axis = Axis('signal axis', 'signal units', data=np.linspace(-10, 10, Nsig), index=1)
data = np.zeros((N, Nsig))
for ind in range(N):

data[ind,:] = mutils.gauss1D(axis.get_data(), 5 * np.sqrt(x[ind]**2 + y[ind]**2 +␣
→˓z[ind]**2) -5 , 2) + 0.2 * np.random.rand(Nsig)

dwa = DataRaw('NDdata', data=data, distribution='spread', dim='DataND', nav_indexes=(0,),
(continues on next page)

7.3. User’s Guide 121

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.85: Showing 4D uniform data on a ViewerND with three navigation axes

(continued from previous page)

axes=[Axis(data=x, index=0, label='x_axis', units='xunits', spread_
→˓order=0),

Axis(data=y, index=0, label='y_axis', units='yunits', spread_
→˓order=0),

Axis(data=z, index=0, label='z_axis', units='zunits', spread_
→˓order=0),

axis])

dwa.plot('qt')

In that case, the navigation panel is showing on the same Viewer1D all navigation spread axes (coordinates), while the
signal panel shows the signal data at the index corresponding to the yellow line.

Plotting multiple data object: ViewerDispatcher

In PyMoDAQ, mixed data are often generated, for instance when using ROI on 2D data, lineouts (Data1D) will be
generated as well as Data0D. A dedicated object exists to handle them: the DataToExport or dte in short. Well if such
an object exists, a dedicated plotter should also exist, let’s see:

from pymodaq.utils.data import DataToExport

dte = DataToExport('MyDte', data=[dwa1D, dwa3D])
dte.plot('qt')

Such an object is a ViewerDispatcher:

122 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.86: Showing 4D spread data on a ViewerND

Fig. 7.87: Showing DataToExport on a ViewerDispatcher

7.3. User’s Guide 123

PyMoDAQ Documentation, Release 4.2.0

from pymodaq.utils.plotting.data_viewers.viewer import ViewerDispatcher

It allows to generate on the fly Docks containing a data viewers adapted to the particular dwa is contains. Such a
dispatcher is used by the DAQ_Viewer and the DAQ_Scan to display your data!

7.3.7 Useful Modules

Introduction

Utility modules are used within each main modules of PyMoDAQ but can also be used as building blocks for custom
application. In that sense, all Plotting Data and even DAQ Viewer and DAQ Move can be used as building blocks to
control actuators and display datas in a custom application.

Module Manager

The module manager is an object used to deal with:

• Selection of actuators and detectors by a user (and internal facilities to manipulate them, see the API when it will
be written. . .)

• Synchronize acquisition from selected detectors

• Synchronize moves from selected actuators

• Probe as lists all the datas that will be exported by the selected detectors (see Fig. 7.88)

• Test Actuators positioning. Clicking on test_actuator will let you enter positions for all selected actuators that
will be displayed when reached

Scan Selector

Scans can be specified manually using the Scanner Settings (explained above). However, in the case of a scan using
2 DAQ_Move modules, it could be more convenient to select an area using a rectangular ROI within a 2D viewer.
Various such viewers can be used. For instance, the viewer of a camera (if one think of a camera in a microscope to
select an area to cartography) or even the DAQ_Scan 2D viewer. Sometimes it could also be interesting to do linear
sections within a 2D phase space (let’s say defined by the ranges of 2 DAQ_Moves). This defines complex tabular type
scan within a 2D area, difficult to set manually. Fig. 7.38 displays such sections within the DAQ_Scan viewer where a
previous 2D scan has been recorded. The user just have to choose the correct selection mode in the scanner settings,
see Fig. 7.89, and select on which 2D viewer to display the ROI (From Module option).

Module Manager

This module is made so that selecting actuators and detectors for a given action is made easy. On top of it, there
are features to test communication and retrieve infos on exported datas (mandatory fro the adaptive scan mode) or
positioning. Internally, it also features a clean way to synchronize detectors and actuators that should be set together
within a single action (such as a scan step).

124 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.88: The Module Manager user interface with selectable detectors and actuators, with probed data feature and
actuators testing.
7.3. User’s Guide 125

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.89: In the scanner settings, the selection entry gives the choice between Manual selection of from PolyLines (in
the case of 1D scans) or From ROI in the case of 2D scans.

Fig. 7.90: User interface of the module manager listing detectors and actuators that can be selected for a given action.

126 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

H5Saver

This module is a help to save data in a hierachical hdf5 binary file through the pytables package. Using the H5Saver
object will make sure you can explore your datas with the H5Browser. The object can be used to: punctually save one
set of data such as with the DAQ_Viewer (see daq_viewer_saving_single), save multiple acquisition such as with the
DAQ_Scan (see Saving: Dataset and scans) or save on the fly with enlargeable arrays such as the Continuous Saving
mode of the DAQ_Viewer.

Fig. 7.91: User interface of the H5Saver module

On the possible saving options, you’ll find (see Fig. 7.91):

• Save type:

• Save 2D and above: True by default, allow to save data with high dimensionality (taking a lot of memory space)

• Save raw data only: True by default, will only save data not processed from the Viewer’s ROIs.

• backend display which backend is being used: pytables or h5py

7.3. User’s Guide 127

PyMoDAQ Documentation, Release 4.2.0

• Show file content is a button that will open the H5Browser interface to explore data in the current h5 file

• Base path: where will be saved all the data

• Base name: indicates the base name from which the actual filename will derive

• Current scan indicate the increment of the scans (valid for DAQ_Scan extension only)

• h5file: readonly, complete path of the saved file

• Do Save: Initialize the file and logging can start. A new file is created if clicked again, valid for the continuous
saving mode of the DAQ_Viewer

• New file is a button that will create a new file for subsequent saving

• Saving dynamic is a list of number types that could be used for saving. Default is float 64 bits, but if your data
are 16 bits integers, there is no use to use float, so select int16 or uint16

• Compression options: data can be compressed before saving, using one of the proposed library and the given
value of compression [0-9], see pytables documentation.

Preset manager

The Preset manager is an object that helps to generate, modify and save preset configurations of DashBoard. A preset
is a set of actuators and detectors represented in a tree like structure, see Fig. 7.92.

Each added module load on the fly its settings so that one can set them to our need, for instance COM port selection,
channel activation, exposure time. . . Every time a preset is created, it is then loadable. The init? boolean specifies if
the Dashboard should try to initialize the hardware while loading the module in the dashboard.

Overshoot manager

The Overshoot manager is used to configure safety actions (for instance the absolute positioning of one or more ac-
tuators, such as a beam block to stop a laser beam) when a detected value (from a running detector module) gets out
of range with respect to some predefined bounds, see Fig. 7.93. It is configurable in the framework of the Dashboard
module, when actuators and detectors have been activated. A file containing its configuration will be saved (with a
name derived from the preset configuration name and will automatically be loaded with its preset if existing on disk)

ROI manager

The ROI manager is used to save and load in one click all ROIs or Lineouts defined in the current detector’s viewers,
see Fig. 7.94. The file name will be derived from the preset configuration file, so that at start up, it will automatically
be loaded, and ROIs and Lineouts will be restored.

128 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.92: An example of a preset creation named preset_adaptive containing 3 DAQ_Move modules and 3 detector
modules and just about to select a fourth detector from the list of all available detector plugins.

7.3. User’s Guide 129

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.93: An example of an overshoot creation named overshoot_default (and corresponding xml file) containing one
listening detector and 2 actuators to be activated.

130 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.94: An example of ROI manager modification named from the preset preset_adaptive (and corresponding xml
file) containing all ROIs and lineouts defined on the detectors’s viewers.

7.3. User’s Guide 131

PyMoDAQ Documentation, Release 4.2.0

DAQ_Measurement

In construction

Navigator

See Navigator

Remote Manager

In construction

ChronoTimer

Fig. User Interface of the Chrono/Timer UI shows a user interface to be used for timing things. Not really part of
PyMoDAQ but well could be useful (Used it to time a roller event in my lab ;-))

Fig. 7.95: User Interface of the Chrono/Timer UI

132 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

7.3.8 TCP/IP communication

This section is for people who want an answer to: I have a detector or an actuator controlled on a distant computer
and cannot have it on the main computer, do you have a solution?

The answer is of course : YES

For this, you have two options:

• install PyMoDAQ to control your hardware on the distant computer

• Use a software on the distant computer that can use TCP/IP communication following the rules given below

With PyMoDAQ

From version 1.6.0, each actuator (DAQ_Move) or detector (DAQ_Viewer) module can be connected to their counter-
part on a distant computer. For both modules, a TCPServer plugin is available and can be initialized. It will serve as
a bridge between the main computer, running for instance a DAQ_Scan module, and the distant one running a usual
DAQ_Move or DAQ_Viewer module, see Fig. 7.96. Every parameter of the distant module will be exported on its
server counterpart. Any modification of these parameters, either on the server or on the local module, will be updated
on either the local module or the server module.

Fig. 7.96: Typical configuration with modules on distant computers communicating over a TCP/IP connection

7.3. User’s Guide 133

PyMoDAQ Documentation, Release 4.2.0

On another software

The TCP_server plugin can also be used as a bridge between PyMoDAQ and another custom software (installed locally
or on a distant computer) able to initialize a TCP client and understand PyMoDAQ’s TCP/IP communications. For
instance, at CEMES, we’ve build such a bridge between Digital Micrograph running (eventually) on a distant computer
and controlling a specific Gatan camera on an electron microscope. The communication framework used by PyMoDAQ
is as follow:

PyMoDAQ TCP/IP Communication protocol

Serializing objects

When dealing with TCP/IP one should first transforms object into bytes string (the message) and implement a mech-
anism to inform the client (or the server) on the length of the message. For each message (whatever the underlying
object), the first 4 bytes are coding an integer whose value will be the length of the following message. Using this
simple rule allow to send very complex objects.

To make sure there is a robust way to handle this in PyMoDAQ, two objects have been created, see: ref:tcp_ip_serializer,
respectively the Serializer and DeSerializer objects to convert a python object to bytes and from bytes to an
object.

They both implements specific methods applicable to a given object but also a generic one:

>>> from pymodaq.utils.tcp_ip.serializer import Serializer, DeSerializer
>>> string = 'Hello'
>>> ser = Serializer(string)
>>> print(ser.string_serialization(string))
b'\x00\x00\x00\x05Hello'

In this example, the serializer first send 4 bytes encoding the length of the Hello string: x00x00x00x05 which is the
binary representation of the integer 5. Then the binary string is appended: b’Hello.

Similar methods exists for numbers, arrays, list, Axis, DataWithAxes. . .

The serialization can also be simplified using the to_bytes() method:

>>> Serializer(['Hello', 'World']).to_bytes()
b'\x00\x00\x00\x02\x00\x00\x00\x06string\x00\x00\x00\x05Hello\x00\x00\x00\x06string\x00\
→˓x00\x00\x05World'

Here the list_serialization() method has been used under the hood.

To recreate back the initial object, one should use the DeSerializer object:

>>> DeSerializer(b'\x00\x00\x00\x05Hello').string_deserialization()
Hello
>>> DeSerializer(b'\x00\x00\x00\x03<f8\x00\x00\x00\x08fffffF_@').scalar_deserialization()
125.1

As you see you have to know in advance which method to apply first. Therefore there is a recipe for each type of objects.

134 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Making sure messages are complete:

Message send on a tcp/ip connection can sometimes be send as chunks, it is therefore important to know what will be
the length of the message to be sent or to be received. PyMoDAQ use the following methods to make sure the message
is entirely send or entirely received:

def check_received_length(sock,length):
l=0
data_bytes=b''
while l<length:

if l<length-4096:
data_bytes_tmp=sock.recv(4096)

else:
data_bytes_tmp=sock.recv(length-l)

l+=len(data_bytes_tmp)
data_bytes+=data_bytes_tmp

#print(data_bytes)
return data_bytes

def check_sended(socket, data_bytes):
sended = 0
while sended < len(data_bytes):

sended += socket.send(data_bytes[sended:])

Sending and receiving commands (or message):

Serializing and letting know the length of the message is not enough to recreate the initial object. One should add first
a command/info on what to expect from the tcp/ip pipe. Depending on the value of this message the application know
what deserialization to apply.

The PyMoDAQ client/server control modules are using specific commands as strings that should be either:

• Client receiving messages:

– For all modules: Info, Infos, Info_xml, set_info

– For a detector: Send Data 0D, Send Data 1D, Send Data 2D

– For an actuator: move_abs, move_home, move_rel, check_position, stop_motion

• Client sending messages:

– For all modules: Quit, Done, Info, Infos, Info_xml

– For a detector: x_axis, y_axis

– For an actuator: position_is, move_done

The principles of communication within PyMoDAQ are summarized on figure Fig. 7.97 and as follow:

To be send, the string is converted to bytes. The length of this converted string is then computed and also converted to
bytes. The converted length is first send through the socket connection and then the converted command is also sent.

For the message to be properly received, the client listen on the socket. The first bytes to arrive represent the length of
the message (number of bytes).

For the detail of the python utility functions used to convert, send and receive data see TCP/IP related methods.

7.3. User’s Guide 135

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.97: Diagram principle of PyMoDAQ message communication through a TCP/IP socket.

136 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Sending and receiving Datas:

Sending or receiving datas is very similar to messages except that datas have a type (integer, float. . .) and have also a
dimensionality: 0D, 1D, . . . Moreover, the datas exported from plugins and viewers are almost always numpy arrays
within a list. One should therefore take all this into consideration. Below is an example of the recipe for serializ-
ing/deserializing DataWithAxes objects:

def dwa_serialization(self, dwa: DataWithAxes) -> bytes:
""" Convert a DataWithAxes into a bytes string

Parameters

dwa: DataWithAxes

Returns

bytes: the total bytes message to serialize the DataWithAxes

Notes

The bytes sequence is constructed as:

* serialize the string type: 'DataWithAxes'
* serialize the timestamp: float
* serialize the name
* serialize the source enum as a string
* serialize the dim enum as a string
* serialize the distribution enum as a string
* serialize the list of numpy arrays
* serialize the list of labels
* serialize the origin
* serialize the nav_index tuple as a list of int
* serialize the list of axis
"""

and obviously the deserialization process is symmetric:

def dwa_deserialization(self) -> DataWithAxes:
"""Convert bytes into a DataWithAxes object

Convert the first bytes into a DataWithAxes reading first information about the␣
→˓underlying data

Returns

DataWithAxes: the decoded DataWithAxes
"""
class_name = self.string_deserialization()
if class_name not in DwaType.names():

raise TypeError(f'Attempting to deserialize a DataWithAxes flavor but got the␣
→˓bytes for a {class_name}')

timestamp = self.scalar_deserialization()
dwa = getattr(data_mod, class_name)(self.string_deserialization(),

(continues on next page)

7.3. User’s Guide 137

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

source=self.string_deserialization(),
dim=self.string_deserialization(),
distribution=self.string_deserialization(),
data=self.list_deserialization(),
labels=self.list_deserialization(),
origin=self.string_deserialization(),
nav_indexes=tuple(self.list_deserialization()),
axes=self.list_deserialization(),
)

And because control modules send signals with DataToExport objects, there is also a recipe for these.

Custom client: how to?

1. The TCP/Client should first try to connect to the server (using TCP server PyMoDAQ plugin), once the connec-
tion is accepted, it should send an identification, the client type (GRABBER or ACTUATOR command)

2. (optional) Then it can send some information about its configuration as an xml string following the pymodaq.
utils.parameter.ioxml.parameter_to_xml_string() method.

3. Then the client enters a loop waiting for input from the server and is ready to read commands on the socket

4. Receiving commands

• For a detector: Send Data 0D, Send Data 1D, Send Data 2D

• For an actuator: move_abs, move_home, move_rel, check_position, stop_motion

5. Processing internally the command

6. Giving a reply

• For a detector:

– Send the command Done

– Send the data as a DataToExport object

• For an actuator:

– Send a reply depending on the one it received:

∗ move_done for move_abs, move_home, move_rel commands

∗ position_is for check_position command

– Send the position as a DataActuator object

Pretty easy, isn’t it?

Well, if it isn’t you can have a look in the example folder where a Labview based TCP client has been programed. It
emulates all the rules stated above, and if you are a Labview user, you’re lucky ;-) but should really think on moving
on to python with PyMoDAQ. . .

138 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

7.4 Developer’s Guide

7.4.1 Contributing

How to contribute

If you’re willing to help, there are several ways to do it:

• Use PyMoDAQ and report bug or issues using github issue tracker

• Talk about PyMoDAQ to your colleagues

• Cite PyMoDAQ in your papers

• Add your instruments in plugins (see Instrument Plugins)

• Work on new features, on solving bugs or issues

For the last point, here are some pointers:

you should fork and clone the up-to-date GitHub repo: https://github.com/PyMoDAQ using git command line or
GitHub Desktop. Then create a dedicated branch name from the change you want to work on (using git).

Finally I advise to create a dedicated conda environment for this and install PyMoDAQ’s package as a developer:

• conda create -n dev_env

• conda activate dev_env

• cd to the location of the folder where you downloaded or cloned the repository.

• install the package as a developer using the command pip install -e ..

Then any change on the code will be seen by python interpreter so that you can see and test your modifications. Think
about writing tests that will make sure your code is sound and that modification elsewhere doesn’t change the expected
behavior.

When ready, you can create a pull request from your code into the proper branch, as discussed in the next section.

Branch structure and release cycle

There are several branches of the PyMoDAQ repository, directly linked to the release cycle of PyMoDAQ, which we
define here. PyMoDAQ versioning follows usual practice, as described in this link:

Starting from January 2024, the following structure was agreed upon by the contributors. At any given time, there is a
stable version of PyMoDAQ - at the time of writing it is 4.1.0 - which is not to be modified except for bugfixes, and a
development version (currently, 4.2.0), onto which new features may be added.

The release cycle is illustrated in this figure:

This cycle makes use of several types of branches:

Code flow branches:

7.4. Developer’s Guide 139

https://github.com/PyMoDAQ
https://en.wikipedia.org/wiki/Software_versioning

PyMoDAQ Documentation, Release 4.2.0

140 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

• the stable branch, eg: ‘4.1.x’ This is the branch representing the stable version of PyMoDAQ. No change
should be made on this branch except bugfixes and hotfixes (see below). This is the branch from which the
official releases are created, for instance version 4.1.0, 4.1.1, 4.1.2, etc.

• the development branch, eg: ‘4.2.x_dev Note that the branch name differs from the stable branch by one
increment on the minor revision number (2 instead of 1), and the ‘_dev’ suffix is added for clarity. This is the
development branch. It is ahead of the main branch, in the sense that it contains more recent commits than the
main branch. It is thus the future state of the code. This is where the last developments of the code of PyMoDAQ
are pushed. When the developers are happy with the state of this branch, typically when they finished to develop a
new functionality and they tested it, this will lead to a new release of PyMoDAQ (4.1.x -> 4.2.0 in our example).
In practice, the branch will simply be renamed from 4.2.x_dev to 4.2.x, and a new branch 4.3.x_dev will be
created to continue the cycle.

Temporary branches:

• Feature, eg: ‘feature/new_colors’: Any additional feature should be done on a feature branch. They are created
based on the current development branch. When the feature is complete, a Pull Request must be open to integrate
the changes into the development branch.

• Bugfix, eg: ‘bugfix/remove_annoying_message’: These branches are meant to correct small issues. It can be
created based on either the stable or development branch, depending on where the bug is located. Regardless,
any bugfix must then be applied to all branches, if applicable (see note below).

• Hotfix, eg: ‘hotfix/fix_huge_bug’: This is similar to a bugfix, but for more important bugs. More precisely,
hotfixes are important enough that when applied, they will trigger an immediate new release (e.g. 4.1.1 -> 4.1.2)
that incorporate the fix. At the contrary bugfixes can wait for a future release.

Note: Applying fixes across several branches

Let’s consider the case where a bug is found on the stable branch. We create a new branch to fix it, open a pull request
into the stable branch, and wait for it to be accepted. However, it is likely that the buggy code is also part of the
development version, requiring another pull request on that branch! Thus, but when a bug is found, one should always
remember to check if it is present on several branches.

Where to contribute

There are easy places where to contribute and some more obscure places. . . After a few years of code rewrit-
ing/enhancing, several places are available for easily adding functionalities. These places are implementing one form
or another of the Factory Pattern. For other places, you’ll have to read the API documentation :-)

Factory Patterns (to be completed)

Data Exporting

New Exporting data format from the H5Browser is made easy see pymodaq/utils/h5modules/exporters

7.4. Developer’s Guide 141

https://realpython.com/factory-method-python/

PyMoDAQ Documentation, Release 4.2.0

Math functions in ROI

Scanning modes

Contributors

Here is a list of the main contributors:

Main modules

Functionalities

• Sébastien Weber, Research Engineer at CEMES/CNRS

• David Bresteau, Research Engineer at Attolab facility, CEA Saclay

• Nicolas Tappy, Engineer at Attolight (https://attolight.com/)

Cleaning

• Sébastien Weber, Research Engineer at CEMES/CNRS

• David Trémouilles, Researcher at LAAS/CNRS

Plugins

• Sébastien Weber, Research Engineer at CEMES/CNRS

• Sophie Meuret, Researcher at CEMES/CNRS

• David Bresteau, Research Engineer at Attolab facility, CEA Saclay

• and many others. . .

Extensions

• Sébastien Weber, Research Engineer at CEMES/CNRS

• Romain Geneaux, Researcher at CEA Saclay contributed to the PyMoDAQ-Femto extension

Documentation

• Sébastien Weber, Research Engineer at CEMES/CNRS

• Matthieu Cabos helped with this documentation

• David Bresteau wrote the documentation of the PID extension and the tutorial: Story of an instrument plugin
development

142 Chapter 7. Changelog

https://attolight.com/

PyMoDAQ Documentation, Release 4.2.0

Testing

• Sébastien Weber, Research Engineer at CEMES/CNRS

• Pierre Jannot wrote tests with a total of 5000 lines of code tested during his internship at CEMES in 2021

Note: If you’re not in the list and contributed somehow, sorry for that and let us know at sebastien.weber@cemes.fr

7.4.2 Plugins

A plugin is a python package whose name is of the type: pymodaq_plugins_apluginname containing functionalities to
be added to PyMoDAQ

Note: A plugin may contains added functionalities such as:

• Classes to add a given instrument: allows a given instrument to be added programmatically in a Control
Modules graphical interface

• Instrument drivers located in a hardware folder: contains scripts/classes to ease communication with the in-
strument. Could be third party packages such as Pymeasure

• PID models located in a models folder: scripts and classes defining the behaviour of a given PID loop including
several actuators or detectors, see The PID Model

• Extensions located in a extensions folder: scripts and classes allowing to build extensions on top of the Dash-
Board

Entry points python mechanism is used to let know PyMoDAQ of installed Instrument, PID models or extensions
plugins

Plugins package configuration file

See Plugins configuration for default values.

Instrument Plugins

Any new hardware has to be included in PyMoDAQ within a plugin. A PyMoDAQ’s plugin is a python package
containing several added functionalities such as instruments objects. A instrument object is a class inheriting from
either a DAQ_Move_Base or a DAQ_Viewer_Base class`and implementing mandatory methods for easy and quick
inclusion of the instrument within the PyMoDAQ control modules.

Plugins are articulated given their type: Moves or Viewers and for the latter their main dimensionality: 0D, 1D or 2D.
It is recommended to start from the template repository that includes templates for all kind of instruments and also the
generic structure to build and publish a given plugin.

You will find below some information on the how to but comparison with existing plugins packages will be beneficial.

Note: You’ll find in this documentation a detailed tutorial on Story of an instrument plugin development.

7.4. Developer’s Guide 143

mailto:sebastien.weber@cemes.fr
https://github.com/PyMoDAQ/pymodaq_plugins_template

PyMoDAQ Documentation, Release 4.2.0

Installation

The main and official list of plugins is located in the pymodaq_plugin_manager repository on github. This constitutes
a list of (contributed) python package that can be installed using the Plugin Manager (or directly using pip). Other
unofficial plugins may also be installed if they follow PyMoDAQ’s plugin specifications but you are invited to let know
other users of the plugins you develop in order to contribute to PyMoDAQ’s development.

PyMoDAQ is looking at startup for all installed packages that it can consider as its plugins. This includes by de-
fault the pymodaq_plugins_mock package of mock instruments installed on the site_packages location in your python
distribution.

Contributions

If you wish to develop a plugin specific to a new hardware or feature not present on the github repo (and I strongly
encourage you to do so!!), you will have to follow the rules as below.

Two cases are possible: either you want to add a new hardware from a manufacturer for which a repository already
exists 1) (thorlabs, PI, Andor. . .) or not 2)

1. You have to fork the existing repo

2. you will use the pymodaq_plugins_template on github to create a new repo (see also the How to create a new
plugin/package for PyMoDAQ? tutorial)

Once you’ve done that, you can clone the package locally and install it in developer using pip install -e . from
the command line where you cd within the cloned package. This command will install the package but any change you
apply on the local folder will be applied on the package. Then just add a new python file in the correct location.

Once you’re ready with a working plugin, you can then:

1. Publish your repo on pypi (just by doing a release on github will trigger the creation of a pypi repository

2. do a pull request on the initial repository to merge your new implementations.

Note: Starting with PyMoDAQ version 4.1.0 onwards, old github actions for publication and suite testing should be
updated in the plugin packages. You can just use the one from the template repository

All the packages published on pypi using the template and the naming convention will be available in the plugin
manager.

A very detailed tutorial has been published in this documentation: Story of an instrument plugin development and you
can in the mean time look at this video

Naming convention

For an instrument plugin to be properly recognised by PyMoDAQ, the location and name of the underlying script must
follow some rules and syntax. The plugin template package could be copied locally as a starting point:

• The plugin package will be named pymodaq_plugins_xxxx (name: xxxx)

• An actuator plugin (name: xxxx) will be a script whose name is daq_move_Xxxx (notice first X letter is capital)

• The main instrument class within the script will be named DAQ_Move_Xxxx (notice the capital letters here as
well and sorry if it is troublesome)

• A detector plugin of dimensionality N (N=0, 1, 2 or N) (name: xxxx) will be a script whose name is
daq_NDviewer_Xxxx (notice first X letter is capital, and replace N by 0, 1, 2 or leave it for higher dimensionality)

144 Chapter 7. Changelog

https://github.com/PyMoDAQ/pymodaq_plugin_manager
https://github.com/PyMoDAQ/pymodaq_plugins_template
https://youtu.be/9O6pqz89UT8
https://github.com/PyMoDAQ/pymodaq_plugins_template

PyMoDAQ Documentation, Release 4.2.0

• The main instrument class within the script will be named DAQ_NDViewer_Xxxx (notice the capital letters here
as well)

Hardware Settings

An important feature similar for all modules is the layout as a tree structure of all the hardware parameters. These
settings will appear on the UI as a tree of parameters with a title and different types, see Fig. 7.98. On the module side,
they will be instantiated as a list of dictionaries and later exist in the object self.settings. This object inherits from
the Parameter object defined in pyqtgraph.

Fig. 7.98: Typical hardware settings represented as a tree structure (here from the daq_2Dviewer_AndorCCD plugin)

Here is an example of such a list of dictionaries corresponding to Fig. 7.98:

[{'title': 'Dll library:', 'name': 'andor_lib', 'type': 'browsepath', 'value': libpath},
{'title': 'Camera Settings:', 'name': 'camera_settings', 'type': 'group', 'expanded':␣
→˓True, 'children': [

(continues on next page)

7.4. Developer’s Guide 145

https://pyqtgraph.readthedocs.io/en/latest/api_reference/parametertree/parameter.html

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

{'title': 'Camera SN:', 'name': 'camera_serialnumber', 'type': 'int', 'value': 0,
→˓'readonly': True},

{'title': 'Camera Model:', 'name': 'camera_model', 'type': 'str', 'value': '',
→˓'readonly': True},

{'title': 'Readout Modes:', 'name': 'readout', 'type': 'list', 'values': [
→˓'FullVertBinning','Imaging'], 'value': 'FullVertBinning'},

{'title': 'Readout Settings:', 'name': 'readout_settings', 'type': 'group',
→˓'children':[

{'title': 'single Track Settings:', 'name': 'st_settings', 'type': 'group',
→˓'visible': False, 'children':[

{'title': 'Center pixel:', 'name': 'st_center', 'type': 'int', 'value': 1 ,
→˓'default':1, 'min':1},

{'title': 'Height:', 'name': 'st_height', 'type': 'int', 'value': 1 ,
→˓'default':1, 'min':1},

]},]}]}]

The list of available types of parameters (defined in pymodaq.utils.parameter.pymodaq_ptypes.py) is:

• group : “camera settings” on Fig. 7.98 is of type group

• int : settable integer (SpinBox_Custom object)

• float : settable float (SpinBox_Custom object)

• str : a QLineEdit object (see Qt5 documentation)

• list : “Readout Modes” Fig. 7.98 is a combo box

• bool : checkable boolean

• bool_push : a checkable boolean in the form of a QPushButton

• led : non checkable boolean in the form of a green (True) of red (False) led

• led_push : checkable boolean in the form of a green (True) of red (False) led

• date_time : a QDateTime object (see Qt5 documentation)

• date : a QDate object (see Qt5 documentation)

• time : a QTime object (see Qt5 documentation)

• slide : a combination of a slide and spinbox for floating point values (linear of log scale)

• itemselect : an object to easily select one or more items among a few

• browsepath: a text area and a pushbutton to select a given path or file

• text : a text area (for comments for instance)

Important: the name key in the dictionnaries must not contain any space, please use underscore if necessary!

Note: For a live example of these Parameters and their widget, type in parameter_example in your shell or check
the example folder

Once the module is initialized, any modification on the UI hardware settings will be send to the plugin through the
commit_settingsmethod of the plugin class and illustrated below (still from the daq_2Dviewer_AndorCCD plugin).
The param method argument is of the type Parameter (from pyqtgraph):

146 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

def commit_settings(self,param):
"""

| Activate parameters changes on the hardware from parameter's name.
"""
try:

if param.name()=='set_point':
self.controller.SetTemperature(param.value())

elif param.name() == 'readout' or param.name() in custom_parameter_tree.iter_
→˓children(self.settings.child('camera_settings', 'readout_settings')):

self.update_read_mode()

elif param.name()=='exposure':
self.controller.SetExposureTime(self.settings.child('camera_settings',

→˓'exposure').value()/1000) #temp should be in s
(err, timings) = self.controller.GetAcquisitionTimings()
self.settings.child('camera_settings','exposure').setValue(timings['exposure

→˓']*1000)
elif param.name() == 'grating':

index_grating = self.grating_list.index(param.value())
self.get_set_grating(index_grating)
self.emit_status(ThreadCommand('show_splash', ["Setting wavelength"]))
err = self.controller.SetWavelengthSR(0, self.settings.child('spectro_

→˓settings','spectro_wl').value())
self.emit_status(ThreadCommand('close_splash'))

Emission of data

When data are ready (see Data ready? to know about that), the plugin has to notify the viewer module in order to
display data and eventually save them. For this PyMoDAQ use two types of signals (see pyqtsignal documentation for
details):

• dte_signal_temp

• dte_signal

where dte stands for DataToExport, see DataToExport.

Note: So far (07/07/2023) instrument plugins would use signals below to emit a list of DataFromPlugins objects

• data_grabed_signal_temp (old style, will be deprecated)

• data_grabed_signal (old style, will be deprecated)

It will be deprecated in versions > 4.1, as the object to use and emit are now DataToExport objects

They both emit the same type of signal but will trigger different behaviour from the viewer module. The first is to be
used to send temporary data to update the plotting but without triggering anything else (so that the DAQ_Scan still
awaits for data completion before moving on). It is also used in the initialisation of the plugin in order to preset the
type and number of data viewers displayed by the viewer module. The second signal is to be used once data are fully
ready to be send back to the user interface and further processed by DAQ_Scan or DAQ_Viewer instances. The code
below is an example of emission of data:

7.4. Developer’s Guide 147

PyMoDAQ Documentation, Release 4.2.0

from pymodaq.utils.data import Axis, DataFromPlugins, DataToExport
x_axis = Axis(label='Wavelength', units= "nm", data = vector_X)
y_axis = Axis(data=vector_Y)
self.dte_signal.emit(DataToExport('mydata', data=[

DataFromPlugins(name='Camera',data=[data2D_0, data2D_1,...],
dim='Data2D', x_axis=x_axis,y_axis=y_axis),

DataFromPlugins(name='Spectrum',data=[data1D_0, data1D_1,...],
dim='Data1D', x_axis=x_axis, labels=['label0', 'label1', ...]),

DataFromPlugins(name='Current',data=[data0D_0, data0D_1,...],
dim='Data0D'),

DataFromPlugins(name='Datacube',data=[dataND_0, dataND_1,...],
dim='DataND', nav_indexes=(0,2),
axes=[Axis(data=.., label='Xaxis', units= "µm", index=0)]))

Such an emitted signal would trigger the initialization of 4 data viewers in the viewer module. One for each
DataFromPlugins in the data attribute (which is a list of DataFromPlugins). The type of data viewer will be de-
termined by the dim key value while its name will be set to the name parameter value, for more details on data objects,
see What is PyMoDAQ’s Data?

Note: New in version 4.1.0

Deprecated in version 4.2.0, but still working

The behaviour of the DAQ_Viewer can be even more tailored using two extra boolean attributes in the DataWithAxes
objects.

• save: will tell the DAQ_Viewer whether it should save the corresponding dwa (short for DataWithAwes)

• plot: will tell the DAQ_Viewer whether it should plot the corresponding dwa

New in version 4.2.0

the save and plot extra-attributes have been replaced by:

• do_save: will tell the DAQ_Viewer whether it should save the corresponding dwa (short for DataWithAwes)

• do_plot: will tell the DAQ_Viewer whether it should plot the corresponding dwa

DataFromPlugins objects have these two extra attributes by default with values set to True

Data ready?

One difficulty with these viewer plugins is to determine when data is ready to be read from the controller and then to
be send to the user interface for plotting and saving. There are a few solutions:

• synchronous: The simplest one. When the grab command has been send to the controller (let’s say to its
grab_sync method), the grab_sync method will hold and freeze the plugin until the data are ready. The Mock
plugin work like this.

• asynchronous: There are 2 ways of doing asynchronous waiting. The first is to poll the controller state to
check if data are ready within a loop. This polling could be done with a while loop but if nothing more is done
then the plugin will still be freezed, except if one process periodically the Qt queue event using QtWidgets.
QApplication.processEvents()method. The polling can also be done with a timer event, firing periodically
a check of the data state (ready or not). Finally, the nicest/hardest solution is to use callbacks (if the controller
provides one) and link it to a emit_data method.

148 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Synchronous example:

The code below illustrates the poll method using a loop:

def poll_data(self):
"""
Poll the current data state
"""
sleep_ms=50
ind=0
data_ready = False
while not self.controller.is_ready():

QThread.msleep(sleep_ms)

ind+=1

if ind*sleep_ms>=self.settings.child(('timeout')).value():

self.emit_status(ThreadCommand('raise_timeout'))
break

QtWidgets.QApplication.processEvents()
self.emit_data()

Asynchronous example:

The code below is derived from daq_Andor_SDK2 (in andor hardware folder) and shows how to create a thread waiting
for data ready and triggering the emission of data

class DAQ_AndorSDK2(DAQ_Viewer_base):

callback_signal = QtCore.Signal() #used to talk with the callback object
...

def ini_camera(self):
...
callback = AndorCallback(self.controller.WaitForAcquisition) # the callback is␣

→˓linked to the controller WaitForAcquisition method
self.callback_thread = QtCore.QThread() #creation of a Qt5 thread
callback.moveToThread(self.callback_thread) #callback object will live within␣

→˓this thread
callback.data_sig.connect(self.emit_data) # when the wait for acquisition␣

→˓returns (with data taken), emit_data will be fired

self.callback_signal.connect(callback.wait_for_acquisition) #
self.callback_thread.callback = callback
self.callback_thread.start()

def grab(self,Naverage=1,**kwargs):
...
self.callback_signal.emit() #trigger the wait_for_acquisition method

(continues on next page)

7.4. Developer’s Guide 149

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

def emit_data(self):
"""

Function used to emit data obtained by callback.
"""
...
self.dte_signal.emit(

DataToExport('mydata',
data=[DataFromPlugins('Camera',

data=[np.squeeze(self.data.reshape((sizey,␣
→˓sizex)).astype(np.float))])])

class AndorCallback(QtCore.QObject):

data_sig=QtCore.Signal()
def __init__(self,wait_fn):

super(AndorCallback, self).__init__()
self.wait_fn = wait_fn

def wait_for_acquisition(self):
err = self.wait_fn()

if err != 'DRV_NO_NEW_DATA': #will be returned if the main thread called␣
→˓CancelWait

self.data_sig.emit()

Documentation from Andor SDK concerning the WaitForAcquisition method of the dll:

unsigned int WINAPI WaitForAcquisition(void)

WaitForAcquisition can be called after an acquisition is started using StartAcquisition to put the
calling thread to sleep until an Acquisition Event occurs.
It will use less processor resources than continuously polling with the GetStatus function. If you wish to
restart the calling thread without waiting for an Acquisition event, call the function CancelWait.

Hardware averaging

By default, if averaging of data is needed the Viewer module will take care of it software wise. However, if the
hardware controller provides an efficient method to do it (that will save time) then you should set the class field
hardware_averaging to True.

class DAQ_NDViewer_Template(DAQ_Viewer_base):
"""
Template to be used in order to write your own viewer modules
"""

hardware_averaging = True #will use the accumulate acquisition mode if averaging
#is True else averaging is done software wise

150 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Live Mode

By default, the live Grab mode is done software wise in the core code of the DAQ_Viewer. However, if one want to
send data as fast as possible, the live mode is possible within a plugin.

For this, the plugin class attribute, live_mode_available, should be set to True.

class DAQ_2DViewer_MockCamera(DAQ_Viewer_base):

live_mode_available = True

The method grab_data will then receive a named boolean parameter (in kwargs) called live that tells if one should
grab or snap data. The MockCamera plugin illustrates this feature:

def grab_data(self, Naverage=1, **kwargs):
"""Start a grab from the detector

Parameters

Naverage: int

Number of hardware averaging (if hardware averaging is possible, self.hardware_
→˓averaging should be set to

True in class preamble and you should code this implementation)
kwargs: dict

others optionals arguments
"""
if 'live' in kwargs:

if kwargs['live']:
self.live = True
self.live = False # don't want to use that for the moment

if self.live:
while self.live:

data = self.average_data(Naverage)
QThread.msleep(kwargs.get('wait_time', 100))
self.dte_signal.emit(data)
QtWidgets.QApplication.processEvents()

Hardware needed files

If you are using/referring to custom python wrappers/dlls. . . within your plugin and need a place where to copy them
in PyMoDAQ, then use the \hardware folder of your plugin package. For instance, the daq_2Dviewer_AndorCCD
plugin need various files stored in the andor folder (on github repository). I would therefore copy it as \
pymodaq_plugins_andor\hardware\andor and call whatever module I need within (meaning there is a __init__.py
file in the andor folder) as:

#import controller wrapper
from pymodaq_plugins.hardware.andor import daq_AndorSDK2 #this import the module DAQ_
→˓AndorSDK2 containing classes, methods...
#and then use it as you see fit in your module

7.4. Developer’s Guide 151

PyMoDAQ Documentation, Release 4.2.0

Actuator plugin having multiple axis

See also: Multiaxes controller

When an actuator’s controller can drive multiple axis (like a XY translation stage for instance), the plugin instrument
class should defines two class attributes:

• is_multiaxis should be set to True. This will trigger the display of the multiaxis section on the UI

• axes_names should be a list or dict describing the different actuator such a controller can drive

class DAQ_Move_MockNamedAxes(DAQ_Move_base):
is_multiaxes = True
_axis_names = ['Xaxis', 'Yaxis', 'Zaxis']
or:
_axis_names = {'Xaxis': 0, 'Yaxis': 1, 'Zaxis': 2}

would produce such display on the UI (Fig. Fig. 7.99):

Fig. 7.99: Typical multiaxis settings represented as a combo box

Both the list or the dictionary will produce the same output on the UI but their use will depend of the controller and
underlying methods of its driver to act on a particular axis. In the drivers derived from C code, methods will have an
argument describing a particular axis as an integer. It is however not possible to pass integers directly to the combobox
of the UI who holds strings. To deal with that pyqtgraph, and therefore pymodaq, uses a dictionary mapping the names
of the axis (to be printed in the UI) to objects (here integers) to be used with the drivers’s method.

A set of methods/properties have been introduced to quickly manipulate those and get either the current axis name of
associated value.

Case of a list of strings:

>>> self.axis_name
'Yaxis'
>>> self.axis_names
['Xaxis', 'Yaxis', 'Zaxis']
>>> self.axis_value
'Yaxis'

Case of a dictionary of strings/integers:

152 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

>>> self.axis_name
'Yaxis'
>>> self.axei_names
{'Xaxis': 0, 'Yaxis': 1, 'Zaxis': 2}
>>> self.axis_value
1

Modifying the UI from the instrument plugin class

The user interface control module and the instrument plugin class are not in the same thread, moreover, the plugin class
is not aware of the UI object (DAQ_Move or DAQ_Viewer). Therefore, you’ll find below ways to interact with the UI
from the plugin class.

The most generic way (valid for both control modules) is to use the emit_status method, defined in the parent class
of the instrument plugin class. Such a method takes one argument, a ThreadCommand and will send this object to the
thread_status method of the UI main class.

Note: A ThreadCommand is an object taking two arguments a string (the command) and a named attribute called
attribute that can be any type. This ThreadCommand is used everywhere in PyMoDAQ to communicate between
threads.

Control modules share some commands, see thread_status

• Update_status: call the update_status method with status attribute as a string

• close: close the current thread and delete corresponding attribute on cascade.

• update_main_settings: update the main settings in the UI settings tree

• update_settings: update the actuator’s settings in the UI settings tree

• raise_timeout: call the raise_timeout method

• show_splash: show the splash screen displaying info from the argument attributes of the command

• close_splash: close the splash screen

Splash Screen and info

You can therefore show info about initialization in a splash screen using (taken from the Mock 0DViewer plugin):

self.emit_status(ThreadCommand('show_splash', 'Starting initialization'))
QtCore.QThread.msleep(500)
self.ini_detector_init(old_controller=controller,

new_controller='Mock controller')
self.emit_status(ThreadCommand('show_splash', 'generating Mock Data'))
QtCore.QThread.msleep(500)
self.set_Mock_data()
self.emit_status(ThreadCommand('update_main_settings', [['wait_time'],

self.settings.child('wait_time').
→˓value(), 'value']))
self.emit_status(ThreadCommand('show_splash', 'Displaying initial data'))
QtCore.QThread.msleep(500)

(continues on next page)

7.4. Developer’s Guide 153

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

initialize viewers with the future type of data
self.dte_signal_temp.emit(DataToExport('Mock0D', data=[DataFromPlugins(name='Mock1',␣
→˓data=[np.array([0])],

dim='Data0D',
labels=['Mock1',

→˓'label2'])]))
self.emit_status(ThreadCommand('close_splash'))

Modifying the UI settings

if you want to modify the settings tree of the UI (the Main Settings part as the other one, you can do so within the plugin
directly), you can do so using:

self.emit_status(ThreadCommand('update_main_settings', [['wait_time'], 10, 'value']))

The attribute of the ThreadCommand is a bit complex here [['wait_time'], 10, 'value']. It is a list of three
variables:

• a list of string defining a path in the main_settings tree hierarchy

• an object (here an integer)

• a string specifying the type of modification, either:

– value: the object should therefore be the new value of the modified parameter

– limits: the object should be a sequence listing the limits of the parameter (depends on the type of parameter)

– options: the object is a dictionary defining the options to modify

– childAdded: the object is a dictionary generated using SaveState of a given Parameter

DAQ_Move specific commands

Specifics commands for the DAQ_Move are listed in: thread_status and explained a bit below

• ini_stage: obtains info from the initialization

• get_actuator_value: update the UI current value

• move_done: update the UI current value and emits the move_done signal

• outofbounds: emits the bounds_signal signal with a True argument

• set_allowed_values: used to change the behaviour of the spinbox controlling absolute values, see
set_abs_spinbox_properties

• stop: stop the motion

You can directly modify the printed current actuator’s value using the emit_value(12.4) method which is a shortcut
of emit_status(ThreadCommand('get_actuator_value', 12.4)). In that case the printed value would show
12.4.

You can also modify some SpinBox of the UI (the ones used to specify the absolute values) using the
set_allowed_values command. In that case the attribute argument of the ThreadCommand should be a dictionary,
see set_abs_spinbox_properties.

154 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

DAQ_Viewer specific commands

Specifics commands for the DAQ_Viewer are listed in: thread_status and explained a bit below

• ini_detector: update the status with “detector initialized” value and init state if attribute not null.

• grab : emit grab_status(True)

• grab_stopped: emit grab_status(False)

• init_lcd: display a LCD panel

• lcd: display on the LCD panel, the content of the attribute

• stop: stop the grab

The interesting bit is the possibility to display a LCD widget to display some numerical values (could be 0D Data also
emitted using the dte_signal but could also be any values). You should first init the LCD screen using the command:
init_lcd with an attribute being a dictionary with keys either:

• digits: an integer specifying the number of digits to display

• Nvals: the number of numerical values to be displayed

• labels: the name/label of each value

For instance, in the 0D Mock viewer plugin:

if not self.lcd_init:
self.emit_status(ThreadCommand('init_lcd', dict(labels=['dat0', 'data1'], Nvals=2,␣

→˓digits=6)))
QtWidgets.QApplication.processEvents()
self.lcd_init = True

self.emit_status(ThreadCommand('lcd', data_tot))

Where the lcd is first initialized, then data are sent using the lcd command taking as attribute a list of 0D numpy arrays

Extension Plugins

PyMoDAQ’s plugins allows to add functionnalities to PyMoDAQ from external packages. You should be well aware of
the instrument type plugins and somehow of the PID models plugins. Here we are highlighting how to built dashboard
extensions such as the DAQ Scan.

For your package to be considered as a PyMoDAQ’s dashboard extension, you should make sure of a few things:

• The entrypoint in the setup file should be correctly configured, see Fig. 7.100

• The presence of an extensions module at the root of the package

• each module within the extensions module will define an extension. It should contains three attributes:

– EXTENSION_NAME: a string used to display the extension name in the dashboard extension menu

– CLASS_NAME: a string giving the name of the extension class

– a class deriving from the CustomApp base class (see Custom App)

The pymodaq_plugins_template contains already all this, so make sure to start from there when you wish to build an
extension.

7.4. Developer’s Guide 155

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.100: The correct configuration of your package.

The class itself defining the extension derives from the CustomApp base class. As such, it’s __init__ method takes
two attributes, a DoackArea instance and a DashBoard instance (the one from which the extension will be loaded and
that contains all the actuators/detectors needed for your extension). The DashBoard will smoothly initialize your class
when launching it from the menu. Below you’ll find a sample of an extension module with an extension class called
MyExtension (from the pymodaq_plugins_template package)

EXTENSION_NAME = 'MY_EXTENSION_NAME'
CLASS_NAME = 'MyExtension'

class MyExtension(gutils.CustomApp):
list of dicts enabling the settings tree on the user interface
params = [

{'title': 'Main settings:', 'name': 'main_settings', 'type': 'group', 'children
→˓': [

{'title': 'Save base path:', 'name': 'base_path', 'type': 'browsepath',
'value': config['data_saving']['h5file']['save_path']},
{'title': 'File name:', 'name': 'target_filename', 'type': 'str', 'value': "

→˓", 'readonly': True},
{'title': 'Date:', 'name': 'date', 'type': 'date', 'value': QtCore.QDate.

→˓currentDate()},
{'title': 'Do something, such as showing data:', 'name': 'do_something',

→˓'type': 'bool', 'value': False},
{'title': 'Something done:', 'name': 'something_done', 'type': 'led', 'value

→˓': False, 'readonly': True},
{'title': 'Infos:', 'name': 'info', 'type': 'text', 'value': ""},
{'title': 'push:', 'name': 'push', 'type': 'bool_push', 'value': False}

]},
{'title': 'Other settings:', 'name': 'other_settings', 'type': 'group', 'children

→˓': [
{'title': 'List of stuffs:', 'name': 'list_stuff', 'type': 'list', 'value':

→˓'first',
'limits': ['first', 'second', 'third'], 'tip': 'choose a stuff from the list

→˓'},
{'title': 'List of integers:', 'name': 'list_int', 'type': 'list', 'value':␣

→˓0,
'limits': [0, 256, 512], 'tip': 'choose a stuff from this int list'},

(continues on next page)

156 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

{'title': 'one integer:', 'name': 'an_integer', 'type': 'int', 'value': 500,␣
→˓},

{'title': 'one float:', 'name': 'a_float', 'type': 'float', 'value': 2.7, },
]},

]

def __init__(self, dockarea, dashboard):
super().__init__(dockarea, dashboard)
self.setup_ui()

7.4.3 Custom App

PyMoDAQ’s set of modules is a very efficient way to build a completely custom application (related to data acquisition
or actuators displacement) without having to do it from scratch. Fig. 7.101 is an example of such an interface build
using only PyMoDAQ’s building blocks. The corresponding script template is within the example folder.

Note: A generic base class CustomApp located in pymodaq.utils.gui_utils can be used to build very quickly standalone
Application or Dashboard extensions. The DAQ_Logger extension has been built using it as well as some examples in
the example folder.

Below you’ll find the skeleton of a CustomApp subclassing the base class and methods you have to override with your
App/Extension specifics:

class CustomAppExample(gutils.CustomApp):

list of dicts enabling a settings tree on the user interface
params = [

{'title': 'Main settings:', 'name': 'main_settings', 'type': 'group', 'children
→˓': [

{'title': 'Save base path:', 'name': 'base_path', 'type': 'browsepath',
'value': config['data_saving']['h5file']['save_path']},

{'title': 'File name:', 'name': 'target_filename', 'type': 'str', 'value': "
→˓", 'readonly': True},

{'title': 'Date:', 'name': 'date', 'type': 'date', 'value': QDate.
→˓currentDate()},

{'title': 'Do something, such as showing data:', 'name': 'do_something',
→˓'type': 'bool', 'value': False},

]},
]

def __init__(self, dockarea, dashboard=None):
super().__init__(dockarea)
init the App specific attributes
self.raw_data = []

def setup_actions(self):
'''
subclass method from ActionManager

(continues on next page)

7.4. Developer’s Guide 157

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.101: A custom application build using PyMoDAQ’s modules.

158 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

'''
logger.debug('setting actions')
self.add_action('quit', 'Quit', 'close2', "Quit program", toolbar=self.toolbar)
self.add_action('grab', 'Grab', 'camera', "Grab from camera", checkable=True,␣

→˓toolbar=self.toolbar)
logger.debug('actions set')

def setup_docks(self):
'''
subclass method from CustomApp
'''
logger.debug('setting docks')
self.dock_settings = gutils.Dock('Settings', size=(350, 350))
self.dockarea.addDock(self.dock_settings, 'left')
self.dock_settings.addWidget(self.settings_tree, 10)
logger.debug('docks are set')

def connect_things(self):
'''
subclass method from CustomApp
'''
logger.debug('connecting things')
self.actions['quit'].connect(self.quit_function)
self.actions['grab'].connect(self.detector.grab)
logger.debug('connecting done')

def setup_menu(self):
'''
subclass method from CustomApp
'''
logger.debug('settings menu')
file_menu = self.mainwindow.menuBar().addMenu('File')
self.affect_to('quit', file_menu)
file_menu.addSeparator()
logger.debug('menu set')

def value_changed(self, param):
logger.debug(f'calling value_changed with param {param.name()}')
if param.name() == 'do_something':

if param.value():
self.settings.child('main_settings', 'something_done').setValue(True)

else:
self.settings.child('main_settings', 'something_done').setValue(False)

logger.debug(f'Value change applied')

"""
All other methods required by your Application class
"""

In a few lines of codes, you’ll get an application running. For the available Parameter available for your settings_tree,
see Settings.

7.4. Developer’s Guide 159

PyMoDAQ Documentation, Release 4.2.0

7.4.4 Managers and Mixin Objects

Parameter Manager

Action Manager

Modules Manager

ROI Manager

7.5 Tutorials

7.5.1 Git/GitHub

Author email david.bresteau@cea.fr
First edition december 2023
Difficulty Easy

Create an account & raise an issue on GitHub

We present here how to create a free account on GitHub so that as a user of PyMoDAQ, we will know where to ask for
help to the PyMoDAQ community or report a bug.

This tutorial does not require any knowledge of Python or GitHub.

What is GitHub?

GitHub is a free cloud service that allows anyone to host an open-source project on distant servers. PyMoDAQ is
hosted on GitHub. As a PyMoDAQ user, we should know about it, even if we are not interested in the code. Indeed
GitHub does not only host code, but it also proposes several features around it that allow to ease the communication
within the community around the program (users or maintainers). So if we face a problem with PyMoDAQ, that is
where we should ask for help!

160 Chapter 7. Changelog

mailto:david.bresteau@cea.fr
https://github.com/

PyMoDAQ Documentation, Release 4.2.0

Create an account

Creating an account on GitHub is necessary if we want to open a discussion or raise an issue. This is free of charge
and does not commit us to anything. Let’s go to the GitHub website. On the top right of the page, let’s click on Sign
up and follow the guide.

Troubleshoot PyMoDAQ: raise an issue

Now that we have our own account on GitHub and are logged in. Let’s go to the PyMoDAQ GitHub account.

Here we have access to all the code of PyMoDAQ, and all the history of its development. But what we are looking for
now is the place where to ask for help in case we are in trouble. For this we should click on the Issues tab.

7.5. Tutorials 161

https://github.com/
https://github.com/PyMoDAQ/PyMoDAQ

PyMoDAQ Documentation, Release 4.2.0

Anytime we face a problem or a bug in the program we can raise an issue. Describe as precisely as possible our
problem. A discussion will be opened with the maintainers who will try to help us. This is the most efficient way to
troubleshoot PyMoDAQ because the history of the issues is conserved, which could be helpful to solve future problems.
This contributes to the documentation of the code. We don’t need to know the code to raise an issue, and it is really
helpful to improve the stability of the program, so we should not hesitate to do so!

Thanks to such functionalities, the PyMoDAQ GitHub account is the meeting point of the community around Py-
MoDAQ.

Author email david.bresteau@cea.fr
Last update january 2024
Difficulty Easy

162 Chapter 7. Changelog

mailto:david.bresteau@cea.fr

PyMoDAQ Documentation, Release 4.2.0

Basics of Git and GitHub

We introduce Git and GitHub in Pymodaq documentation because we believe that every experimental physicist should
know about those wonderful tools that have been made by developers. They will help us code and share our code
efficiently, not only within the framework of Pymodaq or even Python. Moreover, since Pymodaq is an open source
project, its development is based on those tools. They have to be mastered if we want to contribute to the project or
develop our own extension. Even as a simple user, we will learn where to ask for help when we are in difficulty, because
Pymodaq’s community is organized around those tools.

Why Git?

Git answers mainly two important questions:

How do I organize my code development efficiently? (local use)

• It allows you to come back to every version of your code.

• It forces you to document every step of the development of your code.

• You can try any modification of your code safely.

• It is an indispensable tool if you work on a bigger project than a few scripts.

How do I work with my colleagues on the same code? (remote use)

• Git tackles the general problem of several people working on the same project: it can be scientists working on a
paper , some members of a parliament working on a law, some developers working on a program. . .

• It is a powerful tool that allows multiple developers to work on the same project without conflicting each other.

• It allows everyone that download an open-source project to have the complete history of its development.

• Coupled with a cloud-based version control service like GitHub, it allows to easily share your project with ev-
eryone, and have contributors, like PyMoDAQ!

How does it do that?

A program is nothing more than a set of files placed in the right subfolders.

Git is a version control software: it follows the development of a program (i.e. its different versions) by keeping track
of every modifications of files in a folder.

Installation & configuration for Windows

Installation

Fig. 7.102: Download the installer from the official website.

Download the installer from the official website. Run the installer. From all the windows that will appear, let the default
option, except for the following ones.

Uncheck “Windows Explorer integration”.

7.5. Tutorials 163

https://git-scm.com/

PyMoDAQ Documentation, Release 4.2.0

For the default editor, do not let Vim if you don’t know about it, for example you can choose Notepad++.

Use the following option for the name of the default branch.

If you develop from Windows, it is better that you let Git manage the line endings.

Use the second option here.

Open the Git Bash terminal (Windows Applications > Git > Git Bash or Search for “Git Bash”) that has been installed
with the Git installer.

We can now check that it is actually installed on our system.

164 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

7.5. Tutorials 165

PyMoDAQ Documentation, Release 4.2.0

166 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Configuration

Just after the installation, you should configure Git so that he knows your email and name. This configuration is global
in the sense that it does not depend on the project (the repository) you are working on. Use the following commands
replacing with your own email and a name of your choice:

$ git config --global user.email "david.bresteau@cea.fr"

$ git config --global user.name "David Bresteau"

Good, we are now ready to use Git!

Installation & configuration for Ubuntu

Installation

In a terminal

$ sudo apt install git

Configuration

Just after the installation, you should configure Git so that he knows your email and name. This configuration is global
in the sense that it does not depend on the project (the repository) you are working on. Use the following commands
replacing with your own email and a name of your choice:

$ git config --global user.email "david.bresteau@cea.fr"

$ git config --global user.name "David Bresteau"

Good, we are now ready to use Git!

Local use of Git

We will start by using Git just on our local machine.

Before we start. . .

What kind of files I CAN track with Git?

Opened file formats that use text language: any “normal” language like C++, Python, Latex, markdown. . .

What kind of files I CANNOT track with Git?

• Closed file format like Word, pdf, Labview. . .

• Images, drawings. . .

7.5. Tutorials 167

PyMoDAQ Documentation, Release 4.2.0

The init command: start a new project

We start a project by creating a folder in our home directory, with the mkdir Bash command (for “make directory”)

Note: The home directory corresponds to the directory that is reserved to the connected user. On Windows, it corre-
sponds to the path C:\Users\<username>. Here the user is called dbrestea, you should replace it by your own username.
When we open Git Bash, or any terminal in general, we are placed at our home directory in the file system, it can be
represented by the ~ symbol (in orange in the above screenshots).

$ mkdir MyLocalRepository

And cd (for “change directory”) into this folder

$ cd MyLocalRepository

It should look like this now:

Now, we tell Git to track this folder with the init Git command

$ git init

Any folder that is tracked by Git contains a .git subfolder and called a repository.

We now create a new my_first_amazing_file.txt file in this folder and write Hello world! inside

The status command

You should never hesitate to run this command, it gives you the current status of the project.

$ git status

It should look like this:

Here Git says that he noticed that we created a new file, but he placed it under the Untracked files and colored it in red.

The red means that Git does not know what to do with this file, he is waiting for an order from us.

168 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

We have to tell him explicitly to track this file. To do so, we will just follow what he advised us, and use the add
command.

The add command

To put a file under the supervision of Git (to track the file), we use the add command. This has to be done only the first
time we add a file into the folder.

$ git add my_first_amazing_file.txt

Then we do again the status command to see what have changed.

It should look like this:

Now the filename turned green, which means that the file is tracked by Git and ready to be commited.

7.5. Tutorials 169

PyMoDAQ Documentation, Release 4.2.0

The commit command

A commit is a fundamental notion of Git.

A commit is a snapshot of the folder status at a point in time.

It is our responsability to decide when to do a commit.

A commit should be done at every little change we do on our program, after we tested that the result is as we
expected. For example, we should do a commit each time we add a new functionality to our program that is working
properly.

For now, we just have one sentence in the file: “Hello world!”, but that’s a start. Let us do our initial commit with the
following command

$ git commit -am "Initial commit of my amazing project. Add my first amazing file and say
Hello world!"

It should look like this:

After the -am options (which means that we add the files (here we add the file in the commit and not in the tracking
system of Git), and we type the message of our commit just after the command), we put a message to describe what we
have done between parenthesis.

If we now look at the status of our project

Everything is clean. We just did our first commit! :)

The log command

The log command will give us the complete history of the commits since the beginning of the project.

$ git log

It should look like this:

We can see that for each commit we have:

170 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

• An id that has been attributed to the commit, which is the big number in orange.

• The name and email address of the author.

• The date and time of the commit.

• The message that the author has written.

In the following we will use the –oneline option to get the useful information in a more compact way.

$ git log --oneline

It should look like this:

The diff command

The diff command is here to tell us what have changed since our last commit.

Let us now put some interesting content in our file. We will found this in the textart.me website. Let’s choose an animal
and copy paste it into our file. (Textart is the art of drawing something with some keyboard characters. It would be
equivalent to just add a sentence in the file).

Let’s go for the monkey, he is fun!

Let’s not forget to save the file.

What happen if we ask for a difference from Git, with the diff command?

$ git diff

It should look like this:

In green appears what we have added, in red appears what we have removed.

The diff command allows us to check what we have modified. Since we are happy with our last modification, we will
commit our changes.

7.5. Tutorials 171

https://textart.me/#animalsandbirds

PyMoDAQ Documentation, Release 4.2.0

$ git commit -am "The funny monkey has been added."

Let us check what the log says now.

We now have two commits in our history.

The revert command

The revert command is here if we want to come back to a previous state of our folder.

Let’s say that we are not happy with the monkey anymore. We would like to come back to the original state of the file
just before we added the monkey. Since we did the things properly, by commiting at every important point, this is a
child play.

We use the revert command and the commit number that we want to cancel. The commit number is found by using the
log –oneline command. In our case it is 6045fb4.

This command will open Notepad++ (because we configured this editor in the installation section), just close it or
modify the first text line if you want another commit message.

Let’s now see the history

We can see that the revert operation has been written in the history, just as a usual commit.

Let see how it looks like inside our amazing file (it may be needed to close/reopen the file).

The monkey actually disappeared! :O

172 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

7.5. Tutorials 173

PyMoDAQ Documentation, Release 4.2.0

174 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Work with branches

Within a given project, we can define several branches. Each branch will define different evolutions of the project. Git
allows you to easily switch between those different branches, and to work in parallel on different versions of the same
project. It is a central concept of a version control system.

Up to now, we worked on the default branch, which is by convention named main. This branch should be the most
reliable, the most stable. A good practice is to never work directly on the main branch. We actually did not follow
this rule up to now for simplicity. In order to keep the main branch stable, each time we want to modify our project,
we should create a new branch to isolate our future changes, that may lead to break the consistency of the code.

Here is a representation of what is the current status of our project.

Fig. 7.103: We are on the main branch and we did 3 commits. The most recent commit of the branch is also called
HEAD.

We will create a new branch, that we will call develop, with the following command

$ git branch develop

Then, we will switch to this branch, which means that from now on we will work on the develop branch.

$ git switch develop

It should look like this:

Notice that the name of the branch we are working on in displayed by Git Bash under brackets in light blue.

Within this branch, we will be very safe to try any modification of the code we like, because it will be completely
isolated from the main one.

Let say that we now modify our file by adding some new animals (a bird and a mosquito), and commiting at each time.
Here is a representation of the new status of our project.

If we are happy with those two last commits, and we want to include them in the main branch, we will merge the develop
branch into the main one, using the following procedure.

We first have to go back to the main branch. For that, we use

$ git switch main

Then, we tell Git to merge the develop branch into the current one, which is main

$ git merge develop

And we can now delete (with the -d option) the develop branch which is now useless.

$ git branch -d develop

7.5. Tutorials 175

PyMoDAQ Documentation, Release 4.2.0

We end up with a main branch that inherited from the last commits of the former develop one (RIP).

This procedure looks overkill at first sight on such a simple example, but we strongly recommend that you try to stick
with it at the very beginning of your practice with Git. It will make you more familiar with the concept of branch and
force you to code with a precise purpose in mind before doing any modification. Finally, the concept of branch will
become much more powerful when dealing with the remote use of Git.

Local development workflow

To conclude, the local development workflow is as follow:

• Start from a clean repository.

• Create a new branch develop to isolate the development of my new feature from the stable version of the code in
main. Never work directly on the main branch!

• Do modifications in the files.

• Test that the result is as expected.

• Do a commit.

• Repeat the 3 previous steps as much as necessary. Try to decompose as much as possible any modification
into very small ones.

• Once the new feature is fully operational and tested, merge the develop branch into the main one.

Doing a commit is like saving your progression in a video game. It is a checkpoint where you will always be able to
come back to, whatever you do after.

Once you will be more familiar with Git, you will feel very safe to test any crazy modification of your code!

Remote use of Git: GitHub

GitHub is a free cloud service that allows anyone to have Git repositories on distant servers. Such services allow
their users to easily share their source code. They are an essential actors for the open-source development. You can find
on GitHub such projects as the Linux kernel, the software that runs Wikipedia. . . and last but not least: PyMoDAQ!

Other solutions exist such as GitLab.

176 Chapter 7. Changelog

https://github.com/
https://github.com/torvalds/linux
https://github.com/wikimedia/mediawiki
https://github.com/pymodaq/pymodaq
https://about.gitlab.com/fr-fr/

PyMoDAQ Documentation, Release 4.2.0

Create an account

First, we will need to create a personal account on GitHub. Please refer to the following tutorial to do so:

Create an account & raise an issue on GitHub

Create a remote repository

Once our profile is created, we go to the top right of the screen and click on the icon representing our profile.

Let’s create a remote repository.

Let’s call it monkey_repository and click on Create repository.

Note: Note that we can create a public or a private repository. If we want the other users of GitHub to have access to
the code that we will put in this repository, we will make it public. Otherwise we will make it private.

Let’s stop here for a bit of vocabulary:

• Our local repository is the local folder that we created and configured to be followed by Git. Here it is our
MyLocalRepository folder, that is stored on our local machine.

• We call remote repository the one that we just created. Its name is monkey_repository and its Git address is
https://github.com/Fakegithubaccountt/monkey_repository.git.

• When we will talk about pushing, we will mean that we upload the state of our local repository to the remote
repository.

7.5. Tutorials 177

PyMoDAQ Documentation, Release 4.2.0

178 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

• When we will talk about cloning, we will mean that we downloaded the state of the remote repository to a local
repository.

All this is summed up in the following schematic.

Authentication to GitHub with an SSH key

To get authorized by GitHub to interact with our remote repository, we will need to authenticate to it. Hopefully, it
will not let anyone push what he wants on this repository! We have to prove him that we own the repository. The
authentication is a bit more complicated than using a password, we will use the SSH protocol. No worries, everything
is explained step by step in the following tutorial:

Authenticate to GitHub with an SSH key

Push our local repository to GitHub

We started this tutorial from a local folder, and then created a remote repository on our GitHub account. For now the
latter is empty. What we will do now is to push the content of our local repository to our remote repository.

Note: Note that it is not obvious that we will always work this way. Most of the time, we will start by cloning a remote
repository to our local machine.

With the following command, we tell Git that our local repository (the folder where we are executing the command)
from now on will be connected to the remote repository that we just created on GitHub. The latter is called origin by
default. Be careful to be at the root of our local repository to execute the following command:

$ git remote add origin <the Git address of our remote repository>

Note: The Git address of a repository follows the naming convention
https://github.com/GitHub_username/repository_name.git

With the next command, we will check that everything is as expected. We call for information about the remote
repository.

$ git remote -v

7.5. Tutorials 179

PyMoDAQ Documentation, Release 4.2.0

It should look like this:

This is all good. The first line, ending with fetch, means that when we will ask to update our local repository (with a
pull command, we will see that latter), it will call the origin repository. The second line, ending with push, means that
when we will ask to update the remote repository with the work we have done locally, it will go to origin.

Let us try to push our repository!

$ git push -u origin main

Note: Notice that when we push, we push a specific branch, which is main here.

It should look like this:

Our file is online!

But it is not like we just store a file on a server, we also have access to all the history of the commits.

180 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Here they are.

Let’s click on the second commit The funny monkey has been added.

Here he is!

We see that the GitHub website provides an equivalent to what we see in the terminal. The advantage is that now we
can access it from any computer connected to internet!

Finally, the development workflow is as follow:

• Do modifications in the file on our local repository.

• Test that the result is as expected.

7.5. Tutorials 181

PyMoDAQ Documentation, Release 4.2.0

• Do a commit.

• We can repeat the previous steps several times.

• At the end of the day, we push all our commits to our remote repository.

Now, our remote repository should always be our reference, and not our local version anymore!

The lastest version of our code must be stored on the server, not locally. Once our push is done, we can safely delete
our local folder. We will be able to get our code back at the latest version at any time from any computer, thanks to the
clone command.

If you have further questions about the management of remote repositories, you can refer to this documentation:

Managing remote repositories (github.com)

The clone command

Ok so let’s do it, let’s delete our local folder MyLocalRepository. We will convince ourself that we can easily find it
back.

Since our work is now stored on a GitHub server, it is not a problem even if our computer goes up in smoke. We can
get it back with the clone command.

First, copy the Git adress of the repository

Then, at our home location, we execute the command

$ git clone <the Git address of our remote repository>

182 Chapter 7. Changelog

https://docs.github.com/en/get-started/getting-started-with-git/managing-remote-repositories?platform=windows

PyMoDAQ Documentation, Release 4.2.0

7.5. Tutorials 183

PyMoDAQ Documentation, Release 4.2.0

We found our work back!

Note: Notice that by default, the clone command will create a folder with the same name as the remote repository, but
this is not mandatory. If you want another name for your local repository you can use $ git clone <repository
url> <your folder name>.

Notice that when we clone a repository, we do not need anymore the init command. We do not need either to configure
the address of the remote repository, Git already knows where to took it from.

We can follow this procedure for any public repository on GitHub, which allows us to download basically all the open-
source codes in the world!

Git in practice: integration within PyCharm

We now master the basics of using Git with the command line (CLI), and it is like this that we get the best control of
Git. But we should know that there are several graphical user interfaces (GUI) that can ease the use of Git in the daily
life, such as GitHub Desktop if we are working with Windows.

However, we will rather recommand to use the direct integration within your favorite Python IDE, because it does not
require to download another software, and because it is cross platform. We will present the practical use of Git with
PyCharm. The Community Edition is free of charge and has all the functionalities that we need.

Link our GitHub account to PyCharm

As a first step, we should autorize PyCharm to connect to our GitHub account. We recommand to use a token. This
way we will not have to enter a password each time PyCharm needs to connect to GitHub. The procedure is described
in the following documentations:

PyCharm & GitHub (jetbrains.com)

PyCharm Integration with GitHub (medium.com)

Note: It seems like SSH connection is only for the Professional version of PyCharm, which is charged.

Clone a project

We first clone the monkey_repository from our GitHub account. Go to Git > Clone. . . , select the remote repository and
a local folder where the files will be saved (it does not matter where we decide to save locally the repository).

Configure our Python environment

Once the remote repository has been cloned, we have to configure our environment. Go to File > Settings. . . and select
an existing Conda environment (here it is called pmd4).

Note: Documentation about setting up a new Python environment can be found here: PyMoDAQ installation.

184 Chapter 7. Changelog

https://docs.github.com/en/desktop/installing-and-authenticating-to-github-desktop/installing-github-desktop
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/help/pycharm/github.html#9c1dc6ec
https://medium.com/@akshay.sinha/pycharm-integration-with-github-876510c6ca1f

PyMoDAQ Documentation, Release 4.2.0

7.5. Tutorials 185

PyMoDAQ Documentation, Release 4.2.0

Create a new branch

Here are the main important places on the PyCharm interface to manage Git.

We will follow our best practices and create a new local branch before modifying the files in the repository. To do so
we click on the Git branch button (see screenshot above) and create a new branch that we call develop.

Diff, commit and push

Let’s now add a bird in the file.

Then go to Git > Commit. . . It will open a window that allows us to easily see the files that have been modified. If we
right click on my_new_file.md and select Show diff, we will see the difference between the two versions of the file, just
as with the command line, but with a more evolved interface.

If we are happy with that, we can close this window and Commit & Push our changes with the corresponding button.

186 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Add a file

Adding a file is also very easy since you just have to Paste it in the right folder within the Project panel of PyCharm:
right click on the corresponding folder and select Paste or New file if you start from an empty one.

It will automatically ask us if we want Git to track the new file.

Log

If we open the Git bottom panel we can have information about the local and remote branches, and the history of the
commits.

Conclusion

We now master the basics of the worldwide standard for code development! Following those guidelines, we will code
more efficiently. Git is appropriate for any (descent) language (not Word or Labview!). It is an indispensable tool if we
want to share our code with colleagues and not reinvent the wheel. Git is one of the reasons why we will make better
acquisition programs with PyMoDAQ than with Labview ;)

If you want to go further and learn how to contribute to any external open-source code, we invite you to pursue with
the tutorial

How to contribute to PyMoDAQ’s code?

Finally, here are a few external ressources:

The YouTube channel of Grafikart (in French)

7.5. Tutorials 187

https://www.youtube.com/watch?v=rP3T0Ee6pLU&list=PLjwdMgw5TTLXuY5i7RW0QqGdW0NZntqiP&index=2

PyMoDAQ Documentation, Release 4.2.0

188 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

The course of OpenClassroom (in English)

The Pro Git book (in English). Exhaustive and painful. You will probably not need it!

If you have any remarks regarding this tutorial, please do not hesitate to raise an issue or write an email to the author.

Author email david.bresteau@cea.fr
Last update december 2023
Difficulty Intermediate

Authenticate to GitHub with an SSH key

In general, when we need to authenticate to a website, we will provide a password. Since quite recently, it is not possible
to make our local Git connect to GitHub with a password. It is now mandatory to connect with the SSH protocol for
security reasons. We thus have to follow this quite obscure procedure (it is not so bad!). After overcoming this little
difficulty, the reward will be that we will not have to enter any password anymore to interact with GitHub!

Prerequisite

To follow this tutorial, you should already have a GitHub account and Git installed on your local machine. If it is not
the case, please start with the following tutorials:

Create an account & raise an issue on GitHub

Basics of Git and GitHub

What is SSH?

SSH, for Secure SHell, is a protocol that permits to connect to distant servers safely. Underlying it uses public-key
cryptography to implement a secure connection between our local machine (the client) and GitHub (the server). Each
of the two parts will have a public and a private key. Those keys are basically big numbers stored in files.

If you want to know more about SSH, you can read this documentation: About SSH (GitHub)

How to make a secure connection with SSH?

Let’s take a big breath, we do not need to know what is happening in details! We will just follow blindly the procedure
that is proposed by GitHub. Basically there are 3 steps:

• We have to generate our private and public SSH keys (our SSH key pair). Our private key will be kept on our
local machine.

• We then have to add our private key to the ssh-agent. Whatever the ssh-agent is. . . let say it means that we tell
SSH to take this new private key into account and manage it.

7.5. Tutorials 189

https://openclassrooms.com/en/courses/7476131-manage-your-code-project-with-git-and-github
https://git-scm.com/book/en/v2
mailto:david.bresteau@cea.fr
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/about-ssh

PyMoDAQ Documentation, Release 4.2.0

• Finally, we will have to add our public key to our GitHub account.

Let’s go!

Generate our SSH key pair

Let’s open a Git Bash terminal.

Note: If you are working with Windows, Git Bash should be installed on your machine. If it is not the case, follow
the procedure that is described in the tutorial Basics of Git and GitHub. If you are working with Ubuntu, just use a
standard terminal.

Copy-paste the following command that will generate our key pair. We should replace the email address by the one
that is linked to our GitHub account.

$ ssh-keygen -t ed25519 -C "your_email@example.com"

Press Enter to every question that is prompted.

We now have several files that are stored in a .ssh folder that have been created at our home (C:\Users\dbrestea). If you
do not see the .ssh directory maybe you need a Ctrl + H to show the hidden folders.

The id_ed25519.pub file contains our public key. The id_ed25519 file contains our private key. We should never reveal
the content of the latter, it must stay only on our local machine.

Add our private key to the ssh-agent

Now that we have our key pair, we must tell SSH to manage this key, using the following command

$ ssh-add ~/.ssh/id_ed25519

190 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Add our public key to our GitHub account

We will now copy the content of our public key with the following command, which is equivalent to opening the file
and copying its content to the clipboard

$ clip < ~/.ssh/id_ed25519.pub

Note: Notice that we use the public key here by taking the file with the .pub extension.

We now have to paste it in our GitHub settings.

And paste the key in the form

Finally, press the Add SSH key button. We are done ;)

This section has been inspired by those documentations:

7.5. Tutorials 191

PyMoDAQ Documentation, Release 4.2.0

192 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Generating a new SSH key and adding it to the ssh-agent (GitHub)

Adding a new SSH key to your GitHub account (GitHub)

Concluding remarks

We are now ready to easily and safely interact with our remote repositories on GitHub!

Note that this procedure must be done again each time you want to interact with your GitHub repositories with a different
machine.

If you have any remarks regarding this tutorial please do not hesitate to raise an issue or write an email to the author.

7.5.2 How to modify existing PyMoDAQ’s code?

Author email david.bresteau@cea.fr romain.geneaux@cea.fr
Last update january 2024
Difficulty Intermediate

In this tutorial, we will learn how to propose a modification of the code of PyMoDAQ. By doing so, you will learn how
to contribute to any open-source project!

Prerequisite

We will suppose that you have followed the tutorial

Basics of Git and GitHub

In the latter, we presented how to deal with the interaction of a local repository with a remote repository. Up to now
we just worked on our own. In the following we will learn how to contribute to an external project like PyMoDAQ!

The PyMoDAQ repositories

Let’s now go to the PyMoDAQ GitHub account.

There are a lot of repositories, most of them correspond to Python packages. Briefly, there is:

• The PyMoDAQ repository: this is the core of the code, you cannot run PyMoDAQ without it.

• The plugins’ repositories: those repositories follow the naming convention pymodaq_plugins_<name>. Most of
the time, <name> corresponds to the name of an instrument supplier, like Thorlabs. Those are optional pieces
of code. They will be useful depending on the instruments the final user wants to control.

7.5. Tutorials 193

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=windows
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account
mailto:david.bresteau@cea.fr
mailto:romain.geneaux@cea.fr
https://github.com/PyMoDAQ
https://github.com/PyMoDAQ/PyMoDAQ

PyMoDAQ Documentation, Release 4.2.0

194 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

PyMoDAQ branches

Let’s go to the PyMoDAQ repository.

Note: Be careful not to confuse the PyMoDAQ GitHub account and the repository.

There are several branches of the PyMoDAQ repository. Branches are used to prepare future releases, to develop new
features or to patch bugs, without risking modifying the stable version of the code. The full branch structure is described
at length in the Developer’s guide. For our purposes here, let us just mention the two most important branches:

• the stable branch. It is the present state of the code. When you install PyMoDAQ with pip, it is this version of
the code that is downloaded.

• The development branch. It is ahead of the main branch, in the sense that it contains more recent commits
than the main branch. It is thus the future state of the code. This is where the last developments of the code of
PyMoDAQ are pushed. When the developers are happy with the state of this branch, typically when they finished
to develop a new functionality and they tested it, they will merge the develop branch into the main branch, which
will lead to a new release of PyMoDAQ.

7.5. Tutorials 195

https://github.com/PyMoDAQ/PyMoDAQ

PyMoDAQ Documentation, Release 4.2.0

How to propose a modification of the code of PyMoDAQ?

Compared to the situation in the Basics of Git and GitHub tutorial, where we had to deal with our local repository
and our remote repository, we now have to deal with an external repository on which we have no right. This external
repository, which in our example is the PyMoDAQ one, is called the upstream repository. The workflow is represented
the schematic below and we will detail each step in the following.

(1) Fork the upstream repository

Note: In the screenshots below, the stable and development branches are called main and pymodaq-dev. This naming
scheme is now deprecated. Branch names now correspond to the current PyMoDAQ versions. For instance, if the
current stable version is 5.6.2, the stable branch will be called 5.6.x and the development branch will be called 5.7.x_dev.

While we are connected to our GitHub account, let’s go to the PyMoDAQ repository and select the pymodaq-dev
branch. Then we click on the Fork button.

This will create a copy of the PyMoDAQ repository on our personal account, it then become our remote repository and
we have every right on it.

Every modification of the code of PyMoDAQ should first go to the pymodaq-dev branch, and not on the main
branch. The proper way to propose our contribution is that we create a branch from the pymodaq-dev branch, so that
it will ease the integration of our commits and isolate our work from other contributions.

We create a branch monkey-branch from the pymodaq-dev branch.

(2) Clone our new remote repository locally

We will now clone our remote repository locally.

Open PyCharm. Go to Git > Clone. . . and select the PyMoDAQ repository, which correspond to our recent fork.

Note: Here we put the local repository inside a PyCharmProject folder and called it PyMoDAQ, but you can change
those names if you wish.

We configure PyCharm so that we have the good Python interpreter and we choose the monkey_branch of our remote
repository.

196 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

7.5. Tutorials 197

PyMoDAQ Documentation, Release 4.2.0

198 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

7.5. Tutorials 199

PyMoDAQ Documentation, Release 4.2.0

(3) Do modifications and push

We now have the PyMoDAQ code on our local machine. We will put the monkey into the README.rst file at the root
of the PyMoDAQ package. This file is the one that is displayed at the home page of a GitHub repository.

We can now go to Git > Commit. . . , right click on the file and Show Diff.

If we are happy with our modifications, let’s add a commit message and click Commit and Push.

This is the result on our remote repository.

We will now propose this modification, so that the monkey would appear at the front page of the PyMoDAQ repository!

(4) Pull request (PR) to the upstream repository

We can be very proud of our modification, but of course, this will not be implemented directly, we will need the
agreement of the owner of the PyMoDAQ repository.

Opening a pull request is proposing a modification of the code to the owner of the upstream repository.

This can be done through the GitHub website, at the location of our repository. Either click to Compare & pull request
or to the Pull requests tab and New pull request.

Be careful to properly select the branch of our repository and the branch of the upstream repository, and then Send.

That’s it! We now have to wait for the answer of the owner of the upstream repository. Let’s hope he will appreciate
our work! We can see the status of our PR on the PyMoDAQ repository home page, by clicking on the Pull requests
tab. There a discussion will be opened with the owner of the repository.

200 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

7.5. Tutorials 201

PyMoDAQ Documentation, Release 4.2.0

202 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

7.5. Tutorials 203

PyMoDAQ Documentation, Release 4.2.0

204 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Note that opening a PR does not prevent us from working on our remote repository anymore, while waiting for the
answer of the owner of the upstream repository. If we continue to commit some changes to the branch that we used for
our PR (the monkey_branch here), the PR will be automatically updated, and the new commits will be considered as
part of the PR. If we want to pursue the work but not put the following commits in the PR, we can start a new branch
from the monkey_branch.

7.5.3 How to create a new plugin/package for PyMoDAQ?

Author email sebastien.weber@cemes.fr
Last update january 2024
Difficulty Intermediate

In this tutorial, we will learn how to create a brand new plugin either for adding instruments, models or extensions!

Prerequisite

We will suppose that you have followed these tutorials:

• Basics of Git and GitHub

• How to modify existing PyMoDAQ’s code?

In the latter, we presented how to interact with existing repositories but what if:

• you have an instrument from a manufacturer that doesn’t have yet its package!

• you want to build a brand new extension to the DashBoard!

No worries, you don’t have to start from scratch, but from a fairly complete template package!

The PyMoDAQ’s plugin template repository

Among all the PyMoDAQ related github repository, there is one that is not a real one. This is the py-
modaq_plugins_template (see Fig. 7.104)

Fig. 7.104: The Template repository to create new plugin packages!

You see that on this repository home page, a new green button Use this template appeared (red box on figure). By
clicking on it, you’ll be prompted to create a new repository. In the next page, you’ll be prompted to enter a owner and
a name for the repo, see Fig. 7.105:

7.5. Tutorials 205

mailto:sebastien.weber@cemes.fr
https://github.com/PyMoDAQ/pymodaq_plugins_template
https://github.com/PyMoDAQ/pymodaq_plugins_template

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.105: The creation page of the new plugin repository

206 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

In there, you can choose as a owner either yourself or the PyMoDAQ organisation if you’re already part of it. If not
but you are willing, just send an email to the mailing list asking for it and you’ll be added and set as the manager of
your future new plugin package. The name of the plugin as to follow the rule: pymodaq_plugins_<my_repo_name>
where you have to replace <my_repo_name> by the name of the manufacturer if you’re planning to add instruments or
a clear name for your application/extension. . . Make it Public because we want to share our work within the PyMoDAQ
community!

That’s it, your new github repo compatible with PyMoDAQ is created. You now have to properly configure it!

Configuring a new plugin repository

For a correct configuration (for your plugin be installable and recognised by PyMoDAQ), you’ll have to modify a few
files and folders. Fig. 7.106 highlight the package initial structure. You’ll have to:

• rename with the new package name the two directories in highlighted red

• fill in the appropriate information in plugin_info.toml and README.rst files, highlighted in green

• rename the python instrument file, highlighted in purple with the dedicated instrument name (see Story of an
instrument plugin development for details on instrument, python file and class name convention).

• add appropriate default settings in the config_template.toml file (do not rename it) in the resources folder,

• remove the unused instrument example files of the template repository in the daq_move_plugins and
daq_viewer_plugins subfolders.

• Modify and configure the automatic publication of your package on the Pypi server (see Publishing on Pypi)

Publishing on Pypi

In the Python ecosystem, we often install packages using the pip application. But what happens when we execute pip
install mypackage? Well pip is actually looking on a web server for the existence of such a package, then download it
and install it. This server is the Pypi Python Package Index

Developers who wish to share their package with others can therefore upload their package there as it is so easy to
install it using pip. To do that you will need to create an account on Pypi:

Note: Until recently (late 2023) only a user name and password were needed to create the account and upload packages.
Now the account creation requires double identification (can use an authentication app on your mobile or a token). The
configuration of the Github action for automatic publication requires also modifications. . . See below.

You have to configure an API token with your pypi account. This token will allow you to create new package on your
account, see API Token for more in depth explanation. This pypi package initial creation and later on subsequent
versions upload may be directly triggered from Github using one of the configured Actions. An action will trigger
some process execution on a distant server using the most recent code on your repository. The actions can be triggered
on certain events. For instance, everytime a commit is made, an action is triggered that will run the tests suite and
let developers know of possible issues. Another action is triggered when a release is created on github. This action
will build the new version of the package (the released one) and upload the new version of the code on pypi. However
your github account (at least the one that is the owner of the repository) should configure what Github call Secrets.
Originally they were the pypi user name and password. Now they should be the __token__ string as username and
the API token generated on your pypi account as the password. The yaml file corresponding to this action is called
python-publish.yml stored in the .github folder at the root of your package. The content looks like this:

7.5. Tutorials 207

https://pypi.org/
https://pypi.org/help/#apitoken

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.106: The template package initial structure

Fig. 7.107: Creation of an account on Pypi

208 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

name: Upload Python Package

on:
release:
types: [created]

jobs:
deploy:

runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v2
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: '3.11'

- name: Install dependencies
run: |

python -m pip install --upgrade pip
pip install setuptools wheel twine toml "pymodaq>=4.1.0" pyqt5

- name: create local pymodaq folder and setting permissions
run: |

sudo mkdir /etc/.pymodaq
sudo chmod uo+rw /etc/.pymodaq

- name: Build and publish
env:
TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}

run: |
python setup.py sdist bdist_wheel
twine upload dist/*

were different jobs, steps and actions (run) are defined, like:

• execute all this on a ubuntu virtual machine (could be windows, macOS. . .)

• Set up Python: configure the virtual machine to use python 3.11

• Install dependencies: all the python packages necessary to build our package

• create local pymodaq folder and setting permissions: make sure pymodaq can work

• Build and publish: the actual thing we are interested in, building the application from the setup.py file and
uploading it on pypi using the twine application

For this last step, some environment variable have been created from github secrets. Those are the __token__ string
and the API token. We therefore have to create those secrets on github. For this, you’ll go in the settings tab (see Fig.
7.108) to create secrets either on the organization level or repository level (see PyMoDAQ example on the organisation
level, Fig. 7.109).

That’s it you should have a fully configured PyMoDAQ’s plugin package!! You now just need to code your actual
instrument or extension, for this look at Story of an instrument plugin development

7.5. Tutorials 209

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.108: Settings button on github

Fig. 7.109: Secrets creation on Github

210 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Note: Starting with PyMoDAQ version 4.1.0 onwards, old github actions for publication and suite testing should be
updated in the plugin packages. So if you are a package maintainer, please do so using the files from the template
repository.

7.5.4 Story of an instrument plugin development

In this tutorial, we will explain step by step the way to develop an instrument plugin. It is a specific type of plugin, that
will allow you to control your device through PyMoDAQ.

As PyMoDAQ is not a library for professional developers, we consider that you reader do not know anything about
how the development of an open source project works. We will take the time to start from scratch, and allow us to
expand the scope of this documentation out of PyMoDAQ itself, to introduce Python environment, Git, external python
libraries. . .

Rather than looking for a general and exhaustive documentation, we will illustrate the development flow with a precise
example. We will go step by step through the development of the PI E-870 controller instrument plugin: from the
reception of the device up to controlling it with PyMoDAQ. This one is chosen to be quite simple and standard. This
controller can be used for example to control PiezoMike actuators, as illustrated below.

Fig. 7.110: The PI E-870 controller and PiezoMike actuators mounted on an optical mount.

The benefit of writing an instrument plugin is twofold:

• Firstly, you will learn a lot about coding, and coding the good way! Using the most efficient tools that are used
by professional developpers. We will introduce how to use Python editors, linters, code-versioning, testing,
publication, bug reporting, how to integrate open-source external libraries in your code. . . so that in the end you
have a good understanding of how to develop a code in a collaborative way.

• Secondly, writing an instrument plugin is a great opportunity to dig into the understanding of your hardware:
what are the physical principles that make my instrument working? How to fully benefit of all its functionalities?
What are the different communication layers between my device and my Python script?

Writing an instrument plugin is very instructive, and perfectly matches a student project.

7.5. Tutorials 211

PyMoDAQ Documentation, Release 4.2.0

The controller manual

Let’s not be too impatient and take the time to read the controller manual, in the introduction we can read

“the E-870 is intended for open-loop operation of PIShift piezo inertia drives.” (page 3)

Ok but what is this PIShift thing? It is quite easy to find those videos that make you understand in a few tens of seconds
the operating principle of the actuator:

PIShift drive principle

PiezoMike linear actuator

Nice! :)

What is open-loop operation? It means the system has no reading of the actuator position, as opposed to a close-loop
operation. The open-loop operation is simpler and cheaper, because it does not require any encoder or limit switch, but
it means that you will have no absolute reference of your axis, and less precision. This is an important choice when you
buy an actuator, and it depends on your application. This will have big impact on our instrument plugin development.

“The E-870 supports one PIShift channel. The piezo voltage of the PIShift channel can be transferred to one of two
(E-870.2G) or four (E-870.4G) demultiplexer channels, depending on the model. Up to two or four PIShift drives can
be controlled serially in this manner.” (page 19)

Here we learn that in this controller, there is actually only one channel followed by a demultiplexer that will distribute
the amplified current to the addressed axis. This means that only one axis can be moved at a time, the drives can only
be controlled serially. This also depends on your hardware, and is an important information for the instrument plugin
development.

The installer

It is important to notice that PyMoDAQ itself does not necessarily provide all the software needed to control your
device. Most of the time, you have to install drivers, which are pieces of software, specific to each device, that are
indispensable to establish the communication between your device and the operating system. Those are necessarily
provided by the manufacturer. The ones you will install can depend on your operating system, and also on the way your
establish the communication between them. Most of the time, you will install the USB driver for example, but this is
probably useless if you communicate through Ethernet.

Let’s now run the installer provided in the CD that comes with the controller. The filename is PI_E-870.CD_Setup.exe.
It is an executable file, which means that it hosts a program.

Fig. 7.111: The GUI of the installer.

On the capture on the right, you can see what it will install on your local computer, in particular:

• Documentation.

• A graphical user interface (GUI) to control the instrument, called the PI E870Control.

• Labview drivers: we will NOT need that! ;)

• A DLL library: PI GCS DLL. We will talk about that below.

• Some programming examples to illustrate how to communicate with the instrument depending on the program-
ming language you use.

• USB drivers.

Whatever the way you want to communicate with your device, you will need the drivers. Thus, again, you need to
install them before using PyMoDAQ.

212 Chapter 7. Changelog

https://github.com/quantumm/pymodaq_plugins_physik_instrumente/blob/E-870/docs/E870/PI_E870_controller_user_manual.pdf
https://www.youtube.com/watch?v=mAiQsfmpYbI
https://www.youtube.com/watch?v=oVRv9fcx6AI

PyMoDAQ Documentation, Release 4.2.0

Once those are installed, plug the controller with a USB cable, and go to the Device settings of Windows. An icon
should appear like in the following figure. It is the first thing to check when you are not sure about the communication
with your device. If this icon does not appear or there is a warning sign, change the cable or reinstall the drivers, no
need to go further. You can also get some information about the driver.

Fig. 7.112: The Device settings window on Windows.

In the following, we will follow different routes, as illustrated in the following figure to progressively achieve the
complete control of our actuator with PyMoDAQ. In the following we will name them after the color on the figure.

Fig. 7.113: The different routes (blue, gold, green) to establish the communication between the computer and the
controller.

The blue route: use the manufacturer GUI

The simplest way to control your device is to use the GUI software that is provided by the manufacturer. It is usefull
while you are under development, but will be useless once you have developped your plugin. PyMoDAQ will replace
it, and even provide much broader functionalities. While a specific manufacturer GUI talks to only one specific device,
PyMoDAQ provides to you a common framework to talk to many different instruments, synchronize them, save the
acquisitions, and many more!

In the main tab, we found the buttons to send relative move orders, change the number of steps, change the controlled
axis (in this example we can control 4 axis). Check all that works properly.

The second tab goes to a lower level. It allows us to directly send commands from the PI GCS library. We will see that
below.

Whenever you want to control a device with PyMoDAQ for the first time, even if you do not develop a plugin, you
should first check that the manufacturer software is able to control your device. It is a prerequisite before using

7.5. Tutorials 213

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.114: Captures of the GUI provided by PI. Left: Interface to move the actuators and change the axis. Right:
Interface to send GCS commands (see below).

PyMoDAQ. By doing so we already checked a lot of things:

• The drivers are correctly installed.

• The communication with the controller is OK.

• The actuators are moving properly.

We are now ready for the serious part!

A shortcut through an existing green route? Readily available PyMoDAQ instrument plugins

Before dedicating hours of work to develop your own solution, we should check what has already been done. If we are
lucky, some good fellow would already have developped the instrument plugin for our controller!

Here is the list of readily available plugins.

Each plugin is a Python package, and also a Git repository (we will talk about that later).

By convention, an instrument plugin can be used to control several devices, but only if they are from the same
manufacturer. Those several hardwares can be actuators or detectors of different dimensionalities. The naming
convention for an instrument plugin is

pymodaq-plugins-<manufacturer name>

Note: Notice the “s” at the end of “plugins”.

Note: Any kind of plugin should follow the naming convention pymodaq-plugins-<something more specific>, but
an instrument plugin is a specific kind of plugin. For (an advanced) example, imagine that we create a beam pointing
stabilization plugin, and that this system uses devices from different companies. We could have an actuator class
that controls a SmarAct optical mount, a detector class that control a Thorlabs camera, and a PID model specifically
designed for our needs. In that case we could use the name pymodaq-plugins-beam-stabilization.

All the plugins that are listed there can directly be installed with the plugin manager.

Some of those - let say the official ones - are hosted by the PyMoDAQ organization on GitHub, but they can also
be hosted by other organizations. For example, the repository pymodaq-plugins-greateyes is hosted by the ATTOLab
organization, but you can directly install it with the plugin manager.

Remember that the already developed plugins will give you a lot of working examples, probably the way you will
develop your own plugin will be very similar to one that already exist.

It sounds like we are very lucky. . . the PI plugin already exists!

Let’s try it!

Firstly, we have to install PyMoDAQ in a dedicated Python environment, that we will call pmd_dev in this tutorial.

Now that PyMoDAQ is installed and you have activated your environment (the lign of your terminal should start with
(pmd_dev)), we will try to install the PIinstrument plugin with the plugin manager. In your terminal, execute the
following command

214 Chapter 7. Changelog

https://github.com/CEMES-CNRS/pymodaq_plugin_manager/blob/main/doc/PluginList.md
https://github.com/PyMoDAQ
https://pypi.org/project/pymodaq-plugins-greateyes

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.115: The PyPI page of the greateyes plugin. If you click on Homepage you will find the Git repository page.

Fig. 7.116: There is already a PI plugin in the list of available plugins.

7.5. Tutorials 215

PyMoDAQ Documentation, Release 4.2.0

(pmd_dev) >plugin_manager

This will pop-up a window like this, select the plugin we are interested in and click Install

Fig. 7.117: Interface of the plugin manager.

Now let’s launch a DAQ_Move

(pmd_dev) >daq_move

Fig. 7.118: DAQ Move interface.

(1) The list of available actuator contains the PI one, that sounds good!

(2) Let select the USB connection type.

(3) The list of available devices contains our controller with his serial number! That sounds really good because it
means that the program can see the controller!

(4) Let’s launch the initialization! Damn. The LED stays red! Something went wrong. . .

In a perfect world this should work, since we followed the proper way. But PyMoDAQ is a project under development,
and some bugs may appear. Let’s not be discouraged! Actually we should be happy to have found this bug, otherwise
we would not have the opportunity to explain how to face it.

What do we do now?

First, let’s try to get more information about this bug. PyMoDAQ automatically feeds a log file, let’s see what it has to
tell us. You can find it on your computer at the location

<OS username>/.pymodaq/log/pymodaq.log

or you can open it through the Dashboard menu :

File > Show log file

It looks like this

Fig. 7.119: The log file of PyMoDAQ after trying to initialize the plugin.

This log file contains a lot of information that is written during the execution of PyMoDAQ. It is sorted in chronological
order. If you find a bug, the first thing to do is thus to go at the end of this file.

In the above capture, we see that the first line indicates the moment we clicked on the Initialization button of the
interface.

In the following we see that an error appeared: Unknown command (2). The least we can say is that it is not crystal
clear to deduce the error from this!

At this point, we will not escape from digging into the code. If you do not feel like it, there is a last but very important
thing that you can do, which is to report the bug. Try to detail as much as possible every step of your problem, and
copy paste the part of the log file that is important. Even if you do not provide any solution, this reporting will be a
usefull step to make PyMoDAQ better.

You dispose of several ways to do so.

216 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

(1) Leave a message in the PyMoDAQ mailing list pymodaq@services.cnrs.fr.

(2) Leave a message to the developper of the plugin.

(3) Raise an issue on the GitHub repository associated to the plugin (you need to create an account, which is free).
This last option is the most efficient because it targets precisely the code that raises a problem. Plus it will stay
archived and visible to anyone that would face the same problem in the future.

Fig. 7.120: How to raise an issue on a GitHub repository.

Now we have gone as far as possible we could go without digging into the code, but if you are keen on it, let’s continue
on the gold route (Fig. 7.113)!

The gold route: control your device with a Python script

We are now ready to tackle the core of this tutorial, and learn how to write a Python code to move our actuator. Let’s
first introduce some important concepts.

What is a DLL?

As you may have noticed, the installer saved locally a file called PI_GCS2_DLL.dll.

The .dll file is a library that contains functions that are written in C++. It is an API between the controller and a
computer application like PyMoDAQ or the PI GUI. It is made so that the person that intends to communicate with the
controller is forced to do it the proper way (defined by the manufacturer’s developers). You cannot see the content of
this file, but it is always provided with a documentation.

If you want to know more about DLLs, have a look at the Microsoft documentation.

Note: We suppose in this documentation that you use a Windows operating system, because it is the vast majority
of the cases, but PyMoDAQ is also compatible with Linux operating systems. If you wish to control a device with a
Linux system, you have to be careful during your purchase that your manufacturer provides Linux drivers, which is
unfortunately not always the case. The equivalent of the .dll format for a Linux operating system is a .so file. PI provide
such file, which is great! The development of Linux-compatible plugins will be the topic of another tutorial.

The whole thing of the gold route is to find how to talk to the DLL through Python.

In our example, PI developped a DLL library that is common to a lot of its controllers, called the GCS 2.0 library (it is
the 2.0 version that is adapted to our controller). The associated documentation is quite impressive at first sight: 100+
(harsh!) pages.

This documentation is supposed to be exhaustive about all the functions that are provided by the library to communicate
with a lot of controllers from PI. Fortunately, we will only need very few of them. The challenge here is to pick up the
good information there. This is probably the most difficult part of an instrument plugin development. This is mostly
due to the fact that there is no standardization of the way the library is written. Thus the route we will follow here
will probably not be exactly the same for another device. Here we also depend a lot on the quality of the work of the
developers of the library. If the documentation is shitty, that could be a nightmare.

Note: Our example deals with a C++ DLL, but there are other ways to communicate with a device: ASCII commands,
.NET libraries (using pythonnet). . .

7.5. Tutorials 217

mailto:pymodaq@services.cnrs.fr
https://en.wikipedia.org/wiki/API
https://learn.microsoft.com/en-us/troubleshoot/windows-client/deployment/dynamic-link-library
https://github.com/quantumm/pymodaq_plugins_physik_instrumente/blob/E-870/docs/E870/PI_GCS_2_0_DLL_SM151E220.pdf
https://pypi.org/project/pythonnet/

PyMoDAQ Documentation, Release 4.2.0

What is a Python wrapper?

As we have said in the previous section, the DLL is written in C++. We thus have a problem because we talk the
Python! A Python wrapper is a library that defines Python functions to call the DLL.

PIPython wrapper

Now that we introduced the concepts of DLL and Python wrapper, let’s continue with the same philosophy. We want
to be efficient. We want to go straight to the point and code as little as possible. We are probably not the first ones to
want to control our PI actuator with a Python script! Asking a search engine about “physik instrumente python”, we
directly end up to the PI Python wrapper called PIPython.

Fig. 7.121: The PIPython repository on GitHub.

We can now understand a bit better the error given in the PyMoDAQ log earlier. It actually refers to the pipython
package. This is because the PI plugin that we tested actually uses this library.

Note: All the Python packages of your environment are stored in the site-packages folder. In our case the complete
path is C:\Users\<OS username>\Anaconda3\envs\pmd_dev\Lib\site-packages. Be careful to not end up in the base
environment of Anaconda, which is located at C:\Users\<OS username>\Anaconda3\Lib\site-packages.

That’s great news! The PI developpers did a great job, and this will save us a lot of time. Unfortunately, this is not
always the case. There are still some less serious suppliers that do not provide an open-source Python wrapper. You
should consider this as a serious argument before you buy your lab equipment, as it can save you a lot of time and

218 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

struggle. Doing so, you will put some pressure on the suppliers to develop Python open-source code, so that we can
free our lab instruments!

External open-source libraries

In our example, our supplier is serious. Probably the wrapper it developped will do a good job. But let us imagine that
it is not the case, and take a bit of time to present a few external libraries.

PyMoDAQ is of course not the only project of its kind. You can find on the internet a lot of non-official resources to
help you communicate with your equipment. Some of them are so great and cover so much instruments that you should
automatically check if your device is supported. Even if your supplier proposes a solution, it can be inspiring to have
a look at them. Let’s present the most important ones.

PyLabLib

PyLabLib is a very impressive library that interfaces the most common instruments that you will find in a lab:

• Cameras: Andor, Basler, Thorlabs, PCO. . .

• Stages: Attocube, Newport, SmarAct. . .

• Sensors: Ophir, Pfeiffer, Leybold. . .

. . . but also lasers, scopes, Arduino. . . to cite a few!

Here is the complete list of supported instruments.

Here is the GitHub repository.

PyLabLib is extremely well documented and the drivers it provides are of extremely good quality: a reference!

Fig. 7.122: The PyLabLib website.

7.5. Tutorials 219

https://pylablib.readthedocs.io/en/latest/index.html
https://pylablib.readthedocs.io/en/latest/devices/devices_root.html
https://github.com/AlexShkarin/pyLabLib

PyMoDAQ Documentation, Release 4.2.0

Of particular interest are the camera drivers, that are often the most difficult ones to develop. It also proposes a GUI
as a side project to control cameras: cam control.

Instrumental

Instrumental is also a very good library that you should know about, which covers different instruments.

Here is the list of supported instruments.

As you can see with the little script that is given as an example, it is super easy to use.

Instrumental is particularly good to create drivers from DLL written from C where one have the header file, autopro-
cessing the function signatures. . .

Fig. 7.123: The Instrumental website.

PyMeasure

PyMeasure will be our final example.

You can find here the list of supported instruments by the library.

This libray is very efficient for all instruments that communicate through ASCII commands (pyvisa basically) and
makes drivers very easy to use and develop.

Installation of external librairies

The installation of those libraries in our environment cannot be simpler:

(pmd_dev) >pip install <library name>

This list is of course not exhaustive. Those external ressources are precious, they will often provide a good solution to
start with!

220 Chapter 7. Changelog

https://pylablib-cam-control.readthedocs.io/en/latest/overview.html
https://instrumental-lib.readthedocs.io/en/stable/index.html
https://instrumental-lib.readthedocs.io/en/stable/overview.html#drivers
https://pymeasure.readthedocs.io/en/latest/
https://pymeasure.readthedocs.io/en/latest/api/instruments/index.html
https://pyvisa.readthedocs.io/en/latest/

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.124: The PyMeasure website.

Back to PIPython wrapper

Let’s now go back to our E870 controller, it is time to test the PIPython wrapper!

We will install the package pipython in our pmd_dev environment

(pmd_dev) >pip install pipython

after the installation, we can check that the dependencies of this package have been installed properly using

(pmd_dev) >conda list

which will list all the packages that are installed in our environment

Here we found the documentation of the wrapper.

It proposes a very simple script to establish the communication. Let’s try that!

We will use the Spyder IDE to deal with such simple script, which is freely available. If you already installed an
Anaconda distribution, it should already be installed.

Let’s open it and create a new file that we call script_pmd_pi_plugin.py and copy-paste the script.

It is important that you configure Spyder properly so that the import statement at the begining of the file will be done
in our Python environment, where we installed the PIPython package. For this, click on the settings icon as indicated
in the following capture.

The following window will appear. Go to the Python interpreter tab and select the Python interpreter (a python.exe file
for Windows) which is at the root of your environment (in our case our environment is called pmd_dev. Notice that it
is located in the envs subfolder of Anaconda). Do not forget to Apply the changes.

Let’s now launch the script clicking the Run button. A pop-up window appears. We have to select our controller, which
is uniquely identify by its serial number (SN). In our exemple it is the one that is underlined in blue in the capture. It

7.5. Tutorials 221

https://pipython.physikinstrumente.com/index.html
https://www.spyder-ide.org/

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.125: List (partial) of the packages that are installed in our environment after installing pipython. We can check
that the packages pyusb, pysocket and pyserial are there, as requested by the documentation.

Fig. 7.126: Quick Start documentation of PIPython to establish the communication with a controller.

Fig. 7.127: Running the PIPython quickstart script in the Spyder IDE.

Fig. 7.128: Configure the good Python interpreter in Spyder.

222 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

seems like nothing much happens. . .

Fig. 7.129: Communication established!

. . . but actually, we just received an answer from our controller!

The script returns the reference and the serial number of our controller. Plus, we can see in the Variable explorer tab
that the pidevice variable is now a Python object that represents the controller. For now nothing happens, but this means
that our system is ready to receive orders. This is a big step!

Fig. 7.130: System ready.

Now, we have to understand how to play with this GCSDevice object, and then we will be able to play with our actuators!

First, we will blindly follow the quickstart instructions of PIPython, and try this script

Fig. 7.131: Script suggested by the quickstart instructions of PIPython. In our case it returns and error.

Note: If at some point you lose the connection with your controller, e.g. you cannot see its SN in the list, do not
hesitate to reset the Python kernel. It is probably that the communication has not been closed properly during the last
execution of the script.

Unfortunately this script is not working, and returns GCSError: Unknown command (2).

RRRRRRRRRRRRrrrrrrrrrrrrr!! Ok. . . this is again a bit frustrating. Something should be quite not precise in the
documentation, so we raised an issue in the GitHub repository to explain our problem.

7.5. Tutorials 223

https://github.com/PI-PhysikInstrumente/PIPython/issues/9

PyMoDAQ Documentation, Release 4.2.0

Anyway, that gives us the opportunity to dig into the DLL library!

The first part of the error message indicates that this error is raised by the GCS library. If we search Unknown command
in the DLL manual, we actually found it

Fig. 7.132: GCS documentation page 109.

This is actually the error number 2, that explains the (2) at the end of the error message. Unfortunately, the description
of the error does not help us at all. Still, it is categorized as a controller error. Plus, the introduction of the section
remind us that the PI GCS is a library that is valid for a lot of controllers that are sold by the company. Then, we should
expect that some commands of the library cannot be used with any controller. This is also confirmed elsewhere in the
documentation.

Fig. 7.133: GCS documentation page 29.

Ok, it is more clear now, our controller is telling us that he does not know the MOV command! But how can we know
the commands that are valid for our controller? Here again we will find the answer in the GCS manual (the E870
controller manual is not of great help, but the E872 manual also gives the list of available commands).

At first, this manual looks very difficult to diggest. But actually most of it is dedicated to precise definition of each of
the command, and this will be needed only if we actually use it. One should notice that some are classified as commu-
nication functions. They are used to establish the communication with the controller, depending on the communication
protocol that is used (RS232, USB, TCPIP. . .). But this is not our problem right now.

Let’s look at the functions for GCS commands. There is a big table that summarizes all the functions with a short
description. We should concentrate on that. Here we understand that actually most of those functions can for sure not
be used with our controller. As we have seen earlier in this tutorial, our controller is made for open-loop operation.
Thus, we can already eliminate all the functions mentioning “close-loop”, “referencing”, “current position”, “limit”,
“home”, “absolute”. . . but on the contrary all the descriptions mentioning “relative”, “open-loop” should trigger our
attention. Notice that some of them start with a q to inform that they are query functions. They correspond to GCS
commands that terminate with a question mark. They ask the controller for an information but do not send order. They
are thus quite safe, since they will not move a motor for example. Within all those we notice in particular the OSM one,
which seems a good candidate to make a relative move

Fig. 7.134: GCS OSM command short description, page 22.

and the qHLP one, that seems to answer our previous question!

Let’s try that! Here is what the controller will answer

That’s great, we now have the complete list of the commands that are supported by our controller. Plus, within it is the
OSM one, that we noticed just before!

Let’s now look at the detailed documentation about this command

It seems quite clear that it takes two arguments, the first one seems to refer to the axis we want to move, and the second
one, non ambiguously, refers to the number of steps we want to move. So let’s try the following script (if you are
actually testing with a PiezoMike actuator be careful that it is free to move!)

It works! We did it! We managed to move our actuator with a Python script! Yeaaaaaaaaah! :D

Ok let just tests the other axis, we modify the previous script with a 2 as the first parameter of the command

Another error. . . Erf! That was too easy apparently!

Here, the DLL documentation will not be of great help. It is not clear what is the difference between an axis and a
channel. We rather have to remember what we learnt from the controller manual at the begining of this tutorial. The
E870 has actually only one channel that is followed by a demultiplexer. So actually, what we have to do, when we want

224 Chapter 7. Changelog

https://github.com/quantumm/pymodaq_plugins_physik_instrumente/blob/E-870/docs/E872/PI_E-872.401_user_manual.pdf

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.135: GCS qHLP command short description, page 24.

Fig. 7.136: E870 answer to the qHLP command.

to control another axis, is to change the configuration of the demultiplexer, which is explained in the Demultiplexing
section of the manual. Here are described the proper GCS commands to change the axis.

Let’s translate that into a Python script

After running again the script with the OSM command, we actually command the second axis! :D

This is the end of the gold route! That was the most difficult part of the tutorial. Because there is no global standard
about how to write a DLL library, it is always a bit different depending on the device you want to control. We are in this
route very dependent on the quality of the work of the developpers of our supplier, especially on the documentation.
Thus, it is always a bit of an investigation throughtout all the documentations and the libraries available on the internet.

All this work has been the opportunity for us to understand in great details the working principles of our device, and
to get a complete mastering of all its functionalities. We now master the basics to order anything that is authorized by
the GCS library to our controller through Python scripts!

If at some point you are struggling too much in this route, do not hesitate to ask for help. And if you find some bugs,
do not hesitate to post an issue. Those are little individual steps that make an open source project works, they are very
important!

I’ve found nothing to control my device with Python! :(

In the example of this tutorial, our supplier did a good job and provides a good Python wrapper. It was then relatively
simple.

If in your case, after a thorough investigation of your supplier website and external libraries you found no ressource, it
is time to take your phone and call your supplier. He may have a solution for you. If he refuses to help you, then you
will have to write the Python wrapper by your own. It is a piece of work, but doable!

First, you will need the DLL documentation and the .dll file.

Then, one problem you will have to face is that the Python types are different from C, the langage that is used
in the DLL. You thus have to make more rigorous type declarations that you would do with Python. Hope-
fully, the ctypes library is here to help you! The PIPython wrapper itself uses this library (for example see:
pipython/pidevice/interfaces/gcsdll.py).

Finally, found examples of codes that are the closest possible to your problem. You can look for examples in other
instrument plugins, the wrappers should be in the hardware subfolder of the plugin:

• SmarAct MCS2 wrapper

• Thorlabs TLPM wrapper

Fig. 7.137: GCS OSM command detailled description.

7.5. Tutorials 225

https://docs.python.org/3/library/ctypes.html
https://github.com/PyMoDAQ/pymodaq_plugins_smaract/blob/main/src/pymodaq_plugins_smaract/hardware/smaract/smaract_MCS2_wrapper.py
https://github.com/PyMoDAQ/pymodaq_plugins_thorlabs/blob/main/src/pymodaq_plugins_thorlabs/hardware/powermeter.py

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.138: Script using the OSM command to move the actuator.

Fig. 7.139: First test of a script using the OSM command to move the second axis of the controller.

The green route: control your device with PyMoDAQ

Now that we know how to control our actuators with Python, it will be quite simple to write our PyMoDAQ plugin,
that is what we will learn in this section!

Before doing so, we have to introduce a few tools and prepare a few things that are indispensable to work properly in
an open-source project.

What is GitHub?

You probably noticed that we refer quite a lot to this website in this tutorial, so what it is exactly?

GitHub is basically a website that provides services to store and develop open-source projects. Very famous open-
source projects are stored on GitHub, like the Linux kernel or the software that runs Wikipedia. PyMoDAQ is also
stored on GitHub.

It is based on Git that is currently the most popular version control software. It is made to keep track of every modifi-
cation that has been made in a folder, and to allow multiple persons to work on the same project. It is a very powerful
tool. If you do not know about it, we recommand you to make a few research to understand the basic concepts. In the
following, we will present a concrete example about how to use it.

The following preparation will look quite tedious at first sight, but you will understand the beauty of it by the end of
the tutorial ;)

Prepare your remote repository

First, you should create an account on GitHub (it is free) if you do not have one. Your account basically allows you
to have a space where to store your own repositories.

A repository is basically just a folder that contains subfolders and files. But this folder is versioned, thanks to Git. This
means that your can precisely follow every change that has been made within this folder since its creation. In
other word you have access to every version of the folder since its creation, which means every version of the software
in the case of a computer program. And if at some point you make a modification of the code that break everything,
you can safely go back to the previous version.

What about our precise case?

We noticed before that there is already a Physik Instrument plugin repository, it is then not necessary to create another
one. We would rather like to modify it, and add a new file that would deal with our E870 controller. Let first make a copy
of this repository into our account. In the technical jargon of Git, we say that we will make a fork of the repository. The
term fork images the fact that we will make a new history of the evolution of the folder. By forking the repository into
our account, we will keep track of our modifications of the folder, and the original one can follow another trajectory.

To fork a repository, follow this procedure:

• Log in to your GitHub account

Fig. 7.140: E870 manual: how to configure the demultiplexer.

226 Chapter 7. Changelog

https://github.com/torvalds/linux
https://github.com/wikimedia/mediawiki

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.141: Script to change the controlled axis.

• Go to the original repository (called the upstream repository) (in our case the repository is stored by the Py-
MoDAQ organisation) and click Fork.

Fig. 7.142: How to fork a repository through GitHub.

GitHub will create a copy of the repository on our account (quantumm here).

Fig. 7.143: Our PI remote repository (in our GitHub account). The red boxes indicate how to find the GitHub address
of this repository.

This repository stored on our account is called the remote repository.

Prepare your local repository

First you should install Git on your machine.

Then we will make a local copy of our remote repository, that we will call the local repository. This operation is called
cloning. Click the Code icon and then copy in the clipboard the HTTPS address.

In your home folder, create a folder called local_repository and cd into it by executing in your terminal

cd C:\Users\<OS username>\local_repository\

(actually you can do the following in the folder you like).

Then clone the repository with the following command

git clone https://github.com/<GitHub username>/pymodaq_plugins_physik_instrumente.git

this will create a folder at your current location. Go into it

cd pymodaq_plugins_physik_instrumente

Notice that we just downloaded the content of the remote repository.

We will also create a new branch named E-870 with the following command

git checkout -b E-870

Now if you execute the command

git status

the output should start with “On branch E-870”.

Install your package in edition mode

We now enter the Python world and talk about a package rather than a repository, but we are actually still talking about
the same folder!

Still in your terminal, check that your Python environment pmd_dev is activated, and stay at the root of the package.
Execute the command

(pmd_dev) C:\Users\<OS username>\local_repository\pymodaq_plugins_physik_instrumente>pip
install -e .

7.5. Tutorials 227

https://git-scm.com/downloads

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.144: Illustration of the operations between the different repositories.

Understanding this command is not straightforward. In your Python environment, there exists an important folder called
site-packages that you should find at the following path

C:\Users\<OS_username>\Anaconda3\envs\dev_pid\Lib\site-packages

Fig. 7.145: Content of the site-packages folder of our pmd_dev environment.

The subfolders that you find inside correspond to the Python packages that are installed within this environment.
A general rule is that you should never modify manually anything in this folder. Those folders contain the
exact versions of each package that is installed in our environment. If we modify them in a dirty way (not ver-
sioned), we will very fast loose the control about our modifications. The edition option “-e” of pip is the so-
lution to work in a clean way, it allows to simulate that our package is installed in the environment. This way,
during the development period of our plugin, we can safely do any modification in our folder C:\Users\<OS user-
name>\local_repository\pymodaq_plugins_physik_instrumente (refered to by the “.” in the command) and it will be-
have as if it was in the site-packages. To check that this last command executed properly, you can check that you have a
file called pymodaq_plugins_physik_instrumente.egg-link that has been created in the site-packages folder. Note that
pip knows with which Python environment to deal with because we have activated pmd_dev.

228 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Open the package with an adapted IDE

In this section we will work not only with a simple script, but within a Python project that contains multiple files and
that is much more complex than a simple script. For that Spyder is not so well adapted. In this section we will present
PyCharm because it is free and very powerful, but you can probably found an equivalent one.

Once it is opened, go to File > New project. Select the repository folder and the Python interpreter.

Fig. 7.146: Start a project with PyCharm. You have to select the main folder that you will work with, and the Python
interpreter corresponding to your environment.

You can for example configure the interface so that it looks like the following figure.

Fig. 7.147: PyCharm interface. Left panel: tree structure of the folders that are included in the PyCharm project.
Center: edition of the file. Right panel: structure of the file. Here you found the different methods and argument
of the Python class that are defined in the file. Bottom: different functionalities that are extremely usefull: a Python
console, a terminal, a debugger, integration of Git. . .

In the left panel, you will find the folder corresponding to our repository, so that you can easily open the files you
are interested in. We will also add in the project the PyMoDAQ core folder, so that we can easily call some entry
points of PyMoDAQ. To do so, go to File > Open and select the PyMoDAQ folder. Be careful to not get lost in the
tree structure, you have to go select the select the folder that is in the good environment. In this case C:\Users\<OS
username>\Anaconda3\envs\pmd_dev\Lib\site-packages\pymodaq (in particular, do not mistake with the site-packages
of the base Anaconda environment that is located at C:\Users\<OS username>\Anaconda3\Lib\site-packages), click
OK and then Attach.

The pymodaq folder should now appear in the left panel, navigate within it, open and Run (see figure) the file pymodaq
> daq_move > daq_move_main.py. This is equivalent to execute the daq_move command in a terminal. Thus you
should now see the GUI of the DAQ_Move.

Debug of the original plugin

As we have noticed before, a lot of things where already working in the original plugin. It is now time to analyse what
is happening. For that, we will use the debbuger of our IDE, which is an indispensable to debug PyMoDAQ. You
will save a lot of time by mastering this tool! And it is very easy to use.

Let us now open the daq_move_PI.py file. This file defines a class corresponding to the original PI plugin, and you
can have a quick look at the methods inside using the Structure panel of PyCharm. Basically, most of the methods of
the class are triggered by a button from the user interface, as is illustrated in the following figure.

Fig. 7.148: Each action of the user on the UI triggers a method of the instrument class.

During our first test of the plugin, earlier in this tutorial, we noticed that things went wrong at the moment we click
the Initialize button, which correspond to the ini_stage method of the DAQ_Move_PI class. We will place inside this
method some breakpoints to analyse what is going on. To do so, you just have to click within the breakpoints column
at the lign you are interested in. A red disk will appear, as illustrated by the next capture.

When you run a file in DEBUG mode (bug button instead of play button), it means that PyCharm will execute the
file until it finds an activated breakpoint. It will then stop the execution and wait for orders: you can then resume the
program up to the next breakpoint, or execute lign by lign, rerun the program from the begining. . .

When you run the DEBUG mode, notice that a new Debug panel appears at the bottom of the interface. The View
breakpoints button will popup a window so that you see where are the breakpoints within all your PyCharm project,

7.5. Tutorials 229

https://www.jetbrains.com/pycharm/

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.149: See the breakpoints inside your PyCharm project.

that is to say within all the folders that you attached to your project, and that are present in the tree structure of the
Project panel. You can also deactivate a breakpoint, in that case it will be notified with a red circle.

Fig. 7.150: Execute PyMoDAQ in DEBUG mode.

Let us now run in DEBUG mode the daq_move_main.py file. We select the PI plugin (not the PI E870), the good
controller, and initialize. PyCharm stops the execution at the first breakpoint and highlight the corresponding lign
in the file. This way we progress step by step up to “sandwitching” the lign that triggers the error with breakpoints.
Looking at the value of the corresponding variable, we found again the Unknown command (2) error message that we
already had in the PyMoDAQ log file.

Fig. 7.151: Find the buggy line. The breakpoint lign 163 is never reached. The value of the
self.controller.gcscommands.axes variable is Unknown command (2).

Let’s go there to see what happens. We can attach the pipython package to our PyCharm project and look at this axes
attribute. In this method we notice the call to the qSAI method, which is NOT supported by our controller! We now
have a precise diagnosis of our bug :)

Write the class for our new instrument

Coding a PyMoDAQ plugin actually consists in writting a Python class with specific conventions such that the Py-
MoDAQ core knows where to find the installed plugins and where to call the correct methods.

The PyMoDAQ plugins template repository is here to help you follow those conventions and such that you have to do
the minimum amount of work. Let see what it looks like!

The src directory of the repository is subdivided into three subfolders

• daq_move_plugins which stores all the instruments corresponding to actuators.

• daq_viewer_plugins, which stores all the instruments corresponding to detectors. It is itself divided into sub-
folders corresponding to the dimensionality of the detector.

• hardware, within which you will find Python wrappers (optional).

Within each of the first two subfolders, you will find a Python file defining a class. In our context we are interested in
the one that is defined in the first subfolder.

As you can see the structure of the instrument class is already coded. What we have to do is to follow the comments
associated to each line, and insert the scripts we have developped in a previous section (see gold route) in the right
method.

There are naming conventions that should be followed:

• We already mentioned that the name of the package should be pymodaq-plugins-<company name>. Do not
forget the “s” at “plugins” ;)

• The name of the file should be daq_move_xxx.py and replace xxx by whatever you like (something that makes
sense is recommended ;))

• The name of the class here should be DAQ_Move_xxx.

• The name of the methods that are already present in the template should be kept as it is.

230 Chapter 7. Changelog

https://github.com/PyMoDAQ/pymodaq_plugins_template

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.152: The axes attribute calls the SAI? GCS command that is not supported by the E870 controller.

Fig. 7.153: Tree structure of the plugin template repository.

Fig. 7.154: Definition of the DAQ_Move_Template class.

7.5. Tutorials 231

PyMoDAQ Documentation, Release 4.2.0

Note: Be careful that in the package names, the separator is “-”, whereas in file names, the separator is “_”.

The name of the methods is quite explicit. Moreover, the docstrings are here to help you understand what is expected
in each method.

Note: In Python, a method’s name should be lowercase.

Go to the daq_move_plugins folder, you should find some files like daq_move_PI.py, which correspond to the other
plugins that are already present in this package.

With a right click, we will create a new file in this folder that we will call daq_move_PI_E870.py. Copy the content of
the daq_move_Template.py file and paste it in the newly created file.

Change the name of the class to DAQ_Move_PI_E870.

Run again the daq_move_main.py file.

You should now notice that our new instrument is already available in the list! This is thanks to the naming conventions.
However, the initialization will obviously fail, because for now we did not input any logic in our class.

Before we go further, let us configure a bit more PyCharm. We will first fix the maximum number of characters per
lign. Each Python project fixes its own convention, so that the code is easier to read. For PyMoDAQ, the convention is
120 characters. Go to File > Settings > Editor > Code Style and configure Hard wrap to 120 characters.

Introduction of the class

We call the introduction of the class the code that is sandwitched between the class keyword and the first method
definition. This code will be executed after the user selected the instrument he wants to use through the DAQ_Move
UI.

This part of the code from the original plugin was working, so let’s just copy-paste it, and adapt a bit to our case.

Fig. 7.155: Introduction of the class of our PI E870 instrument.

First, it is important that we comment the context of this file, this can be done in the docstring attach to the class,
PyMoDAQ follows the Numpy style for its documentation

Notice that the import of the wrapper is very similar to what we have done in the gold route. However, we do not call
anymore the InterfaceSetupDlg() method that was poping up a window. We rather use the EnumerateUSB() method to
get the list of the addresses of the plugged controllers, which will then be sent in the parameter panel (in the item named
Devices) of the DAQ_Move UI. We now understand precisely the sequence of events that makes the list of controller
addresses available just after we have selected our instrument.

Notice that in the class declaration not all the parameters are visible. Most of them are declared in the
comon_parameters_fun that declares all the parameters that are common to every plugin. But if at some point you
need to add some specific parameter for your instrument, you just have to add an element in this params list, and it will
directly be displayed and controllable through the DAQ_Move UI! You should fill in a title, a name, a type of data, a
value . . . You will find this kind of tree everywhere in the PyMoDAQ code. Copy-paste the first lign for exemple and
see what happens when you execute the code ;)

To modify the value of such a parameter, you will use something like

self.settings.child('multiaxes', 'axis').setValue(2)

Here we say “in the parameter tree, choose the axis parameter, in the multiaxes group, and attribute him the value 2 “

232 Chapter 7. Changelog

https://numpydoc.readthedocs.io/en/latest/format.html

PyMoDAQ Documentation, Release 4.2.0

Note: self.settings is a Parameter object of the pyqtgraph library.

Get the value of this parameter will be done with

self.settings['multiaxes', 'axis']

ini_stage method

As mentioned before, the ini_stage method is triggered when the user click the Initialization button. It is here that the
communication with the controller is established. If everything works fine, the LED will turn green.

Fig. 7.156: ini_stage method of our PI E870 instrument class.

Compared to the initial plugin, we simplified this method by removing the functions that were intended for close-loop
operation. Plus we only consider the USB connexion. The result is that our controller initializes correctly now: the
LED is green!

Fig. 7.157: Now our controller initializes correctly.

commit_settings method

Another important method is commit_settings. This one contains the logic that will be triggered when the user modifies
some value in the parameter tree. Here will be implemented the change of axis of the controller, by changing the
configuration of the demultiplexer with the MOD GCS command (see the gold route).

Fig. 7.158: commit_settings method of our PI E870 instrument class. Implementation of a change of axis.

move_rel method

7.5. Tutorials 233

https://pyqtgraph.readthedocs.io/en/latest/api_reference/parametertree/index.html

PyMoDAQ Documentation, Release 4.2.0

Finally, the move_rel method, that implements a relative move of the actuator is quite simple, we just use the OSM
command that we found when we studied the DLL with a simple script.

Fig. 7.159: move_rel method of our PI E870 instrument class. Implementation of a relative move.

We can now test the Rel + / Rel - buttons, a change of axis. . . it works!

There is still minor methods to implement, but now you master the basics of the instrument plugin development ;)

Commit our changes with Git

Now that we have tested our changes, we can be happy with this version of our code. We will now stamp this exact
content of the files, so that in the future, we can at any time fall back to this working version. You should see Git as
your guarantee that you will never lost anything of your work.

At the location of our local repository, we will now use this Git command

C:\Users\<OS username>\local_repository\pymodaq_plugins_physik_instrumente>git diff

you should get something that looks like this

This Git command allows us to check precisely the modifications we have done, which is called a diff.

In the language of Git, we stamp a precise state of the repository by doing a commit

C:\Users\<OS username>\local_repository\pymodaq_plugins_physik_instrumente>git commit -am
"First working version of the E870 controller plugin."

Within the brackets, we leave a comment to describe the changes we have made.

Then, with the git log command, you can see the history of the evolution of the repository

C:\Users\<OS username>\local_repository\pymodaq_plugins_physik_instrumente>git log

Push our changes to our remote repository

We have now something that is working locally. That is great, but what if at some point, the computer of my experiment
suddenly crashes? What if I want to share my solution to a collegue that have the same equipment?

Would not it be nice if I could command my controller on any machine in the world with a few command lines?
:O

It is for those kind of reasons that it is so efficient to work with a remote server. It is now time to benefit from our
careful preparation! Sending the modifications on our remote repository is done with a simple command

C:\Users\<OS username>\local_repository\pymodaq_plugins_physik_instrumente>git push

In the Git vocabulary, pushing means that you send your work to your remote repository. If we go on our remote server
on GitHub, we can notice that our repository has actually been updated!

From now on, anyone who has an internet connexion have access to this precise version of our code.

Note: You may wonder how Git knows where to push? This has been configured when we cloned our remote reposi-
tory. You can ask what is the current address configured of your remote repository (named origin) with the git remote
-v command.

234 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.160: Answer to the git diff command in a terminal. Here are the modifications of the daq_move_PI_E870.py
file. In red are the lines that have been deleted, in green the lines that have been added.

Fig. 7.161: Answer to the git log command in a terminal.

Fig. 7.162: The git push command updated our remote repository.

7.5. Tutorials 235

PyMoDAQ Documentation, Release 4.2.0

Pull request to the upstream repository

But this is not the end! Since we are very proud of our new plugin, why not make all the users of PyMoDAQ benefit
from it? Why not propose our modification to the official pymodaq_plugin_physik_instrumente repository?

Again, since we prepared properly, it is now a child play to do that. In the Git vocabulary, we say that we will do a pull
request, often abreviated as PR. This can be done through the interface of GitHub. Log in to your account, go to the
repository page and click, in the Pull request tab, the Create pull request button.

You have to be careful to select properly the good repositories and the good branches. Remember that in our case we
created a E-870 branch.

Fig. 7.163: The GitHub interface to create a PR.

Leave a message to describe your changes and submit. Our pull request is now visible on the upstream repository.

Fig. 7.164: Our pull request in the upstream repository.

This opens a space where you can discuss your changes with the owner of the repository. It will be his decision to
accept or not the changes that we propose. Let us hope that we will convince him! :) Often these discussions will lead
to a significant improvement of the code.

236 Chapter 7. Changelog

https://github.com/PyMoDAQ/pymodaq_plugins_physik_instrumente/pull/4

PyMoDAQ Documentation, Release 4.2.0

Conclusion

That’s it!

We have tried, with this concrete example, to present the global workflow of an instrument plugin development, and
the most common problems you will face. Do not forget that you are not alone: ask for help, it is an other way to meet
your collegues!

We have also introduce a software toolbox for Python development in general, that we sum up in the following table.
They are all free of charge. Of course this is just a suggestion, you may prefer different solutions. We wanted to present
here the main types of software you need to develop efficiently.

Software function Solution presented
Python environment manager Anaconda
Python package manager pip
Python IDE Spyder / PyCharm
Version control software Git
Repository host GitHub

Finally, remember that while purchasing an instrument, it is important to check what your supplier provides as a software
solution (Python wrapper, Linux drivers. . .). This can save you a lot of time!

7.5.5 How to contribute to PyMoDAQ’s documentation?

In this tutorial we will learn how to contribute to PyMoDAQ’s documentation. This is quite an advanced topic so we
consider that you know quite well Python and PyMoDAQ ecosystem.

The documentation of PyMoDAQ

There are several levels of documentation of the project that we introduce in the following sections.

Documentation of the source code: docstrings

The documentation of the source code is done using comments in the source files that are called docstrings. This
documentation is addressed to the developers and is very precise. Typically, it will explain the job of a particular
method, give the type of its arguments, what it returns. . .

Fig. 7.165: Docstring of the move_abs method in the daq_move_Template.py file.

This kind of documentation is standardized. PyMoDAQ follows the Numpy docstrings style. Following those conven-
tions permits to generate automatically the Library Reference.

7.5. Tutorials 237

https://github.com/PyMoDAQ/pymodaq_plugins_template/blob/main/src/pymodaq_plugins_template/daq_move_plugins/daq_move_Template.py
https://numpydoc.readthedocs.io/en/latest/format.html

PyMoDAQ Documentation, Release 4.2.0

Tests

At each modification of the source code of PyMoDAQ, a series of tests is launched automatically. This is done to
ensure that the modification proposed does not have an unexpected effect and does not break the rest of the code. This
development practice is indispensable to ensure its stability. A big effort has been devoted to testing in the version 4 of
PyMoDAQ.

The files defining the tests are located in the /tests directory at the root of the repository.

Most of those tests simulate a user interacting with PyMoDAQ UI, pressing buttons and so on, and verify that everything
is working as expected.

Reading those tests (which is not straightforward ;)) allows to get a global picture of what the application is doing.

Website

Finally, there is the website that you are reading right now. This documentation is of higher level than the previous
ones, easier to read for a human! It is then adapted mostly to an introduction of PyMoDAQ to users.

This tutorial intends to present the workflow to contribute to the improvement of this website.

Sphinx

You may have noticed that most of Python librairies, share a common presentation of their website, this is because they
all use Sphinx as a documentation generator.

Sphinx uses reStructuredText, which is the standard lightweight language to write documentation within the Python
community.

Using Sphinx saves a lot of time because you just have to care about the content of your documentation, Sphinx will
then render it as a beautiful PDF file. . . or even a website, like the one you are reading right now!

The folder within which there is a conf.py file is the source directory of a Sphinx project. In our case this directory is
PyMoDAQ/docs/src.

Notice that this directory is included in PyMoDAQ repository. Therefore, contributing to the documentation, from the
point of view of Git, is exactly the same thing as contributing to the source code: we will modify files in the repository.

Note: The /docs directory of PyMoDAQ is located at the root of the repository, aside with the /src directory. When
you install the pymodaq package, what will be copied in the site-packages of your Python environment in the Py-
MoDAQ/src/pymodaq folder. Therefore, all the folders that are upstream from this one (including /docs) will not be
copied in the site-packages. This is what we want, it would be useless to have all this documentation, intended for
humans, in the site-packages.

Preparation

Let’s prepare properly our workspace. We consider that you have a GitHub account, that you know the basics about its
usage, and that you have already a remote repository (you have forked PyMoDAQ in your GitHub account).

First we need to know on which branch of the upstream repository we will work. If we want to contribute to the core
of PyMoDAQ, we should send a pull request to the pymodaq-dev branch.

Note:

238 Chapter 7. Changelog

https://github.com/PyMoDAQ/PyMoDAQ/tree/main/tests
https://pypi.org/project/Sphinx/
https://en.wikipedia.org/wiki/ReStructuredText
https://github.com/PyMoDAQ/PyMoDAQ/tree/main/docs/src
https://github.com/PyMoDAQ/PyMoDAQ/

PyMoDAQ Documentation, Release 4.2.0

The important branches of the PyMoDAQ repository are as follow:

• main is the last stable version. This branch is maintained by the owner of the repository, and we should
not send a pull request directly to it.

• pymodaq-dev is the development branch, which is ahead of the main branch (it contains more commits
than the main branch. External contributions should be send on this branch. The owner of the repository
will test all the changes that has been suggested in the pymodaq-dev branch before sending them into the
main branch.

• pymodaq_v3 concerns the version 3.

Let’s create and activate a new Python environment, that we will call pmd_dev in this tutorial.

Let’s now clone this specific branch on our local machine. We will call our local repository
pmd4_write_documentation_tutorial.

git clone --branch pymodaq-dev https://github.com/PyMoDAQ/PyMoDAQ.git
pmd4_write_doc_tutorial

and cd into it

cd pmd4_write_doc_tutorial

We have to change the configuration of origin so that our local repository is linked to our remote repository, and not to
the upstream repository.

git remote set-url origin https://github.com/<your GitHub name>/PyMoDAQ.git

Note: origin is an alias in Git that should target your remote repository. It specifies where to push your commits.

We can check that it has been taken into account with

git remote -v

We will now create a new branch from pymodaq-dev so that we can isolate our changes. We call it write-doc-tutorial.

git checkout -b write-doc-tutorial

Finally, install our local repository in edition mode in our Python environment

(pmd_dev) >pip install -e .

We can now safely modify our local repository.

Build the website locally

Since the source of the website (in /docs/src) is included in the PyMoDAQ repository, it means that we have everything
needed to build it locally!

Some additional packages are necessary to install, in particular sphinx, docutils, numpydoc. . . Those guys are listed in
the requirements.txt file in the /docs directory. Let’s go into it and execute the command

(pmd_dev) >pip install -r requirements.txt

Still in the /docs folder (where you should have a make.bat file) execute

make html (.\make html on windows powershell)

This will run Sphinx that will build the website and put it into the newly created docs/_build folder. Open the
/docs/_build/html/index.html file with your favorite navigator. You just build the website locally!

7.5. Tutorials 239

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.166: Local build of the PyMoDAQ website.

Add a new tutorial

Let’s take a practical case, and suppose we want to add a tutorial about “How to contribute to PyMoDAQ’s documen-
tation?” ;)

Fig. 7.167: Sphinx source directory. It contains index.rst which defines the welcome page of the website and the table
of contents. It contains also the conf.py file which defines the configuration of Sphinx. In the subfolders are others .rst
file defining other pages. The /image folder is where one can store the images that are included in the pages.

The index.rst file defines the welcome page of the website, add also the table of contents that you see on the left column.

Fig. 7.168: In the index.rst file, the toctree tag defines the first level of the table of contents.

We clearly have to go in the tutorial folder. Here we found the plugin_development.rst file where is written the tutorial
“Story of an instrument plugin development”.

Let’s just create a new .rst file named write_documentation.rst. We will copy the introduction of the other file, just
replacing the name of the label (first line) and the title.

.. _write_documentation:

How to contribute to PyMoDAQ’s documentation?
===

In the tutorials.rst file, there is another toctree tag which defines the second level of the table of contents within the
Tutorials section. We have to say that there is a new entry. Notice that it is here that the label at the first line of the file
is important.

Tutorials
=========

.. toctree::
:maxdepth: 5
:caption: Contents:

tutorials/plugin_development
tutorials/write_documentation

Save this file and compile again with Sphinx in the /docs directory

make html (.\make html on windows powershell)

and refresh the page in the navigator. Our new tutorial is already included in the website, and the table of contents has
been updated!

We just have to fill the rest of the page with what we have to say! We will introduce a bit the RST language in the
following section.

240 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.169: First compilation of our new tutorial.

reStructuredText (RST) language

Here we give a brief overview of the RST language. Here is the full documentation about RST.

Page structure

Title
=====

Section

Lorem ipsum lorem ipsum.

Subsection
++++++++++

Lorem ipsum lorem ipsum. Lorem ipsum lorem ipsum.

List

* First item

* First item of nested list
* Second item of nested list

* Second item

External link (URL)

`PyMoDAQ repository`__

__ https://github.com/PyMoDAQ/PyMoDAQ

Integrate an image

.. _fig_label

.. figure:: /image/write_documentation/my_image.svg
:width: 600

Caption of the figure.

The images are saved in the /src/image folder and subfolders.

Notice that you can directly integrate SVG images.

7.5. Tutorials 241

https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

PyMoDAQ Documentation, Release 4.2.0

Note: Be careful that the extensions of your files should be lowercase. The Windows operating system does not
differentiate file extensions .PNG and .png for example (it is not case sensitive). If you build the documentation locally
on Windows, it could render it without problem, while when compiled with a Linux system (what will be done on the
server) your paths can be broken and your images not found.

Cross-referencing

If we want to refer to the image from the previous section:

:numref:`fig_label`

Note: Note that the underscore disappeared.

If we want to refer to another page of the documentation:

:ref:`text to display <label at the begining of the page>`

for example to refer to the installation page, we will use

:ref:`install PyMoDAQ <section_installation>`

Glossary terms

You may have notice the Glossary Terms page in the page of contents. This is a kind of dictionary dedicated to
PyMoDAQ documentation. There are defined terms that are used frequently in the documentation. Refering to those
term is then very simple

:term:`the glossary term`

Browse the already written RSTfiles to get some examples ;)

Submit our documentation to the upstream repository

We are now happy with the content of our page. It is time to submit it for reviewing.

First we have to commit our modifications with Git

git commit -am "Tutorial: How to contribute to PyMoDAQ documentation. Initial commit."

Note: If we also included some new files in the repository, like images, we have to tell Git to take those files under its
supervision, which is done with the git add -i command. A simple command line interface will guide you to select
the files to add.

We then push our changes to our remote repository

git push

Finally, we will open a pull request to the upstream repository from the GitHub interface. Be careful to select the
pymodaq-dev branch!

242 Chapter 7. Changelog

https://stackoverflow.com/questions/7446640/adding-only-untracked-files
https://stackoverflow.com/questions/7446640/adding-only-untracked-files

PyMoDAQ Documentation, Release 4.2.0

Those steps are explained with more details in the plugin development tutorial.

Fig. 7.170: Pull request to the upstream repository. Be careful to select the pymodaq-dev branch!

Let’s hope we will convince the owner that our tutorial is usefull! Thanks for contributing ;)

7.5.6 Updating your instrument plugin for PyMoDAQ 4

What’s new in PyMoDAQ 4

The main modification in PyMoDAQ 4 concerning the instrument plugins is related to the hierarchy of the modules in
the source code, see What’s new in PyMoDAQ 4.

What should be modified

Imports

Mostly the only things to be modified are imports that should reflect the new package layout. This includes import in
obvious files, for instance imports in the DAQ_Move_template plugin, see Fig. 7.171.

Fig. 7.171: New imports

Some imports are a bit more insidious. Indeed, often there is no specific code in the __init__.py files we see
everywhere in our modules. But in the plugins, there is a bit of initialization code, see for instance Fig. 7.172 so make
sure you changed the imports in all these __init__.py.

Fig. 7.172: New imports hidden in the __init__.py files

And that’s it, they should be working now!

7.5. Tutorials 243

PyMoDAQ Documentation, Release 4.2.0

Note: If your instrument plugin has been written from a recent version of the template (say early 2023) then the
only __init__.py file to be modified is the one in figure Fig. 7.172 but otherwise you’ll need to modify most of
them. . . sorry :-(

Data emission

But to make things very neat, your detector instrument plugins should emit no more lists of DataFromPlugins objects
but a DataToExport emitted using new signals, see Emission of data.

Requirements

And for the final bit, make sure to add a dependency to pymodaq >= 4.0.0 in the package requirements, see Fig.
7.173. With this, the Plugin Manager will know your plugin is compatible and will propose it to installation.

Fig. 7.173: Requirements necessary so that the Plugin Manager know your plugin is compatible with PyMoDAQ 4.

7.5.7 Tutorial On Data Manipulation and analysis

Author email sebastien.weber@cemes.fr
Last update february 2024
Difficulty Intermediate

This tutorial is directly extracted from a jupyter notebook used to illustrate how to get your data back from a PyMoDAQ
h5 file, analyze it and plot interactively these data. You’ll find the notebook here.

This example is using experimental data collected on a time-resolved optical spectroscopy set-up developed by Arnaud
Arbouet and “PyMoDAQed” by Sebastien Weber in CEMES.

Practical work sessions exploiting this set-up and data analysis are organized every year in the framework of the Master
PFIQMC at University Toulouse III PauL Sabatier. The students have to align an ultrafast transient absorption experi-
ment and acquire data from a gold thin film. In these pump-probe experiments, two femtosecond collinear light pulses

244 Chapter 7. Changelog

mailto:sebastien.weber@cemes.fr
https://github.com/PyMoDAQ/notebooks/blob/main/notebooks/data_analysis_tutorial.ipynb

PyMoDAQ Documentation, Release 4.2.0

are focused on the sample (see Fig. 7.174). The absorption by a first “pump” pulse places the sample out-of equilibrium.
A second, delayed “probe” light pulse is used to measure the transmission of the sample during its relaxation.

The measured dynamics shows (i) the transmission change associated with the injection of energy by the pump pulse
(< ps timescale) followed by (ii) the quick thermalization of the electron gas with the gold film phonons (ps timescale)
and (iii) the oscillations induced by the mechanical vibrations of the film (10s ps timescale). To be able to detect these
oscillations, one needs to repeat the pump-probe scan many times and average the data.

PyMoDAQ allows this using the DAQ_Scan extension. One can specify how many scan should be performed and
both the current scan and the averaged one are displayed live. However all the individual scans are saved as a multi-
dimensional array. Moreover, because of the different time-scales (for electrons and for phonons) a “Sparse” 1D scan
is used. It allows to quickly specify actuator values to be scanned in pieces (in the form of multiple start:step:stop).
For instance scanning the electronic time window using a low step value and the phonon time window with a higher
time step. The scan is therefore perfectly sampled but the time needed for one scan is reduced.

The author thanks Dr Arnaud Arbouet for the data and explanations. And if you don’t understand (or don’t care about)
the physics, it’s not an issue as this notebook is here to show you how to load, manipulate and easily plot your data.

Fig. 7.174: Experimental Setup for time-resolved optical spectroscopy

To execute this tutorial properly, you’ll need PyMoDAQ >= 4.0.2 (if not released yet, you can get it from github)

%gui qt5
magic keyword only used to start a qt event loop within the jupyter notebook framwork

(continues on next page)

7.5. Tutorials 245

PyMoDAQ Documentation, Release 4.2.0

(continued from previous page)

importing built in modules
from pathlib import Path
import sys

importing third party modules
import scipy as sc
import scipy.optimize as opt
import scipy.constants as cst
import numpy as np

importing PymoDAQ modules
from pymodaq.utils.h5modules.saving import H5SaverLowLevel # object to open the h5 file
from pymodaq.utils.h5modules.data_saving import DataLoader # object used to properly␣
→˓load data from the h5 file
from pymodaq.utils.data import DataRaw, DataToExport

from pymodaq import __version__
print(__version__)

LIGHT_SPEED = 3e8 #m/s

4.2.0

Loading Data

dwa_loader = DataLoader('Dataset_20240206_000.h5') # this way of loading data directly␣
→˓from a Path is
#available from pymodaq>=4.2.0

for node in dwa_loader.walk_nodes():
if 'Scan012' in str(node):

print(node)

/RawData/Scan012 (GROUP) 'DAQScan'
/RawData/Scan012/Actuator000 (GROUP) 'delay'
/RawData/Scan012/Detector000 (GROUP) 'Lockin'
/RawData/Scan012/NavAxes (GROUP) ''
/RawData/Scan012/Detector000/Data0D (GROUP) ''
/RawData/Scan012/NavAxes/Axis00 (CARRAY) 'delay'
/RawData/Scan012/NavAxes/Axis01 (CARRAY) 'Average'
/RawData/Scan012/Detector000/Data0D/CH00 (GROUP) 'MAG'
/RawData/Scan012/Detector000/Data0D/CH01 (GROUP) 'PHA'
/RawData/Scan012/Detector000/Data0D/CH00/Data00 (CARRAY) 'MAG'
/RawData/Scan012/Detector000/Data0D/CH01/Data00 (CARRAY) 'PHA'

To load a particular node, use the load_data method

dwa_loaded = dwa_loader.load_data('/RawData/Scan012/Detector000/Data0D/CH00/Data00')
print(dwa_loaded)

246 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

<DataWithAxes: MAG <len:1> (100, 392|)>

Plotting data

From PyMoDAQ 4.0.2 onwards, both the DataWithAxes (and its inheriting children classes) and the DataToExport
objects have a plot method. One can specify as argument which backend to be used for plotting. At least two are
available: matplotlib and qt. See below

dwa_loaded.nav_indexes = () # this is converting both navigation axes: average and␣
→˓delay as signal axes (to be plotted in the Viewer2D)
dwa_loaded.plot('matplotlib')

or using PyMoDAQ’s data viewer (interactive and with ROIs and all other features)

dwa_loaded.plot('qt')

The horizontal axis is a delay in millimeter (linear stage displacement, see setup) and we used a Sparsed scan with a
non equal scan step (see figure below, right panel)

delay_axis = dwa_loaded.get_axis_from_index(1)[0]
dte = dwa_loaded.as_dte('mydata')
dte.append(DataRaw(delay_axis.label, data=[delay_axis.get_data()]))
dte.plot('qt')

7.5. Tutorials 247

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.175: python

Fig. 7.176: python

248 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

dwa_loaded_steps = dwa_loaded.deepcopy()
delay_axis = dwa_loaded_steps.get_axis_from_index(1)[0]
delay_axis.data = delay_axis.create_simple_linear_data(len(delay_axis))
delay_axis.label = 'steps'
delay_axis.units = ''

This delay axis is for the moment in mm and reversed (the stage is going backwards to increase the delay). Let’s recreate
a flipped axis with seconds as units.

dwa_loaded_fs = dwa_loaded.deepcopy()
delay_axis = dwa_loaded_fs.get_axis_from_index(1)[0]
delay_axis.data = - 2 * delay_axis.get_data() / 1000 / LIGHT_SPEED # /1000 because the␣
→˓dsiplacement unit
of the stage is in mm and the speed of light in m/s
delay_axis.data -= delay_axis.get_data()[0]
delay_axis.units = 's'
print(delay_axis.get_data()[0:10])

[0.00000000e+00 1.33333333e-13 2.66666667e-13 4.00000000e-13
5.33333333e-13 6.66666667e-13 8.00000000e-13 9.33333333e-13
1.06666667e-12 1.20000000e-12]

dwa_loaded_fs.plot('qt')

Fig. 7.177: python

7.5. Tutorials 249

PyMoDAQ Documentation, Release 4.2.0

Data Analysis

Now we got our data, one can extract infos from it

• life-time of the electrons -> phonons thermalization

• Oscillation period of the phonons vibration

To do this, one will properly slice the data correpsonding to the electrons and the one corresponding to the phonons.
To get the scan index to use for slicing, one will plot the raw data as a function of scan steps and extract the index using
ROIs

dwa_loaded_steps.plot('qt')

Fig. 7.178: python

Slicing the data

The ROi Manager (on the right, not visible here) tell us to use:

indexes_electrons = (70, 390)
indexes_phonons = (100, 300)
indexes_average = (0, 40) # we are not using all the averaging because the gold
film seems to be dying as time goes on...

250 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

First we slice the data over the average indexes and the electron indexes This is done easily using the isig slicer (sig
for signal axes. For navigation one should use the inav slicer). Those slicers return a DataWithAxes object where
data and axes have been sliced. Then we immediately apply the mean method over the average axis (index 0) to get 1D
dimensionality data:

dwa_electrons = dwa_loaded_fs.isig[slice(*indexes_average), slice(*indexes_electrons)].
→˓mean(0)
print(dwa_electrons)

dwa_phonons = dwa_loaded_fs.isig[slice(*indexes_average), slice(*indexes_phonons)].
→˓mean(0)
print(dwa_phonons)

<DataWithAxes: MAG <len:1> (|320)>
<DataWithAxes: MAG <len:1> (|200)>

dte = DataToExport('mydata', data=[dwa_electrons, dwa_phonons])
print(dte)
dte.plot('qt')

DataToExport: mydata <len:2>
* <DataWithAxes: MAG <len:1> (|320)>
* <DataWithAxes: MAG <len:1> (|200)>

Fig. 7.179: python

7.5. Tutorials 251

PyMoDAQ Documentation, Release 4.2.0

Fitting the Data

Electrons:

def my_lifetime(x, A, B, C, tau):
return A + C * np.exp(-(x - B)/tau)

time_axis = dwa_electrons.axes[0].get_data()
initial_guess = (2e-7, 10e-12, 7e-6, 3e-11)

dwa_electrons_fitted = dwa_electrons.fit(my_lifetime, initial_guess=initial_guess)
dwa_electrons_fitted.append(dwa_electrons)
dwa_electrons_fitted.plot('qt')

<pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D at 0x2ae0556cb80>

Fig. 7.180: python

One get a life time of about:

f'Life time: {dwa_electrons_fitted.fit_coeffs[0][3] *1e12} ps'

'Life time: 1.0688184683663233 ps'

252 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Phonons:

For the phonons, it seems we have to analyse oscillations. The best for this is a Fourier Transform analysis. However
because of the sparse scan the sampling at the begining is different from the one at the end. We’ll have to resample our
data on a regular grid before doing Fourier Transform

Resampling

from pymodaq.utils import math_utils as mutils
from pymodaq.utils.data import Axis
phonon_axis_array = dwa_phonons.get_axis_from_index(0)[0].get_data()
phonon_axis_array -= phonon_axis_array[0]
time_step = phonon_axis_array[-1] - phonon_axis_array[-2]
time_array_linear = mutils.linspace_step(0, phonon_axis_array[-1], time_step)
dwa_phonons_interp = dwa_phonons.interp(time_array_linear)

dwa_phonons_interp.plot('qt')

FFT

dwa_fft = dwa_phonons_interp.ft()

dwa_phonons_fft = DataToExport('FFT', data=[
dwa_phonons_interp,
dwa_fft.abs(),
dwa_fft.abs(),
dwa_fft.abs()])

dwa_phonons_fft.plot('qt')

Using advanced math processors to extract data from dwa:

from pymodaq.post_treatment.process_to_scalar import DataProcessorFactory
data_processors = DataProcessorFactory()
print('Implemented possible processing methods, can be applied to any data type and␣
→˓dimensionality')
print(data_processors.keys)
dwa_processed = data_processors.get('argmax').process(dwa_fft.abs())
print(dwa_processed[0])

Implemented possible processing methods, can be applied to any data type and␣
→˓dimensionality
['argmax', 'argmean', 'argmin', 'argstd', 'max', 'mean', 'min', 'std', 'sum']
[0.]

or using builtin math methods applicable only to 1D data:

dte_peaks = dwa_fft.abs().find_peaks(height=1e-6)
print(dte_peaks[0].axes[0].get_data() / (2*np.pi))

dte_peaks[0].axes[0].as_dwa().plot('matplotlib', 'o-r') # transforms an Axis object to␣
(continues on next page)

7.5. Tutorials 253

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.181: Interpolated data on a regular time axis

254 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Fig. 7.182: Temporal data and FFT amplitude (top). Zoom over the two first harmonics (bottom)

(continued from previous page)

→˓dwa for quick plotting

dte_peaks[0].get_data_as_dwa(0).plot('matplotlib', 'o-b') # select part of the data␣
→˓object for "selected" plotting

[-1.06435192e+11 -5.32175961e+10 0.00000000e+00 5.32175961e+10
1.06435192e+11]

7.5. Tutorials 255

PyMoDAQ Documentation, Release 4.2.0

256 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

From this one get a fundamental frequency of 5.32e10 Hz that corresponds to a period of:

T_phonons = 1/5.32e10
print(f'Period T = {T_phonons * 1e12} ps')

Period T = 18.796992481203006 ps

From this period and the speed of sound in gold, one can infer the gold film thickness:

thickness = T_phonons / 2 * SOUND_SPEED_GOLD
print(f"Gold Thickness: {thickness * 1e9} nm")

Gold Thickness: 30.45112781954887 nm

7.5. Tutorials 257

PyMoDAQ Documentation, Release 4.2.0

Summary

To summarize this tutorial, we learned to:

• easily load data using the DataLoader object and its load_data method (also using the convenience walk_nodes
method to print all nodes from a file)

• easily plot loaded data using the plot method (together with the adapted backend)

• manipulate the data using its axes, navigation indexes, slicers and built in mathematical methods such as mean,
‘abs’, Fourier transforms, interpolation, fit. . .

For more details, see Data Management

7.6 Who use it?

• PyMoDAQ is used as the core acquisition program of several experiments at CEMES/CNRS and the main inter-
face of its HC-IUMI Ultrafast Electron Microscope

• The attolab platform at CEA Saclay started using it in 2019

7.6.1 Institutions using PyMoDAQ

7.6.2 What they think of PyMoDAQ?

• “The use of PyMoDAQ has really accelerated our experimental development by allowing to develop a modular
acquisition system involving very different motorized stages or piezoactuators. It is now running everyday on
our experiments, 100% reliable”, Dr Arnaud Arbouet, Senior Researcher CEMES/CNRS

• Pymodaq is a python framework for data acquisition. If your specific device driver is not yet implemented, that
is the only thing you will have to do. Pymodaq take care of the rest. Graphical user interface, synchronization
of the instruments and so on, is already implemented. Once you have implemented your driver, you can release
it for the community. That is how Pymodaq will get more and more complete. Of course you need to invest a bit
of your time to get used to it, but it is worth it!, Dr David Bresteau, Researcher at CEA Saclay, Attolab platform.

• We are setting up Pymodaq on our scanning NV microscopy and deep UV spectroscopy experiments and we
appreciate a lot its easy installation, its modularity and the automatic generation of the graphical interfaces, as
well as the strong community support. The updates of the modules, the training sessions organized regularly
and the numerous video tutorials also reflect the vitality of the community. We also start contributing by adding
our own instruments and functionalities to share them with all the users. We fully support this great project! A.
Finco, P. Valvin - L2C/S2QT

258 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

Note: If you are using PyMoDAQ and would like to help to promote the project, please send your feedback to se-
bastien.weber@cemes.fr and we will include your message or logo on this page. If you wish to contribute, see Con-
tributing.

Note: If you wish to communicate with users of PyMoDAQ, a mailing list exists: pymodaq@services.cnrs.fr

7.6.3 Some Scientific publication on/using PyMoDAQ

• Weber, S. J. PyMoDAQ: An open-source Python-based software for modular data acquisition. Review of Scien-
tific Instruments, 92(4), 045104 (2021).

• Luttmann, M. et al. In Situ Sub-50-Attosecond Active Stabilization of the Delay Between Infrared and Extreme-
Ultraviolet Light Pulses. Physical Review Applied, 15(3), 034036 (2021).

• S. Meuret et al. Time-resolved cathodoluminescence in an ultrafast transmission electron microscope Appl.
Phys. Lett. 119, 062106 (2021)

• F. Houdellier et al. Development of a high brightness ultrafast Transmission Electron Microscope based on a
laser-driven cold field emission source Ultramicroscopy, 186, 128 (2018).

• D. Bresteau et al. FAB10: a user-oriented bandwidth-tunable extreme ultraviolet lightsource for investigations
of femtosecond to attosecond dynamics in gas and condensed phases Eur. Phys. J. Spec. Top. (2023)

7.7 Glossary Terms

Here are some definitions of the specific terms used in the PyMoDAQ documentation:

Actuator
Any instrument with a controllable varying parameter

Detector
Any instrument generating data to be recorded

Control Modules
GUI for actuators and detectors, with subsequent classes: DAQ_Move and DAQ_Viewer, see Control Modules

DashBoard
GUI allowing configuration and loading of a preset of actuators and detectors. You can also start extensions from
its GUI such as the DAQ Scan, DAQ Logger, . . . See DashBoard

Preset
XML file containing the number and type of control modules to be used for a given experiment. You can create,
modify and load a preset from the Dashboard

DataSource
Enum informing about the source of the data object, for instance raw from a detector or processed from mathe-
matical functions (from ROI, . . .)

DataDim
Enum for the dimensionality representation of the data object, for instance scalars have a dimensionality Data0D,
waveforms or vectors have Data1D dimensionality, camera’s data are Data2D, and hyperspectral (or other) are
DataND

7.7. Glossary Terms 259

mailto:sebastien.weber@cemes.fr
mailto:sebastien.weber@cemes.fr
mailto:pymodaq@services.cnrs.fr
https://aip.scitation.org/doi/full/10.1063/5.0032116
https://aip.scitation.org/doi/full/10.1063/5.0032116
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.034036
https://doi.org/10.1063/5.0057861
https://doi.org/10.1063/5.0057861
https://doi.org/10.1016/j.ultramic.2017.12.015
https://doi.org/10.1140/epjs/s11734-022-00752-x

PyMoDAQ Documentation, Release 4.2.0

DataDistribution
Enum for the distribution type of the data object. Data can be stored on linear grid (think about an oscilloscope
trace having a fixed time interval, or camera having a regular grid of pixels) or stored on non uniform and non
linear “positions”, for instance data taken at random time intervals. Data can therefore have two distributions:
uniform or spread.

Signal
Signal and Navigation is a term taken from the hyperspy package vocabulary. It is useful when dealing with
multidimensional data. Imagine data you obtained from a camera (256x1024 pixels) during a linear 1D scan of
one actuator (100 steps). The final shape of the data would be (100, 256, 1024). The first dimension corresponds
to a Navigation axis (the scan), and the rest to Signal axes (the real detector’s data). The corresponding data has
a dimensionality of DataND and a representation of (100|256,1024).

Navigation
See above.

dwa
Short name for DataWithAxes object

dte
Short name for DataToExport object

Plugin
A plugin is a python package whose name is of the type: pymodaq_plugins_apluginname containing function-
alities to be added to PyMoDAQ

Note: A plugin may contains added functionalities such as:

• Classes to add a given instrument: allows a given instrument to be added programmatically in a Control
Modules graphical interface

• Instrument drivers located in a hardware folder: contains scripts/classes to ease communication with the in-
strument. Could be third party packages such as Pymeasure

• PID models located in a models folder: scripts and classes defining the behaviour of a given PID loop including
several actuators or detectors, see The PID Model

• Extensions located in a extensions folder: scripts and classes allowing to build extensions on top of the Dash-
Board

Entry points python mechanism is used to let know PyMoDAQ of installed Instrument, PID models or extensions
plugins

Module
A module in the python sense is an importable object either a directory containing an __init__.py file or a python
file containing data, functions or classes.

Note: If there is code that can be executed within your module but you don’t want it to be executed when importing,
make sure to protect the execution using a : if __name__ == '__main__': clause.

260 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

7.8 Library Reference

7.8.1 Control modules

ControlModule() Abstract Base class common to both DAQ_Move and
DAQ_Viewer control modules

ControlModuleUI(parent) Base Class for ControlModules UIs

ControlModule base classes

Both DAQ_Move and DAQ_Viewer control modules share some specificities and inherit from a base class: the Con-
trolModule

class pymodaq.control_modules.utils.ControlModule

Abstract Base class common to both DAQ_Move and DAQ_Viewer control modules

init_signal

This signal is emitted when the chosen hardware is correctly initialized

Type
Signal[bool]

command_hardware

This signal is used to communicate with the instrument plugin within a separate thread

Type
Signal[ThreadCommand]

command_tcpip

This signal is used to communicate through the TCP/IP Network

Type
Signal[ThreadCommand]

quit_signal

This signal is emitted when the user requested to stop the module

Type
Signal[]

Attributes

initialized_state
bool: Check if the module is initialized

module_type
str: Get the module type, either DAQ_Move or DAQ_viewer

title
str: get the title of the module

ui

7.8. Library Reference 261

https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

Methods

grab() Programmatic entry to grab data from detectors or
current value from actuator

init_hardware([do_init]) Programmatic entry to initialize/deinitialize the con-
trol module

init_hardware_ui([do_init]) Programmatic entry to simulate a click on the user
interface init button

manage_ui_actions(action_name, attribute,
value)

Method to manage actions for the UI (if any).

quit_fun() Programmatic entry to quit the controle module
show_config(config) Display in a tree the current configuration
show_log() Open the log file in the default text editor
stop_grab() Programmatic entry to stop data grabbing from de-

tectors or current value polling from actuator
thread_status(status[, control_module_type]) Get back info (using the ThreadCommand object)

from the hardware
update_status(txt[, log]) Display a message in the ui status bar and eventually

log the message

append_data
command_hardware
custom_sig
init_signal
insert_data
quit_signal
status_sig

grab()

Programmatic entry to grab data from detectors or current value from actuator

init_hardware(do_init=True)
Programmatic entry to initialize/deinitialize the control module

Parameters
do_init (bool) – if True initialize the selected hardware else deinitialize it

See also:

init_hardware_ui()

init_hardware_ui(do_init=True)
Programmatic entry to simulate a click on the user interface init button

Parameters
do_init (bool) – if True initialize the selected hardware else deinitialize it

262 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

Notes

This method should be preferred to init_hardware()

manage_ui_actions(action_name: str, attribute: str, value)
Method to manage actions for the UI (if any).

Will try to apply the given value to the given attribute of the corresponding action

Parameters

• action_name (str) –

• attribute (method signature or attribute) –

• value (object) – actual type and value depend on the triggered attribute

Examples

>>>manage_ui_actions(‘quit’, ‘setEnabled’, False) # will disable the quit action (button) on the UI

quit_fun()

Programmatic entry to quit the controle module

show_config(config: Config)→ Config
Display in a tree the current configuration

show_log()

Open the log file in the default text editor

stop_grab()

Programmatic entry to stop data grabbing from detectors or current value polling from actuator

thread_status(status: ThreadCommand, control_module_type='detector')
Get back info (using the ThreadCommand object) from the hardware

And re-emit this ThreadCommand using the custom_sig signal if it should be used in a higher level module

Parameters
status (ThreadCommand) –

The info returned from the hardware, the command (str) can be either:

• Update_Status: display messages and log info

• close: close the current thread and delete corresponding attribute on cascade.

• update_settings: Update the “detector setting” node in the settings tree.

• update_main_settings: update the “main setting” node in the settings tree

• raise_timeout:

• show_splash: Display the splash screen with attribute as message

• close_splash

• show_config: display the plugin configuration

update_status(txt, log=True)
Display a message in the ui status bar and eventually log the message

Parameters

7.8. Library Reference 263

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

PyMoDAQ Documentation, Release 4.2.0

• txt (str) – message to display

• log (bool) – if True, log the message in the logger

property initialized_state

Check if the module is initialized

Type
bool

property module_type

Get the module type, either DAQ_Move or DAQ_viewer

Type
str

property title

get the title of the module

Type
str

The same is also true for the UI of these modules sharing a common UI base class: the ControlModuleUI

class pymodaq.control_modules.utils.ControlModuleUI(parent)
Base Class for ControlModules UIs

command_sig

This signal is emitted whenever some actions done by the user has to be applied on the main module.
Possible commands are: See specific implementation

Type
Signal[Threadcommand]

See also:

daq_move_ui.DAQ_Move_UI, daq_viewer_ui.DAQ_Viewer_UI

Methods

do_init([do_init]) Programmatically press the Init button API entry
:param do_init: will fire the Init button depending on
the argument value and the button check state :type
do_init: bool

send_init(checked) Should be implemented to send to the main app the
fact that someone (un)checked init.

command_sig
display_status

do_init(do_init=True)
Programmatically press the Init button API entry :param do_init: will fire the Init button depending on the
argument value and the button check state :type do_init: bool

264 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

send_init(checked: bool)
Should be implemented to send to the main app the fact that someone (un)checked init.

Summary of the classes dealing with the DAQ_Viewer control module:

DAQ_Viewer([parent, title, daq_type, ...]) Main PyMoDAQ class to drive detectors
DAQ_Detector(title, settings_parameter, ...) Worker class to control the instrument plugin
DAQ_Viewer_UI(parent[, title, daq_type, ...]) DAQ_Viewer user interface.

DAQ_Viewer class

This documentation highlights the useful entry and output points that you may use in your applications.

class pymodaq.control_modules.daq_viewer.DAQ_Viewer(parent=None, title='Testing',
daq_type='DAQ0D', dock_settings=None,
dock_viewer=None)

Bases: ParameterManager, ControlModule

Main PyMoDAQ class to drive detectors

Qt object and generic UI to drive actuators. The class is giving you full functionality to select (daq_detector),
initialize detectors (init_hardware), grab or snap data (grab_data) and save them (save_new, save_current). If a
DockArea is given as parent widget, the full User Interface (DAQ_Viewer_UI) is loaded allowing easy control
of the instrument.

grab_done_signal

Signal emitted when the data from the plugin (and eventually from the data viewers) has been received.
To be used by connected objects.

Type
Signal[DataToExport]

custom_sig

use this to propagate info/data coming from the hardware plugin to another object

Type
Signal[ThreadCommand]

overshoot_signal

This signal is emitted when some 0D data from the plugin is higher than the overshoot threshold set in the
settings

Type
Signal[bool]

See also:

ControlModule, DAQ_Viewer_UI, ParameterManager

7.8. Library Reference 265

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

Notes

A particular signal from the 2D DataViewer is directly connected to the plugin: ROI_select_signal. The position
and size of the corresponding ROI is then directly transferred to a plugin function named ROISelect that you
have to create if one want to receive infos from the ROI

Attributes

Naverage
bkg

Get the background data object

current_data
Get the current data stored internally

daq_type
Get/Set the daq_type as a DAQTypesEnum

daq_types
List of available DAQ_TYPES as keys of the DAQTypesEnum

detector
str: Get/Set the currently selected detector among available detectors

detectors
list of str: List of available detectors of the current daq_type (DAQTypesEnum)

do_bkg
bool: Get/Set if background subtraction should be done

grab_state
bool: Get the current grabbing status

viewer_docks
list of Viewer Docks from the UI

viewers
list: Get/Set the Viewers (instances of real implementation of ViewerBase class) from
the UI

viewers_docks
list of Viewer Docks from the UI, for back compatibility

266 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

PyMoDAQ Documentation, Release 4.2.0

Methods

append_data([dte, where]) Appends current DataToExport to a DetectorEnlarge-
ableSaver

child_added(param, data) Adds a child in the settings attribute
connect_tcp_ip() Init a TCPClient in a separated thread to communi-

cate with a distant TCp/IP Server
daq_type_changed_from_ui(daq_type) Apply changes from the selection of a different DAQ-

TypesEnum in the UI
get_scaling_options() Create axes scaling options depending on the

('main_settings', 'axes') settings
grab() Launch a continuous grab
grab_data([grab_state, send_to_tcpip, ...]) Generic method to grab or snap data from the selected

(and initialized) detector
init_hardware([do_init]) Init the selected detector
insert_data(indexes[, where, distribution]) Insert DataToExport to a DetectorExtendedSaver at

specified indexes
load_data() Opens a H5 file in the H5Browser module
param_deleted(param) Remove a child from the settings attribute
process_tcpip_cmds(status) Receive commands from the TCP Server (if con-

nected) and process them
process_ui_cmds(cmd) Process commands sent by actions done in the ui
quit_fun() Quit the application, closing the hardware and other

modules
save_current() Save current data into a h5file
save_new() Snap data and save them into a h5file
set_data_to_viewers(dte[, temp]) Process data dimensionality and send appropriate

data to their data viewers
setup_continuous_saving() Configure the objects dealing with the continuous

saving mode
show_data(dte) Send data to their dedicated viewers
show_temp_data(data) Send data to their dedicated viewers but those will not

emit processed data signal
snap() Launch a single grab
snapshot([pathname, dosave, send_to_tcpip]) Do one single grab (snap) and eventually save the

data.
stop() Stop the current continuous grabbing
stop_grab() Stop the current continuous grabbing and unchecked

the stop button of the UI
take_bkg() Do a snap and store data to be used as background

into an attribute: self._bkg
thread_status(status) Get back info (using the ThreadCommand object)

from the hardware
value_changed(param) ParameterManager subclassed method.

7.8. Library Reference 267

PyMoDAQ Documentation, Release 4.2.0

custom_sig
data_saved
detector_changed_from_ui
detectors_changed_from_ui
grab_done_signal
grab_status
overshoot_signal
update_plugin_config

append_data(dte: Optional[DataToExport] = None, where: Optional[Union[Node, str]] = None)
Appends current DataToExport to a DetectorEnlargeableSaver

Method to be used when performing continuous saving into a h5file (continuous mode or DAQ_Logger)

Parameters

• dte (DataToExport) – not really used

• where (Node or str) –

See also:

DetectorEnlargeableSaver

child_added(param, data)
Adds a child in the settings attribute

Parameters

• param (Parameter) – the parameter where child will be added

• data (Parameter) – the child parameter

connect_tcp_ip()

Init a TCPClient in a separated thread to communicate with a distant TCp/IP Server

Use the settings: ip_address and port to specify the connection

See also:

TCPServer

daq_type_changed_from_ui(daq_type: DAQTypesEnum)

Apply changes from the selection of a different DAQTypesEnum in the UI

Parameters
daq_type (DAQTypesEnum) –

get_scaling_options()

Create axes scaling options depending on the (‘main_settings’, ‘axes’) settings

Return type
Tuple[Axis]

grab()

Launch a continuous grab

grab_data(grab_state=False, send_to_tcpip=False, snap_state=False)
Generic method to grab or snap data from the selected (and initialized) detector

Parameters

268 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

• grab_state (bool) – Defines the grab status: if True: do live grabbing if False stops
the grab

• send_to_tcpip (bool) – If True, send the grabbed data through the TCP/IP pipe

• snap_state (bool) – if True performs a single grab

init_hardware(do_init=True)
Init the selected detector

Parameters
do_init (bool) – If True, create a DAQ_Detector instance and move it into a separated
thread, connected its signals/slots to the DAQ_Viewer object (self) If False, force the in-
strument to close and kill the Thread (still not done properly in some cases)

insert_data(indexes: Tuple[int], where: Optional[Union[Node, str]] = None,
distribution=DataDistribution.uniform)

Insert DataToExport to a DetectorExtendedSaver at specified indexes

Method to be used when saving into an already initialized array within a h5file (DAQ_Scan for instance)

Parameters

• indexes (tuple(int)) – The indexes within the extended array where to place these
data

• where (Node or str) –

• distribution (DataDistribution enum) –

See also:

DAQ_Scan, DetectorExtendedSaver

static load_data()

Opens a H5 file in the H5Browser module

Convenience static method.

param_deleted(param)

Remove a child from the settings attribute

Parameters
param (Parameter) – a given parameter whose value has been changed by user

process_tcpip_cmds(status)
Receive commands from the TCP Server (if connected) and process them

Parameters
status (ThreadCommand) – Possible commands are: * ‘Send Data: to trigger a snapshot
* ‘connected’: show that connection is ok * ‘disconnected’: show that connection is not
OK * ‘Update_Status’: update a status command * ‘set_info’: receive settings from the
server side and update them on this side

See also:

connect_tcp_ip, TCPServer

process_ui_cmds(cmd: ThreadCommand)
Process commands sent by actions done in the ui

Parameters
cmd (ThreadCommand) –

7.8. Library Reference 269

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

Possible values are:

• init

• quit

• grab

• snap

• stop

• show_log

• detector_changed

• daq_type_changed

• save_current

• save_new

• do_bkg

• take_bkg

• viewers_changed

• show_config

quit_fun()

Quit the application, closing the hardware and other modules

save_current()

Save current data into a h5file

save_new()

Snap data and save them into a h5file

set_data_to_viewers(dte: DataToExport, temp=False)
Process data dimensionality and send appropriate data to their data viewers

Parameters

• dte (DataToExport) –

• temp (bool) – if True notify the data viewers to display data as temporary (meaning
not exporting processed data from roi)

See also:

ViewerBase, Viewer0D, Viewer1D, Viewer2D

setup_continuous_saving()

Configure the objects dealing with the continuous saving mode

show_data(dte: DataToExport)
Send data to their dedicated viewers

Slot receiving data from plugins emitted with the data_grabed_signal Process the data as specified in the
settings, display them into the dedicated data viewers depending on the settings:

• create a container (OrderedDict _data_to_save_export) with info from this DAQ_Viewer (title), a
timestamp. . .

• call _process_data

270 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

• do background subtraction if any

• check refresh time (if set in the settings) to send or not data to data viewers

• either send to the data viewers (if refresh time is ok and/or show data option in settings is set)

• either

– send grab_done_signal (to the slot _save_export_data) to save the data

Parameters
dte (DataToExport) –

See also:

_init_show_data, _process_data

show_temp_data(data: DataToExport)
Send data to their dedicated viewers but those will not emit processed data signal

Slot receiving data from plugins emitted with the data_grabed_signal_temp

Parameters
data (list of DataFromPlugins) –

snap()

Launch a single grab

snapshot(pathname=None, dosave=False, send_to_tcpip=False)
Do one single grab (snap) and eventually save the data.

Parameters

• pathname (str or Path object) – The path where to save data

• dosave (bool) – Do save or just grab data

• send_to_tcpip (bool) – If True, send the grabbed data through the TCP/IP pipe

stop()

Stop the current continuous grabbing

stop_grab()

Stop the current continuous grabbing and unchecked the stop button of the UI

See also:

stop()

take_bkg()

Do a snap and store data to be used as background into an attribute: self._bkg

The content of the bkg will be saved if data is further saved with do_bkg property set to True

thread_status(status: ThreadCommand)
Get back info (using the ThreadCommand object) from the hardware

And re-emit this ThreadCommand using the custom_sig signal if it should be used in a higher level module

Commands valid for all control modules are defined in the parent class, here are described only the specific
ones

Parameters
status (ThreadCommand) –

7.8. Library Reference 271

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

The info returned from the hardware, the command (str) can be either:

• ini_detector: update the status with “detector initialized” value and init state if at-
tribute not null.

• grab : emit grab_status(True)

• grab_stopped: emit grab_status(False)

• init_lcd: display a LCD panel

• lcd: display on the LCD panel, the content of the attribute

• stop: stop the grab

value_changed(param: Parameter)
ParameterManager subclassed method. Process events from value changed by user in the UI Settings

Parameters
param (Parameter) – a given parameter whose value has been changed by user

property bkg: DataToExport

Get the background data object

property current_data: DataToExport

Get the current data stored internally

property daq_type: DAQTypesEnum

Get/Set the daq_type as a DAQTypesEnum

Update the detector property with the list of available detectors of a given daq_type

property daq_types: List[str]

List of available DAQ_TYPES as keys of the DAQTypesEnum

property detector: str

Get/Set the currently selected detector among available detectors

Type
str

property detectors: str

List of available detectors of the current daq_type (DAQTypesEnum)

Type
list of str

property do_bkg: bool

Get/Set if background subtraction should be done

Type
bool

property grab_state

Get the current grabbing status

Type
bool

property viewer_docks: List[Dock]

list of Viewer Docks from the UI

272 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List

PyMoDAQ Documentation, Release 4.2.0

property viewers: List[ViewerBase]

Get/Set the Viewers (instances of real implementation of ViewerBase class) from the UI

Type
list

property viewers_docks: List[Dock]

list of Viewer Docks from the UI, for back compatibility

DAQ_Detector class

The Detector class is an object leaving in the plugin thread and responsible for the communication between
DAQ_Viewer and the plugin itself

class pymodaq.control_modules.daq_viewer.DAQ_Detector(title, settings_parameter, detector_name)
Worker class to control the instrument plugin

detector

Type
real instance of the instrument plugin class

controller

wrapper object used to control a given instrument in the instrument plugin

Type
DAQ_Viewer_base

controller_adress

unique integer used to identify a controller shared among multiple instrument plugins

Type
int

Attributes

title

Methods

close() Call the close method of the instrument plugin class
data_ready(data) Process the data received from the instrument plugin

class
emit_temp_data(data) Convenience method to export temporary data using

the data_detector_temp_sig Signal
grab_data([Naverage, live]) General method to grab data from the instrument plu-

gin class
ini_detector([params_state, controller]) Initialize an instrument plugin class and tries to apply

preset settings
queue_command(command) Transfer command from the main module to the hard-

ware module
single([Naverage]) Convenience function to grab a single set of data
update_settings(settings_parameter_dict) Apply a Parameter serialized as a dict to the instru-

ment plugin class or to self

7.8. Library Reference 273

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

PyMoDAQ Documentation, Release 4.2.0

data_detector_sig
data_detector_temp_sig
status_sig

close()

Call the close method of the instrument plugin class

data_ready(data: DataToExport)
Process the data received from the instrument plugin class

Processing here is eventual software averaging if it was not possible in the instrument plugin class

Parameters
data (DataToExport) –

emit_temp_data(data: DataToExport)
Convenience method to export temporary data using the data_detector_temp_sig Signal

Parameters
data (DataToExport) –

grab_data(Naverage=1, live=True, **kwargs)
General method to grab data from the instrument plugin class

Will check if the plugin class can do hardware averaging (if NAverage > 1) and and live_mode, otherwise
do both software wise here

Parameters

• Naverage (int) – The number of data to average

• live (bool) – Try to run the instrument plugin class grabbing in live mode

• kwargs (optional named arguments passed to the grab_data method
of the instrument plugin class) –

ini_detector(params_state=None, controller=None)
Initialize an instrument plugin class and tries to apply preset settings

When the instrument is initialized from the Dashboard using a Preset, tries to apply the preset settings to
the instrument instance

Parameters

• params_state (dict) –

• controller (wrapper) –

queue_command(command: ThreadCommand)
Transfer command from the main module to the hardware module

Parameters
command (ThreadCommand) – The specific (or generic) command (str) to pass to the hard-
ware, either: * ini_detector * close * grab * single * stop_grab * stop_all * update_scanner
* move_at_navigator * update_wait_time * get_axis * any string that the hardware is able
to understand

single(Naverage=1, *args, **kwargs)
Convenience function to grab a single set of data

Parameters

274 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

PyMoDAQ Documentation, Release 4.2.0

• Naverage (int) – The number of data to average before displaying

• kwargs (optional named arguments) –

update_settings(settings_parameter_dict)
Apply a Parameter serialized as a dict to the instrument plugin class or to self

Parameters
settings_parameter_dict (dict) – dictionary serializing a Parameter object

Examples

If the parameter is of the form (‘detector_settings’, ‘xxx’) then the parameter is sent to the instrument
plugin class.

The Viewer UI class

This object is the User Interface of the DAQ_Viewer, allowing easy access to all of the DAQ_Viewer functionnalities
in a generic interface.

class pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI(parent, title='DAQ_Viewer',
daq_type='DAQ2D',
dock_settings=None,
dock_viewer=None)

DAQ_Viewer user interface.

This class manages the UI and emit dedicated signals depending on actions from the user

command_sig

This signal is emitted whenever some actions done by the user has to be applied on the main module.
Possible commands are:

• init

• quit

• grab

• snap

• stop

• show_log

• detector_changed

• daq_type_changed

• save_current

• save_new

Type
Signal[Threadcommand]

display_value(value: float)
Update the display of the actuator’s value on the UI

7.8. Library Reference 275

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float

PyMoDAQ Documentation, Release 4.2.0

do_init()

Programmatic init

See also:

pymodaq.utils.daq_utils.ThreadCommand

Attributes

daq_type
daq_types
data_ready
detector
detector_init

bool: the status of the init LED.

detectors

Methods

connect_things() Connect actions and/or other widgets signal to meth-
ods

do_grab([do_grab]) Programmatically press the Grab button API entry
:param do_grab: will fire the Init button depending
on the argument value and the button check state :type
do_grab: bool

do_init([do_init]) Programmatically press the Init button API entry
:param do_init: will fire the Init button depending on
the argument value and the button check state :type
do_init: bool

do_snap() Programmatically press the Snap button API entry
do_stop() Programmatically press the Stop button API entry
send_init(checked) Should be implemented to send to the main app the

fact that someone (un)checked init.
setup_actions() Method where to create actions to be subclassed.
setup_docks() Mandatory method to be subclassed to setup the

docks layout
update_viewers(viewers_type)

param viewers_type

add_setting_tree
close
command_sig
show_controls
show_settings

connect_things()

Connect actions and/or other widgets signal to methods

do_grab(do_grab=True)
Programmatically press the Grab button API entry :param do_grab: will fire the Init button depending on
the argument value and the button check state :type do_grab: bool

276 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

do_init(do_init=True)
Programmatically press the Init button API entry :param do_init: will fire the Init button depending on the
argument value and the button check state :type do_init: bool

do_snap()

Programmatically press the Snap button API entry

do_stop()

Programmatically press the Stop button API entry

send_init(checked: bool)
Should be implemented to send to the main app the fact that someone (un)checked init.

setup_actions()

Method where to create actions to be subclassed. Mandatory

Examples

>>> self.add_action('Quit', 'close2', "Quit program")
>>> self.add_action('Grab', 'camera', "Grab from camera", checkable=True)
>>> self.add_action('Load', 'Open', "Load target file (.h5, .png, .jpg) or␣
→˓data from camera", checkable=False)
>>> self.add_action('Save', 'SaveAs', "Save current data", checkable=False)

See also:

ActionManager.add_action

setup_docks()

Mandatory method to be subclassed to setup the docks layout

Examples

>>>self.docks[‘ADock’] = gutils.Dock(‘ADock name’) >>>self.dockarea.addDock(self.docks[‘ADock’])
>>>self.docks[‘AnotherDock’] = gutils.Dock(‘AnotherDock name’) >>>self.dockarea.addDock(self.docks[‘AnotherDock”’],
‘bottom’, self.docks[‘ADock’])

See also:

pyqtgraph.dockarea.Dock

update_viewers(viewers_type: List[ViewersEnum])

Parameters

• viewers_type (List[ViewersEnum]) –

• viewers_name (List[str] or None) –

• force (bool) – if True remove all viewers before update else check if new viewers
type are compatible with old ones

property detector_init

the status of the init LED.

Type
bool

7.8. Library Reference 277

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

pymodaq.control_modules.daq_move.
DAQ_Move([...])

Main PyMoDAQ class to drive actuators

pymodaq.control_modules.daq_move.
DAQ_Move_Hardware(...)
pymodaq.control_modules.
move_utility_classes.params

Built-in mutable sequence.

The DAQ_Move Class

This documentation highlights the useful entry and output points that you may use in your applications.

class pymodaq.control_modules.daq_move.DAQ_Move(parent=None, title='DAQ Move')
Main PyMoDAQ class to drive actuators

Qt object and generic UI to drive actuators.

init_signal

This signal is emitted when the chosen actuator is correctly initialized

Type
Signal[bool]

move_done_signal

This signal is emitted when the chosen actuator finished its action. It gives the actuator’s name and current
value

Type
Signal[str, DataActuator]

bounds_signal

This signal is emitted when the actuator reached defined limited boundaries.

Type
Signal[bool]

See also:

ControlModule, ParameterManager

Attributes

actuator
str: the selected actuator’s type

initialized_state
bool: status of the actuator’s initialization (init or not)

move_done_bool
bool: status of the actuator’s status (done or not)

278 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

Methods

get_actuator_value() Get the current actuator value via the
"get_actuator_value" command send to the hardware

get_continuous_actuator_value([get_value]) Start the continuous getting of the actuator's value
grab() Programmatic entry to grab data from detectors or

current value from actuator
move(move_command) Generic method to trigger the correct action on the

actuator
move_abs(value[, send_to_tcpip]) Move the connected hardware to the absolute value
move_home([send_to_tcpip]) Move the connected actuator to its home value (if

any)
move_rel(rel_value[, send_to_tcpip]) Move the connected hardware to the relative value
quit_fun() Programmatic quitting of the current instance of

DAQ_Move
stop_motion() Stop any motion
thread_status(status) Get back info (using the ThreadCommand object)

from the hardware

get_actuator_value()

Get the current actuator value via the “get_actuator_value” command send to the hardware

Returns nothing but the move_done_signal will be send once the action is done

get_continuous_actuator_value(get_value=True)
Start the continuous getting of the actuator’s value

Parameters
get_value (bool) – if True start the timer to periodically fetch the actuator’s value, else
stop it

Notes

The current timer period is set by the refresh value ‘refresh_timeout’ in the actuator main settings.

grab()

Programmatic entry to grab data from detectors or current value from actuator

init_hardware_ui(do_init=True)
Programmatic entry to simulate a click on the user interface init button

Parameters
do_init (bool) – if True initialize the selected hardware else deinitialize it

7.8. Library Reference 279

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

Notes

This method should be preferred to init_hardware()

move(move_command: MoveCommand)
Generic method to trigger the correct action on the actuator

Parameters
move_command (MoveCommand) – MoveCommand with move_type attribute either: *
‘abs’: performs an absolute action * ‘rel’: performs a relative action * ‘home’: find the
actuator’s home

See also:

move_abs(), move_rel(), move_home(), utility_classes.MoveCommand

move_abs(value: Union[DataActuator, Number], send_to_tcpip=False)
Move the connected hardware to the absolute value

Returns nothing but the move_done_signal will be send once the action is done

Parameters

• value (ndarray) – The value the actuator should reach

• send_to_tcpip (bool) – if True, this position is send through the TCP/IP commu-
nication canal

move_home(send_to_tcpip=False)
Move the connected actuator to its home value (if any)

Parameters
send_to_tcpip (bool) – if True, this position is send through the TCP/IP communication
canal

move_rel(rel_value: Union[DataActuator, Number], send_to_tcpip=False)
Move the connected hardware to the relative value

Returns nothing but the move_done_signal will be send once the action is done

Parameters

• value (float) – The relative value the actuator should reach

• send_to_tcpip (bool) – if True, this position is send through the TCP/IP commu-
nication canal

quit_fun()

Programmatic quitting of the current instance of DAQ_Move

Des-init the actuator then close the UI parent widget

stop_motion()

Stop any motion

thread_status(status: ThreadCommand)
Get back info (using the ThreadCommand object) from the hardware

And re-emit this ThreadCommand using the custom_sig signal if it should be used in a higher level module

Commands valid for all control modules are defined in the parent class, here are described only the specific
ones

280 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/numbers.html#numbers.Number
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/numbers.html#numbers.Number
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

Parameters
status (ThreadCommand) – Possible values are:

• ini_stage: obtains info from the initialization

• get_actuator_value: update the UI current value

• move_done: update the UI current value and emits the move_done signal

• outofbounds: emits the bounds_signal signal with a True argument

• set_allowed_values: used to change the behaviour of the spinbox controlling absolute
values (see daq_move_ui.set_abs_spinbox_properties()

• stop: stop the motion

property actuator

the selected actuator’s type

Type
str

property initialized_state

status of the actuator’s initialization (init or not)

Type
bool

property move_done_bool

status of the actuator’s status (done or not)

Type
bool

The DAQ_Move UI class

This object is the User Interface of the DAQ_Viewer, allowing easy access to all of the DAQ_Viewer functionnalities
in a generic interface.

class pymodaq.control_modules.daq_move_ui.DAQ_Move_UI(parent, title='DAQ_Move')
DAQ_Move user interface.

This class manages the UI and emit dedicated signals depending on actions from the user

command_sig

This signal is emitted whenever some actions done by the user has to be applied on the main module.
Possible commands are:

• init

• quit

• get_value

• loop_get_value

• find_home

• stop

• move_abs

• move_rel

7.8. Library Reference 281

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

• show_log

• actuator_changed

• rel_value

• show_config

• show_plugin_config

Type
Signal[Threadcommand]

display_value(value: float)
Update the display of the actuator’s value on the UI

do_init()

Programmatic init

See also:

pymodaq.utils.daq_utils.ThreadCommand

Attributes

actuator
actuator_init

bool: the status of the init LED.

actuators
move_done

bool: the status of the move_done LED.

Methods

connect_things() Connect actions and/or other widgets signal to meth-
ods

do_init([do_init]) Programmatically press the Init button API entry
:param do_init: will fire the Init button depending on
the argument value and the button check state :type
do_init: bool

send_init(checked) Should be implemented to send to the main app the
fact that someone (un)checked init.

set_abs_spinbox_properties(**properties) Change the Spinbox properties
setup_actions() Method where to create actions to be subclassed.
setup_docks() Mandatory method to be subclassed to setup the

docks layout

close
display_value
emit_move_abs
emit_move_rel
enable_move_buttons
set_settings_tree
show_data

282 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#float

PyMoDAQ Documentation, Release 4.2.0

connect_things()

Connect actions and/or other widgets signal to methods

do_init(do_init=True)
Programmatically press the Init button API entry :param do_init: will fire the Init button depending on the
argument value and the button check state :type do_init: bool

send_init(checked)
Should be implemented to send to the main app the fact that someone (un)checked init.

set_abs_spinbox_properties(**properties)
Change the Spinbox properties

Parameters
properties (dict or named parameters) – possible keys are :

• decimals: to set the number of displayed decimals

• ’minimum’: to set the minimum value

• ’maximum’: to set the maximum value

• ’step’: to set the step value

setup_actions()

Method where to create actions to be subclassed. Mandatory

Examples

>>> self.add_action('Quit', 'close2', "Quit program")
>>> self.add_action('Grab', 'camera', "Grab from camera", checkable=True)
>>> self.add_action('Load', 'Open', "Load target file (.h5, .png, .jpg) or␣
→˓data from camera", checkable=False)
>>> self.add_action('Save', 'SaveAs', "Save current data", checkable=False)

See also:

ActionManager.add_action

setup_docks()

Mandatory method to be subclassed to setup the docks layout

Examples

>>>self.docks[‘ADock’] = gutils.Dock(‘ADock name’) >>>self.dockarea.addDock(self.docks[‘ADock’])
>>>self.docks[‘AnotherDock’] = gutils.Dock(‘AnotherDock name’) >>>self.dockarea.addDock(self.docks[‘AnotherDock”’],
‘bottom’, self.docks[‘ADock’])

See also:

pyqtgraph.dockarea.Dock

property actuator_init

the status of the init LED.

Type
bool

7.8. Library Reference 283

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

property move_done

the status of the move_done LED.

Type
bool

The DAQ_Move Plugin Class

This object is the base class from which all actuator plugins should inherit. It exposes a few methods, attributes and
signal that could be useful to understand.

class pymodaq.control_modules.move_utility_classes.DAQ_Move_base(parent: DAQ_Move_Hardware
= None, params_state: dict =
None)

The base class to be inherited by all actuator modules

This base class implements all necessary parameters and methods for the plugin to communicate with its parent
(the DAQ_Move module)

Parameters

• parent (DAQ_Move_Hardware) –

• params_state (Parameter) – pyqtgraph Parameter instance from which the module
will get the initial settings (as defined in the preset)

move_done_signal

signal represented by a float. Is emitted each time the hardware reached the target position within the
epsilon precision (see comon_parameters variable)

Type
Signal

controller

the object representing the hardware in the plugin. Used to access hardware functionality

Type
object

settings

instance representing the hardware settings defined from the params attribute. Modifications on
the GUI settings

will be transferred to this attribute. It stores at all times the current state of the hardware/plugin
settings

Type
Parameter

params

Its definition on the class level enable the automatic update of the GUI settings when changing plugins
(even in managers mode creation). To be populated on the plugin level as the base class does’t represents
a real hardware

Type
List of dict used to create a Parameter object.

284 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object

PyMoDAQ Documentation, Release 4.2.0

is_multiaxes

class level attribute. Defines if the plugin controller controls multiple axes. If True, one has to define
a Master instance of this plugin and slave instances of this plugin (all sharing the same controller_ID
parameter)

Type
bool

current_value

stores the current position after each call to the get_actuator_value in the plugin

Type
DataActuator

target_value

stores the target position the controller should reach within epsilon

Type
DataActuator

Attributes

axis_name
Get/Set the current axis using its string identifier

axis_names
Get/Set the names of all axes controlled by this instrument plugin

axis_value
Get the current value selected from the current axis

controller_units
Get/Set the units of this plugin

current_position
current_value
ispolling

Get/Set the polling status

target_position
target_value

7.8. Library Reference 285

https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

Methods

check_bound(position) Check if the current position is within the software
bounds

commit_settings(param) to subclass to transfer parameters to hardware
emit_status(status) Emit the status_sig signal with the given status

ThreadCommand back to the main GUI.
emit_value(pos) Convenience method to emit the current actuator

value back to the UI
get_position_with_scaling(pos) Get the current position from the hardware with scal-

ing conversion.
ini_attributes() To be subclassed, in order to init specific attributes

needed by the real implementation
ini_stage_init([old_controller, new_controller]) Manage the Master/Slave controller issue
move_done([position])

Emit a move done signal transmitting the float
position to hardware.

poll_moving() Poll the current moving.
send_param_status(param, changes) Send changes value updates to the gui to update con-

sequently the User Interface
set_position_relative_with_scaling(pos) Set the scaled positions in case of relative moves
set_position_with_scaling(pos) Set the current position from the parameter and hard-

ware with scaling conversion.
update_settings(settings_parameter_dict) Receive the settings_parameter signal from the

param_tree_changed method and make hardware up-
dates of modified values.

check_target_reached
commit_common_settings
get_actuator_value
move_abs
move_done_signal
move_home
move_rel

check_bound(position: DataActuator)→ DataActuator
Check if the current position is within the software bounds

Return the new position eventually coerced within the bounds

commit_settings(param: Parameter)
to subclass to transfer parameters to hardware

emit_status(status: ThreadCommand)
Emit the status_sig signal with the given status ThreadCommand back to the main GUI.

emit_value(pos: DataActuator)
Convenience method to emit the current actuator value back to the UI

get_position_with_scaling(pos: DataActuator)→ DataActuator
Get the current position from the hardware with scaling conversion.

286 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

ini_attributes()

To be subclassed, in order to init specific attributes needed by the real implementation

ini_stage_init(old_controller=None, new_controller=None)
Manage the Master/Slave controller issue

First initialize the status dictionnary Then check whether this stage is controlled by a multiaxe controller
(to be defined for each plugin)

if it is a multiaxes controller then: * if it is Master: init the controller here * if it is Slave: use
an already initialized controller (defined in the preset of the dashboard)

Parameters

• old_controller (object) – The particular object that allow the communication
with the hardware, in general a python wrapper around the hardware library. In case
of Slave this one comes from a previously initialized plugin

• new_controller (object) – The particular object that allow the communication
with the hardware, in general a python wrapper around the hardware library. In case
of Master it is the new instance of your plugin controller

move_done(position: Optional[DataActuator] = None)

Emit a move done signal transmitting the float position to hardware.
The position argument is just there to match some signature of child classes.

Arguments Type Description
position float The position argument is just there to match some signature of child classes

poll_moving()

Poll the current moving. In case of timeout emit the raise timeout Thread command.

See also:

DAQ_utils.ThreadCommand, move_done

send_param_status(param, changes)
Send changes value updates to the gui to update consequently the User Interface

The message passing is made via the ThreadCommand “update_settings”.

set_position_relative_with_scaling(pos: DataActuator)→ DataActuator
Set the scaled positions in case of relative moves

set_position_with_scaling(pos: DataActuator)→ DataActuator
Set the current position from the parameter and hardware with scaling conversion.

update_settings(settings_parameter_dict)
Receive the settings_parameter signal from the param_tree_changed method and make hardware updates
of modified values.

property axis_name: Union[str, object]

Get/Set the current axis using its string identifier

7.8. Library Reference 287

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

PyMoDAQ Documentation, Release 4.2.0

property axis_names: Union[List, Dict]

Get/Set the names of all axes controlled by this instrument plugin

Return type
List of string or dictionary mapping names to integers

property axis_value: object

Get the current value selected from the current axis

property controller_units

Get/Set the units of this plugin

property ispolling

Get/Set the polling status

7.8.2 Extensions

DAQ_Scan module

The Bayesian Extension and utilities

Summary of the main classes for the Bayesian Optimization extension

BayesianOptimisation(dockarea, dashboard) PyMoDAQ extension of the DashBoard to perform the
optimization of a target signal taken form the detectors
as a function of one or more parameters controlled by the
actuators.

BayesianModelGeneric(optimisation_controller)

Methods

BayesianModelDefault(optimisation_controller)

Methods

The Extension module

class pymodaq.extensions.BayesianOptimisation(dockarea, dashboard)
PyMoDAQ extension of the DashBoard to perform the optimization of a target signal taken form the detectors
as a function of one or more parameters controlled by the actuators.

Attributes

modules_manager
useful tool to interact with DAQ_Moves and DAQ_Viewers

288 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#object

PyMoDAQ Documentation, Release 4.2.0

Methods

connect_things() Connect actions and/or other widgets signal to meth-
ods

setup_actions() Method where to create actions to be subclassed.
setup_docks() to be subclassed to setup the docks layout for instance:
setup_menu() to be subclassed create menu for actions contained

into the self.actions_manager, for instance:
value_changed(param) to be subclassed for actions to perform when one of

the param's value in self.settings is changed

clean_h5_temp
command_runner
enable_controls_opti
format_bounds
get_set_model_params
get_stopping_parameters
go_to_best
ini_live_plot
ini_model
ini_optimisation_runner
ini_temp_file
optimisation_done
optimisation_done_signal
process_output
quit
run_optimisation
set_algorithm
set_model
update_actuators
update_bounds
update_data_plot
update_stopping_criteria
update_utility_function

connect_things()

Connect actions and/or other widgets signal to methods

setup_actions()

Method where to create actions to be subclassed. Mandatory

7.8. Library Reference 289

PyMoDAQ Documentation, Release 4.2.0

Examples

>>> self.add_action('Quit', 'close2', "Quit program")
>>> self.add_action('Grab', 'camera', "Grab from camera", checkable=True)
>>> self.add_action('Load', 'Open', "Load target file (.h5, .png, .jpg) or␣
→˓data from camera", checkable=False)
>>> self.add_action('Save', 'SaveAs', "Save current data", checkable=False)

See also:

ActionManager.add_action

setup_docks()

to be subclassed to setup the docks layout for instance:

self.docks[‘ADock’] = gutils.Dock(‘ADock name) self.dockarea.addDock(self.docks[‘ADock”])
self.docks[‘AnotherDock’] = gutils.Dock(‘AnotherDock name) self.dockarea.addDock(self.docks[‘AnotherDock”],
‘bottom’, self.docks[‘ADock”])

See also:

pyqtgraph.dockarea.Dock

setup_menu()

to be subclassed create menu for actions contained into the self.actions_manager, for instance:

For instance:

file_menu = self.menubar.addMenu(‘File’) self.actions_manager.affect_to(‘load’, file_menu)
self.actions_manager.affect_to(‘save’, file_menu)

file_menu.addSeparator() self.actions_manager.affect_to(‘quit’, file_menu)

value_changed(param)

to be subclassed for actions to perform when one of the param’s value in self.settings is changed

For instance: if param.name() == ‘do_something’:

if param.value():
print(‘Do something’) self.settings.child(‘main_settings’, ‘some-
thing_done’).setValue(False)

Parameters
param ((Parameter) the parameter whose value just changed) –

property modules_manager: ModulesManager

useful tool to interact with DAQ_Moves and DAQ_Viewers

Will be available if a DashBoard has been set

Return type
ModulesManager

290 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

The Base Models

class pymodaq.extensions.BayesianModelGeneric(optimisation_controller: BayesianOptimisation)

Methods

convert_input(measurements) Convert the measurements in the units to be fed to the
Optimisation Controller :param measurements: data
object exported from the detectors from which the
model extract a float value (fitness) to be fed to the
algorithm :type measurements: DataToExport

convert_output(outputs[, best_individual]) Convert the output of the Optimisation Controller
in units to be fed into the actuators :param out-
puts: output value from the controller from which
the model extract a value of the same units as the ac-
tuators :type outputs: list of numpy ndarray :param
best_individual: the coordinates of the best individ-
ual so far :type best_individual: np.ndarray

ini_model() To be subclassed
runner_initialized() To be subclassed
update_plots() Called when updating the live plots
update_settings(param) Get a parameter instance whose value has been mod-

ified by a user on the UI To be overwritten in child
class

check_modules
ini_model_base
optimisation_algorithm
update_detector_names

convert_input(measurements: DataToExport)→ float
Convert the measurements in the units to be fed to the Optimisation Controller :param measurements: data
object exported from the detectors from which the model extract a float value

(fitness) to be fed to the algorithm

Return type
float

convert_output(outputs: List[ndarray], best_individual=None)→ DataToActuators
Convert the output of the Optimisation Controller in units to be fed into the actuators :param outputs:
output value from the controller from which the model extract a value of the same units as the actuators
:type outputs: list of numpy ndarray :param best_individual: the coordinates of the best individual so far
:type best_individual: np.ndarray

Returns
DataToActuatorOpti – attribute, either ‘rel’ for relative or ‘abs’ for absolute.

Return type
derived from DataToExport. Contains value to be fed to the actuators with a a mode

7.8. Library Reference 291

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List

PyMoDAQ Documentation, Release 4.2.0

ini_model()

To be subclassed

Initialize whatever is needed by your custom model

runner_initialized()

To be subclassed

Initialize whatever is needed by your custom model after the optimization runner is initialized

update_plots()

Called when updating the live plots

update_settings(param: Parameter)
Get a parameter instance whose value has been modified by a user on the UI To be overwritten in child
class

class pymodaq.extensions.BayesianModelDefault(optimisation_controller: BayesianOptimisation)

Methods

convert_input(measurements) Convert the measurements in the units to be fed to the
Optimisation Controller

convert_output(outputs[, best_individual]) Convert the output of the Optimisation Controller
in units to be fed into the actuators :param out-
puts: output value from the controller from which
the model extract a value of the same units as the ac-
tuators :type outputs: list of numpy ndarray :param
best_individual: the coordinates of the best individ-
ual so far :type best_individual: np.ndarray

ini_model() To be subclassed
update_settings(param) Get a parameter instance whose value has been mod-

ified by a user on the UI To be overwritten in child
class

optimize_from

convert_input(measurements: DataToExport)→ float
Convert the measurements in the units to be fed to the Optimisation Controller

Parameters
measurements (DataToExport) – data object exported from the detectors from which
the model extract a float value (fitness) to be fed to the algorithm

Return type
float

convert_output(outputs: List[ndarray], best_individual=None)→ DataToActuators
Convert the output of the Optimisation Controller in units to be fed into the actuators :param outputs:
output value from the controller from which the model extract a value of the same units as the actuators
:type outputs: list of numpy ndarray :param best_individual: the coordinates of the best individual so far
:type best_individual: np.ndarray

Returns

292 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List

PyMoDAQ Documentation, Release 4.2.0

• DataToActuators (derived from DataToExport. Contains value to be fed to the actu-
ators)

• with a mode attribute, either ‘rel’ for relative or ‘abs’ for absolute.

ini_model()

To be subclassed

Initialize whatever is needed by your custom model

update_settings(param: Parameter)
Get a parameter instance whose value has been modified by a user on the UI To be overwritten in child
class

The CustomApp base class

CustomApp(parent[, dashboard]) Base Class to ease the implementation of User Interfaces

class pymodaq.utils.gui_utils.CustomApp(parent: Union[DockArea, QWidget], dashboard: DashBoard =
None)

Base Class to ease the implementation of User Interfaces

Inherits the MixIns ActionManager and ParameterManager classes. You have to subclass some methods and
make concrete implementation of a given number of methods:

• setup_actions: mandatory, see pymodaq.utils.managers.action_manager.ActionManager

• value_changed: non mandatory, see pymodaq.utils.managers.parameter_manager.
ParameterManager

• child_added: non mandatory, see pymodaq.utils.managers.parameter_manager.
ParameterManager

• param_deleted: non mandatory, see pymodaq.utils.managers.parameter_manager.
ParameterManager

• setup_docks: mandatory

• setup_menu: non mandatory

• connect_things: mandatory

Parameters

• parent (DockArea or QtWidget) –

• dashboard (DashBoard, optional) –

See also:

pymodaq.utils.managers.action_manager.ActionManager, pymodaq.utils.managers.
parameter_manager.ParameterManager, pymodaq.utils.managers.modules_manager.
ModulesManager, pymodaq.dashboard.DashBoard

Attributes

modules_manager
useful tool to interact with DAQ_Moves and DAQ_Viewers

7.8. Library Reference 293

https://docs.python.org/3/library/typing.html#typing.Union

PyMoDAQ Documentation, Release 4.2.0

Methods

connect_things() Connect actions and/or other widgets signal to meth-
ods

setup_docks() Mandatory method to be subclassed to setup the
docks layout

setup_menu() Non mandatory method to be subclassed in order to
create a menubar

log_signal
setup_ui

connect_things()

Connect actions and/or other widgets signal to methods

setup_docks()

Mandatory method to be subclassed to setup the docks layout

Examples

>>>self.docks[‘ADock’] = gutils.Dock(‘ADock name’) >>>self.dockarea.addDock(self.docks[‘ADock’])
>>>self.docks[‘AnotherDock’] = gutils.Dock(‘AnotherDock name’) >>>self.dockarea.addDock(self.docks[‘AnotherDock”’],
‘bottom’, self.docks[‘ADock’])

See also:

pyqtgraph.dockarea.Dock

setup_menu()

Non mandatory method to be subclassed in order to create a menubar

create menu for actions contained into the self._actions, for instance:

Examples

>>>file_menu = self._menubar.addMenu(‘File’) >>>self.affect_to(‘load’, file_menu)
>>>self.affect_to(‘save’, file_menu)

>>>file_menu.addSeparator() >>>self.affect_to(‘quit’, file_menu)

See also:

pymodaq.utils.managers.action_manager.ActionManager

property modules_manager: ModulesManager

useful tool to interact with DAQ_Moves and DAQ_Viewers

Will be available if a DashBoard has been set

Return type
ModulesManager

294 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

7.8.3 Utility Modules

Hdf5 module and classes

Hdf5 backends

The H5Backend is a wrapper around three hdf5 python packages: pytables, h5py and h5pyd. It allows seamless inte-
gration of any of these with PyMoDAQ features.

class pymodaq.utils.h5modules.backends.H5Backend(backend='tables')

Attributes

filename
h5file

7.8. Library Reference 295

PyMoDAQ Documentation, Release 4.2.0

Methods

add_group(group_name, group_type, where[, ...]) Add a node in the h5 file tree of the group type :param
group_name: :type group_name: (str) a custom name
for this group :param group_type: one of the possible
values of GroupType :type group_type: str or Group-
Type enum :param where: :type where: (str or node)
parent node where to create the new group :param
metadata: :type metadata: (dict) extra metadata to be
saved with this new group node

close_file() Flush data and close the h5file
create_earray(where, name, dtype[, ...]) create enlargeable arrays from data with a given shape

and of a given type.
create_vlarray(where, name, dtype[, title]) create variable data length and type and enlargeable

1D arrays
define_compression(compression, compres-
sion_opts)

Define cmpression library and level of compres-
sion :param compression: but zlib is used by pyta-
bles while gzip is used by h5py :type compression:
(str) either gzip and zlib are supported here as they
are compatible :param compression_opts (int): :type
compression_opts (int): 0 to 9 0: None, 9: maximum
compression

get_children(where) Get a dict containing all children node hanging from
where with their name as keys and types among Node,
CARRAY, EARRAY, VLARRAY or StringARRAY

get_node_name(node) return node name :param node (str or node instance):
:param see h5py and pytables documentation on
nodes:

get_node_path (node) return node path :param node (str or node instance):
:param see h5py and pytables documentation on
nodes:

get_set_group(where, name[, title]) Retrieve or create (if absent) a node group Get at-
tributed to the class attribute current_group

is_node_in_group(where, name) Check if a given node with name is in the group de-
fined by where (comparison on lower case strings)
:param where: path or parent node instance :type
where: (str or node) :param name: group node name
:type name: (str)

296 Chapter 7. Changelog

PyMoDAQ Documentation, Release 4.2.0

create_carray
flush
get_attr
get_group_by_title
get_node
get_parent_node
has_attr
isopen
open_file
read
root
save_file_as
set_attr
walk_groups
walk_nodes

add_group(group_name, group_type: GroupType, where, title='', metadata={})→ GROUP
Add a node in the h5 file tree of the group type :param group_name: :type group_name: (str) a custom
name for this group :param group_type: one of the possible values of GroupType :type group_type: str
or GroupType enum :param where: :type where: (str or node) parent node where to create the new group
:param metadata: :type metadata: (dict) extra metadata to be saved with this new group node

Returns
(node)

Return type
newly created group node

close_file()

Flush data and close the h5file

create_earray(where, name, dtype, data_shape=None, title='')
create enlargeable arrays from data with a given shape and of a given type. The array is enlargeable along
the first dimension

create_vlarray(where, name, dtype, title='')
create variable data length and type and enlargeable 1D arrays

Parameters

• where ((str) group location in the file where to create the array
node) –

• name ((str) name of the array) –

• dtype ((dtype) numpy dtype style, for particular case of strings,
use dtype='string') –

• title ((str) node title attribute (written in capitals)) –

Return type
array

define_compression(compression, compression_opts)
Define cmpression library and level of compression :param compression: but zlib is used by pytables while
gzip is used by h5py :type compression: (str) either gzip and zlib are supported here as they are compatible
:param compression_opts (int): :type compression_opts (int): 0 to 9 0: None, 9: maximum compression

7.8. Library Reference 297

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

get_children(where)
Get a dict containing all children node hanging from where with their name as keys and types among Node,
CARRAY, EARRAY, VLARRAY or StringARRAY

Parameters
instance) (where (str or node) – see h5py and pytables documentation on nodes,
and Node objects of this module

Returns
dict

Return type
keys are children node names, values are the children nodes

See also:

GROUP.children_name()

get_node_name(node)
return node name :param node (str or node instance): :param see h5py and pytables documentation on
nodes:

Returns
str

Return type
name of the node

get_node_path(node)
return node path :param node (str or node instance): :param see h5py and pytables documentation on
nodes:

Returns
str

Return type
full path of the node

get_set_group(where, name, title='')
Retrieve or create (if absent) a node group Get attributed to the class attribute current_group

Parameters

• where (str or node) – path or parent node instance

• name (str) – group node name

• title (str) – node title

Returns
group

Return type
group node

is_node_in_group(where, name)
Check if a given node with name is in the group defined by where (comparison on lower case strings)
:param where: path or parent node instance :type where: (str or node) :param name: group node name
:type name: (str)

Returns
True if node exists, False otherwise

298 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

Return type
bool

Low Level saving

H5SaverBase and H5Saver classes are a help to save data in a hierachical hdf5 binary file through the H5Backend
object and allowing integration in the PyMoDAQ Framework. These objects allows the creation of a file, of the var-
ious nodes necessary to save PyMoDAQ’s data. The saving functionalities are divided in two objects: H5SaverBase
and H5Saver. H5SaverBase contains everything needed for saving, while H5Saver, inheriting H5SaverBase, add Qt
functionality such as emitted signals. However, these are not specific of PyMoDAQ’s data types. To save and load data,
one should use higher level objects, see High Level saving/loading.

Created the 15/11/2022

@author: Sebastien Weber

class pymodaq.utils.h5modules.saving.H5Saver(*args, **kwargs)

status_sig: Signal
emits a signal of type Threadcommand in order to senf log information to a main UI

new_file_sig: Signal
emits a boolean signal to let the program know when the user pressed the new file button on the UI

emit_new_file(status)
Emits the new_file_sig

Parameters
status (bool) – emits True if a new file has been asked by the user pressing the new file
button on the UI

class pymodaq.utils.h5modules.saving.H5SaverBase(save_type='scan', backend='tables')
Object containing all methods in order to save datas in a hdf5 file with a hierarchy compatible with the H5Browser.
The saving parameters are contained within a Parameter object: self.settings that can be displayed on a UI using
the widget self.settings_tree. At the creation of a new file, a node group named Raw_datas and represented by
the attribute raw_group is created and set with a metadata attribute:

• ‘type’ given by the save_type class parameter

The root group of the file is then set with a few metadata:

• ‘pymodaq_version’ the current pymodaq version, e.g. 1.6.2

• ‘file’ the file name

• ‘date’ the current date

• ‘time’ the current time

All datas will then be saved under this node in various groups

See also:

H5Browser

Parameters

• h5_file (pytables hdf5 file) – object used to save all datas and metadas

• h5_file_path (str or Path) – Signal signal represented by a float. Is emitted
each time the hardware reached the target position within the epsilon precision (see
comon_parameters variable)

7.8. Library Reference 299

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

• save_type (str) – an element of the enum module attribute SaveType * ‘scan’ is used
for DAQScan module and should be used for similar application * ‘detector’ is used for
DAQ_Viewer module and should be used for similar application * ‘custom’ should be
used for customized applications

settings

Parameter instance (pyqtgraph) containing all settings (could be represented using the settings_tree widget)

Type
Parameter

settings_tree

Widget representing as a Tree structure, all the settings defined in the class preamble variable params

Type
ParameterTree

classmethod find_part_in_path_and_subpath(base_dir, part='', create=False, increment=True)
Find path from part time.

Parameters Type Description
base_dir Path object The directory to browse
part string The date of the directory to find/create
create boolean Indicate the creation flag of the directory

Returns
found path from part

Return type
Path object

get_last_scan()

Gets the last scan node within the h5_file and under the raw_group

Returns
scan_group

Return type
pytables group or None

get_scan_index()

return the scan group index in the “scan templating”: Scan000, Scan001 as an integer

init_file(update_h5=False, custom_naming=False, addhoc_file_path=None, metadata={})
Initializes a new h5 file. Could set the h5_file attributes as:

• a file with a name following a template if custom_naming is False and addhoc_file_path is
None

• a file within a name set using a file dialog popup if custom_naming is True

• a file with a custom name if addhoc_file_path is a Path object or a path string

Parameters

• update_h5 (bool) – create a new h5 file with name specified by other parameters if
false try to open an existing file and will append new data to it

• custom_naming (bool) – if True, a selection file dialog opens to set a new file name

300 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

• addhoc_file_path (Path or str) – supplied name by the user for the new file

• metadata (dict) – dictionnary with pair of key, value that should be saved as at-
tributes of the root group

Returns
update_h5 – True if new file has been created, False otherwise

Return type
bool

load_file(base_path=None, file_path=None)
Opens a file dialog to select a h5file saved on disk to be used

Parameters

• base_path –

• file_path –

See also:

init_file()

classmethod set_current_scan_path(base_dir, base_name='Scan', update_h5=False,
next_scan_index=0, create_scan_folder=False,
create_dataset_folder=True, curr_date=None,
ind_dataset=None)

Parameters

• base_dir –

• base_name –

• update_h5 –

• next_scan_index –

• create_scan_folder –

• create_dataset_folder –

update_file_paths(update_h5=False)

Parameters
update_h5 (bool) – if True, will increment the file name and eventually the current scan
index if False, get the current scan index in the h5 file

Returns

• scan_path (Path)

• current_filename (str)

• dataset_path (Path)

value_changed(param)

Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param’s
value in self._settings is changed

Parameters
param (Parameter) – the parameter whose value just changed

7.8. Library Reference 301

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

Examples

>>> if param.name() == 'do_something':
>>> if param.value():
>>> print('Do something')
>>> self.settings.child('main_settings', 'something_done').
→˓setValue(False)

They both inherits from the ParameterManager MixIn class that deals with Parameter and ParameterTree, see
saving_settings_fig.

High Level saving/loading

Each PyMoDAQ’s data type: Axis, DataWithAxes, DataToExport (see What is PyMoDAQ’s Data?) is associated
with its saver/loader counterpart. These objects ensures that all metadata necessary for an exact regeneration of the
data is being saved at the correct location in the hdf5 file hierarchy. The AxisSaverLoader, DataSaverLoader,
DataToExportSaver all derive from an abstract class: DataManagement allowing the manipulation of the nodes and
making sure the data type is defined.

Base data class saver/loader

Created the 21/11/2022

@author: Sebastien Weber

class pymodaq.utils.h5modules.data_saving.AxisSaverLoader(*args, **kwargs)
Specialized Object to save and load Axis object to and from a h5file

Parameters
h5saver (H5Saver) –

data_type

The enum for this type of data, here ‘axis’

Type
DataType

add_axis(where: Union[Node, str], axis: Axis, enlargeable=False)
Write Axis info at a given position within a h5 file

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• axis (Axis) – the Axis object to add as a node in the h5file

• enlargeable (bool) – Specify if the underlying array will be enlargebale

get_axes(where: Union[Node, str])→ List[Axis]
Return a list of Axis objects from the Axis Nodes hanging from (or among) a given Node

Parameters
where (Union[Node, str]) – the path of a given node or the node itself

Returns
List[Axis]

302 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

Return type
the list of all Axis object

load_axis(where: Union[Node, str])→ Axis
create an Axis object from the data and metadata at a given node if of data_type: ‘axis

Parameters
where (Union[Node, str]) – the path of a given node or the node itself

Return type
Axis

class pymodaq.utils.h5modules.data_saving.DataManagement(*args, **kwargs)
Base abstract class to be used for all specialized object saving and loading data to/from a h5file

data_type

The enum for this type of data, here abstract and should be redefined

Type
DataType

get_last_node_name(where: Union[str, Node])→ Optional[str]
Get the last node name among the ones already saved

Parameters
where (Union[Node, str]) – the path of a given node or the node itself

Returns
str

Return type
the name of the last saved node or None if none saved

class pymodaq.utils.h5modules.data_saving.DataSaverLoader(*args, **kwargs)
Specialized Object to save and load DataWithAxes object to and from a h5file

Parameters
h5saver (H5Saver or Path or str) –

data_type

The enum for this type of data, here ‘data’

Type
DataType

add_data(where: Union[Node, str], data: DataWithAxes, save_axes=True, **kwargs)
Adds Array nodes to a given location adding eventually axes as others nodes and metadata

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• data (DataWithAxes) –

• save_axes (bool) –

get_axes(where: Union[Node, str])→ List[Axis]

Parameters
where (Union[Node, str]) – the path of a given node or the node itself

7.8. Library Reference 303

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

get_data_arrays(where: Union[Node, str], with_bkg=False, load_all=False)→ List[ndarray]

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• with_bkg (bool) – If True try to load background node and return the array with
background subtraction

• load_all (bool) – If True load all similar nodes hanging from a parent

Return type
list of ndarray

isopen()→ bool
Get the opened status of the underlying hdf5 file

load_data(where, with_bkg=False, load_all=False)→ DataWithAxes
Return a DataWithAxes object from the Data and Axis Nodes hanging from (or among) a given Node

Does not include navigation axes stored elsewhere in the h5file. The node path is stored in the DatWithAxis
using the attribute path

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• with_bkg (bool) – If True try to load background node and return the data with
background subtraction

• load_all (bool) – If True, will load all data hanging from the same parent node

See also:

load_data

class pymodaq.utils.h5modules.data_saving.DataToExportSaver(h5saver: Union[H5Saver, Path, str])
Object used to save DataToExport object into a h5file following the PyMoDAQ convention

Parameters
h5saver (H5Saver) –

add_data(where: Union[Node, str], data: DataToExport, settings_as_xml='', metadata=None, **kwargs)

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• data (DataToExport) –

• settings_as_xml (str) – The settings parameter as an XML string

• metadata (dict) – all extra metadata to be saved in the group node where data will
be saved

static channel_formatter(ind: int)
All DataWithAxes included in the DataToExport will be saved into a channel group indexed and formatted
as below

isopen()→ bool
Get the opened status of the underlying hdf5 file

304 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

Specific data class saver/loader

Some more dedicated objects are derived from the objects above. They allow to add background data, Extended arrays
(arrays that will be populated after creation, for instance for a scan) and Enlargeable arrays (whose final length is not
known at the moment of creation, for instance when logging or continuously saving)

Created the 21/11/2022

@author: Sebastien Weber

class pymodaq.utils.h5modules.data_saving.BkgSaver(*args, **kwargs)
Specialized Object to save and load DataWithAxes background object to and from a h5file

Parameters
hsaver (H5Saver) –

data_type

The enum for this type of data, here ‘bkg’

Type
DataType

class pymodaq.utils.h5modules.data_saving.DataEnlargeableSaver(*args, **kwargs)
Specialized Object to save and load enlargeable DataWithAxes saved object to and from a h5file

Particular case of DataND with a single nav_indexes parameter will be appended as chunks of signal data

Parameters
h5saver (H5Saver) –

data_type

The enum for this type of data, here ‘data_enlargeable’

Type
DataType

Notes

To be used to save data from a timed logger (DAQViewer continuous saving or DAQLogger extension) or from
an adaptive scan where the final shape is unknown or other module that need this feature

add_data(where: Union[Node, str], data: DataWithAxes, axis_values: Optional[Iterable[float]] = None)
Append data to an enlargeable array node

Data of dim (0, 1 or 2) will be just appended to the enlargeable array.

Uniform DataND with one navigation axis of length (Lnav) will be considered as a collection of Lnav
signal data of dim (0, 1 or 2) and will therefore be appended as Lnav signal data

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• data (DataWithAxes) –

• axis_values (optional, list of floats) – the new spread axis values added
to the data if None the axes are not added to the h5 file

7.8. Library Reference 305

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyMoDAQ Documentation, Release 4.2.0

class pymodaq.utils.h5modules.data_saving.DataExtendedSaver(*args, **kwargs)
Specialized Object to save and load DataWithAxes saved object to and from a h5file in extended arrays

Parameters

• h5saver (H5Saver) –

• extended_shape (Tuple[int]) – the extra shape compared to the data the h5array will
have

data_type

The enum for this type of data, here ‘data’

Type
DataType

add_data(where: Union[Node, str], data: DataWithAxes, indexes: List[int],
distribution=DataDistribution.uniform)

Adds given DataWithAxes at a location within the initialized h5 array

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• data (DataWithAxes) –

• indexes (Iterable[int]) – indexes where to save data in the init h5array (should
have the same length as extended_shape and with values coherent with this shape

class pymodaq.utils.h5modules.data_saving.DataToExportEnlargeableSaver(h5saver: H5Saver,
enl_axis_names:
Optional[Iterable[str]]
= None, enl_axis_units:
Optional[Iterable[str]]
= None, axis_name: str
= 'nav axis', axis_units:
str = '')

Generic object to save DataToExport objects in an enlargeable h5 array

The next enlarged value should be specified in the add_data method

Parameters

• h5saver (H5Saver) –

• enl_axis_names (Iterable[str]) – The names of the enlargeable axis, default
[‘nav_axis’]

• enl_axis_units (Iterable[str]) – The names of the enlargeable axis, default [‘’]

• axis_name (str, deprecated use enl_axis_names) – the name of the enlarged
axis array

• axis_units (str, deprecated use enl_axis_units) – the units of the enlarged
axis array

add_data(where: Union[Node, str], data: DataToExport, axis_values: Optional[List[Union[float, ndarray]]]
= None, axis_value: Optional[Union[float, ndarray]] = None, settings_as_xml='',
metadata=None)

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

306 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

• data (DataToExport) – The data to be saved into an enlargeable array

• axis_values (iterable float or np.ndarray) – The next value (or values) of
the enlarged axis

• axis_value (float or np.ndarray #deprecated in 4.2.0, use
axis_values) – The next value (or values) of the enlarged axis

• settings_as_xml (str) – The settings parameter as an XML string

• metadata (dict) – all extra metadata to be saved in the group node where data will
be saved

class pymodaq.utils.h5modules.data_saving.DataToExportExtendedSaver(h5saver: H5Saver,
extended_shape:
Tuple[int])

Object to save DataToExport at given indexes within arrays including extended shape

Mostly used for data generated from the DAQScan

Parameters

• h5saver (H5Saver) –

• extended_shape (Tuple[int]) – the extra shape compared to the data the h5array will
have

add_data(where: Union[Node, str], data: DataToExport, indexes: Iterable[int],
distribution=DataDistribution.uniform, settings_as_xml='', metadata={})

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• data (DataToExport) –

• indexes (List[int]) – indexes where to save data in the init h5array (should have
the same length as extended_shape and with values coherent with this shape

• settings_as_xml (str) – The settings parameter as an XML string

• metadata (dict) – all extra metadata to be saved in the group node where data will
be saved

add_nav_axes(where: Union[Node, str], axes: List[Axis])
Used to add navigation axes related to the extended array

Notes

For instance the scan axes in the DAQScan

class pymodaq.utils.h5modules.data_saving.DataToExportTimedSaver(h5saver: H5Saver)
Specialized DataToExportEnlargeableSaver to save data as a function of a time axis

Only one element ca be added at a time, the time axis value are enlarged using the data to be added timestamp

7.8. Library Reference 307

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List

PyMoDAQ Documentation, Release 4.2.0

Notes

This object is made for continuous saving mode of DAQViewer and logging to h5file for DAQLogger

add_data(where: Union[Node, str], data: DataToExport, settings_as_xml='', metadata=None, **kwargs)

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• data (DataToExport) – The data to be saved into an enlargeable array

• axis_values (iterable float or np.ndarray) – The next value (or values) of
the enlarged axis

• axis_value (float or np.ndarray #deprecated in 4.2.0, use
axis_values) – The next value (or values) of the enlarged axis

• settings_as_xml (str) – The settings parameter as an XML string

• metadata (dict) – all extra metadata to be saved in the group node where data will
be saved

Specialized loading

Data saved from a DAQ_Scan will naturally include navigation axes shared between many different DataWithAxes (as
many as detectors/channels/ROIs). They are therefore saved at the root of the scan node and cannot be retrieved using
the standard data loader. Hence this DataLoader object.

class pymodaq.utils.h5modules.data_saving.DataLoader(h5saver: Union[H5Saver, Path])
Specialized Object to load DataWithAxes object from a h5file

On the contrary to DataSaverLoader, does include navigation axes stored elsewhere in the h5file (for instance if
saved from the DAQ_Scan)

Parameters
h5saver (H5Saver) –

Attributes

h5saver

Methods

get_nav_group(where)
param where

the path of a given node or the node
itself

get_node(where[, name]) Convenience method to get node
load_data(where[, with_bkg, load_all]) Load data from a node (or channel node)
walk_nodes([where]) Return a Node generator iterating over the h5file con-

tent

close_file
load_all

308 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/pathlib.html#pathlib.Path

PyMoDAQ Documentation, Release 4.2.0

get_nav_group(where: Union[Node, str])→ Optional[Node]

Parameters
where (Union[Node, str]) – the path of a given node or the node itself

Returns

• GROUP (returns the group named SPECIAL_GROUP_NAMES[‘nav_axes’] holding
all NavAxis for)

• those data

See also:

SPECIAL_GROUP_NAMES

get_node(where: Union[Node, str], name: Optional[str] = None)→ Node
Convenience method to get node

load_data(where: Union[Node, str], with_bkg=False, load_all=False)→ DataWithAxes
Load data from a node (or channel node)

Loaded data contains also nav_axes if any and with optional background subtraction

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• with_bkg (bool) – If True will attempt to substract a background data node before
loading

• load_all (bool) – If True, will load all data hanging from the same parent node

walk_nodes(where: Union[str, Node] = '/')
Return a Node generator iterating over the h5file content

Browsing Data

Using the H5Backend it is possible to write scripts to easily access a hdf5 file content. However, PyMoDAQ includes
a dedicated hdf5 viewer understanding dedicated metadata and therefore displaying nicely the content of the file, see
H5Browser. Two objects can be used to browse data: H5BrowserUtil and H5Browser. H5BrowserUtil gives you
methods to quickly (in a script) get info and data from your file while the H5Browser adds a UI to interact with the
hdf5 file.

Created the 15/11/2022

@author: Sebastien Weber

class pymodaq.utils.h5modules.browsing.H5Browser(parent: QMainWindow, h5file=None,
h5file_path=None, backend='tables')

UI used to explore h5 files, plot and export subdatas

Parameters

• parent (QtWidgets container) – either a QWidget or a QMainWindow

• h5file (h5file instance) – exact type depends on the backend

• h5file_path (str or Path) – if specified load the corresponding file, otherwise open
a select file dialog

• backend (str) – either ‘tables, ‘h5py’ or ‘h5pyd’

7.8. Library Reference 309

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

See also:

H5Backend, H5Backend

add_comments(status: bool, comment='')
Add comments to a node

Parameters

• status (bool) –

• comment (str) – The comment to be added in a comment attribute to the current node
path

See also:

current_node_path

check_version()

Check version of PyMoDAQ to assert if file is compatible or not with the current version of the Browser

export_data()

Opens a dialog to export data

See also:

H5BrowserUtil.export_data

get_tree_node_path()

Get the node path of the currently selected node in the UI

populate_tree()

Init the ui-tree and store data into calling the h5_tree_to_Qtree convertor method

See also:

h5tree_to_QTree, update_status

quit_fun()

setup_actions()

Method where to create actions to be subclassed. Mandatory

Examples

>>> self.add_action('Quit', 'close2', "Quit program")
>>> self.add_action('Grab', 'camera', "Grab from camera", checkable=True)
>>> self.add_action('Load', 'Open', "Load target file (.h5, .png, .jpg) or␣
→˓data from camera", checkable=False)
>>> self.add_action('Save', 'SaveAs', "Save current data", checkable=False)

See also:

ActionManager.add_action

show_h5_data(item, with_bkg=False, plot_all=False)

Parameters

• item –

310 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

• with_bkg –

• plot_all –

class pymodaq.utils.h5modules.browsing.H5BrowserUtil(backend='tables')
Utility object to interact and get info and data from a hdf5 file

Inherits H5Backend and all its functionalities

Parameters
backend (str) – The used hdf5 backend: either tables, h5py or h5pyd

export_data(node_path='/', filesavename: str = 'datafile.h5', filter=None)
Initialize the correct exporter and export the node

get_h5_attributes(node_path)

get_h5file_scans(where='/')
Get the list of the scan nodes in the file

Parameters
where (str) – the path in the file

Returns
dict with keys: scan_name, path (within the file) and data (the live scan png image)

Return type
list of dict

Module savers

Created the 23/11/2022

@author: Sebastien Weber

class pymodaq.utils.h5modules.module_saving.ActuatorSaver(*args, **kwargs)
Implementation of the ModuleSaver class dedicated to DAQ_Move modules

Parameters

• h5saver –

• module –

class pymodaq.utils.h5modules.module_saving.DetectorEnlargeableSaver(*args, **kwargs)
Implementation of the ModuleSaver class dedicated to DAQ_Viewer modules in order to save enlargeable data

Parameters
module –

class pymodaq.utils.h5modules.module_saving.DetectorExtendedSaver(*args, **kwargs)
Implementation of the ModuleSaver class dedicated to DAQ_Viewer modules in order to save enlargeable data

Parameters
module –

class pymodaq.utils.h5modules.module_saving.DetectorSaver(*args, **kwargs)
Implementation of the ModuleSaver class dedicated to DAQ_Viewer modules

Parameters
module –

7.8. Library Reference 311

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

PyMoDAQ Documentation, Release 4.2.0

add_bkg(where: Union[Node, str], data_bkg: DataToExport)
Adds a DataToExport as a background node in the h5file

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• data_bkg (DataToExport) – The data to be saved as background

class pymodaq.utils.h5modules.module_saving.LoggerSaver(*args, **kwargs)
Implementation of the ModuleSaver class dedicated to H5Logger module

H5Logger is the special logger to h5file of the DAQ_Logger extension

Parameters

• h5saver –

• module –

add_data(dte: DataToExport)
Add data to it’s corresponding control module

The name of the control module is the DataToExport name attribute

class pymodaq.utils.h5modules.module_saving.ModuleSaver(*args, **kwargs)
Abstract base class to save info and data from main modules (DAQScan, DAQViewer, DAQMove, . . .)

flush()

Flush the underlying file

get_last_node(where: Optional[Union[Node, str]] = None)
Get the last node corresponding to this particular Module instance

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• new (bool) – if True force the creation of a new indexed node of this class type if False
return the last node (or create one if None)

Returns
GROUP

Return type
the Node associated with this module which should be a GROUP node

get_set_node(where: Optional[Union[Node, str]] = None, name: Optional[str] = None)→ GROUP
Get or create the node corresponding to this particular Module instance

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• new (bool) – if True force the creation of a new indexed node of this class type if False
return the last node (or create one if None)

Returns
GROUP

Return type
the Node associated with this module which should be a GROUP node

312 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

class pymodaq.utils.h5modules.module_saving.ScanSaver(*args, **kwargs)
Implementation of the ModuleSaver class dedicated to DAQScan module

Parameters

• h5saver –

• module –

get_set_node(where: Optional[Union[Node, str]] = None, new=False)→ GROUP
Get the last group scan node

Get the last Scan Group or create one get the last Scan Group if: * there is one already created * new is
False

Parameters

• where (Union[Node, str]) – the path of a given node or the node itself

• new (bool) –

Returns
GROUP

Return type
the GROUP associated with this module

Scanner module and classes

Summary of the classes in the scanner module

Scanner([parent_widget, scanner_items, ...]) Main Object to define a PyMoDAQ scan and create a UI
to set it

The scanner module contains all functionalities to defines a particular scan see scanner_paragrah.

class pymodaq.utils.scanner.Scanner(parent_widget: QtWidgets.QWidget = None, scanner_items={},
actuators: List[DAQ_Move] = [])

Main Object to define a PyMoDAQ scan and create a UI to set it

Parameters

• parent_widget (QtWidgets.QWidget) –

• scanner_items (list of GraphicItems) – used by ScanSelector for chosing scan
area or linear traces

• actuators (List[DAQ_Move]) – list actuators names

See also:

ScanSelector, ScannerBase, TableModelSequential, TableModelTabular, pymodaq_types.
TableViewCustom

Attributes

actuators
list of str: Returns as a list the name of the selected actuators to describe the actual scan

7.8. Library Reference 313

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

PyMoDAQ Documentation, Release 4.2.0

axes_indexes
axes_unique
distribution
n_axes
n_steps
positions
scan_sub_type
scan_type
scanner

Methods

get_indexes_from_scan_index(scan_index) To be reimplemented.
get_scan_info() Get a summary of the configured scan as a ScanInfo

object
get_scanner_sub_settings() Get the current ScannerBase implementation's set-

tings
positions_at(index) Extract the actuators positions at a given index in the

scan as a DataToExport of DataActuators
set_scan() Process the settings options to calculate the scan po-

sitions
set_scan_type_and_subtypes(scan_type, ...) Convenience function to set the main scan type
value_changed(param) Non-mandatory method to be subclassed for actions

to perform (methods to call) when one of the param's
value in self._settings is changed

connect_things
get_nav_axes
get_scan_shape
save_scanner_settings
scanner_updated_signal
set_scan_from_settings
set_scanner
setup_ui
update_from_scan_selector

get_indexes_from_scan_index(scan_index: int)→ Tuple[int]
To be reimplemented. Calculations of indexes within the scan

get_scan_info()→ ScanInfo
Get a summary of the configured scan as a ScanInfo object

get_scanner_sub_settings()

Get the current ScannerBase implementation’s settings

positions_at(index: int)→ DataToExport
Extract the actuators positions at a given index in the scan as a DataToExport of DataActuators

set_scan()

Process the settings options to calculate the scan positions

314 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyMoDAQ Documentation, Release 4.2.0

Returns
bool

Return type
True if the processed number of steps if higher than the configured number of steps

set_scan_type_and_subtypes(scan_type: str, scan_subtype: str)
Convenience function to set the main scan type

Parameters

• scan_type (str) – one of registered Scanner main identifier

• scan_subtype (list of str or None) – one of registered Scanner second iden-
tifier for a given main identifier

See also:

ScannerFactory

value_changed(param: Parameter)
Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param’s
value in self._settings is changed

Parameters
param (Parameter) – the parameter whose value just changed

Examples

>>> if param.name() == 'do_something':
>>> if param.value():
>>> print('Do something')
>>> self.settings.child('main_settings', 'something_done').
→˓setValue(False)

property actuators

Returns as a list the name of the selected actuators to describe the actual scan

Type
list of str

Managers

API of the various managers, special classes to deals with QAction, Paramaters, ControlModules. . .

addaction([name, icon_name, tip, checkable, ...]) Create a new action and add it eventually to a toolbar and
a menu

QAction(*args, **kwargs) QAction subclass to mimic signals as pushbuttons.
ActionManager([toolbar, menu]) MixIn Class to be used by all UserInterface to manage

their QActions and the action they are connected to

ParameterManager([settings_name, action_list]) Class dealing with Parameter and ParameterTree

ModulesManager([detectors, actuators, ...]) Class to manage DAQ_Viewers and DAQ_Moves with
UI to select some

7.8. Library Reference 315

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

class pymodaq.utils.managers.action_manager.QAction(*args, **kwargs)
QAction subclass to mimic signals as pushbuttons. Done to be sure of backcompatibility when I moved from
pushbuttons to QAction

Attributes

clicked

Methods

click
connect_to
set_icon

pymodaq.utils.managers.action_manager.addaction(name: str = '', icon_name: str = '', tip='',
checkable=False, checked=False, slot:
Optional[Callable] = None, toolbar:
Optional[QToolBar] = None, menu:
Optional[QMenu] = None, visible=True,
shortcut=None, enabled=True)

Create a new action and add it eventually to a toolbar and a menu

Parameters

• name (str) – Displayed name if should be displayed (for instance in menus)

• icon_name (str) – png file name to produce the icon

• tip (str) – a tooltip to be displayed when hovering above the action

• checkable (bool) – set the checkable state of the action

• checked (bool) – set the current state of the action

• slot (callable) – Method or function that will be called when the action is triggered

• toolbar (QToolBar) – a toolbar where action should be added.

• menu (QMenu) – a menu where action should be added.

• visible (bool) – display or not the action in the toolbar/menu

• shortcut (str) – a string defining a shortcut for this action

• enabled (bool) – set the enabled state

class pymodaq.utils.managers.action_manager.ActionManager(toolbar=None, menu=None)
MixIn Class to be used by all UserInterface to manage their QActions and the action they are connected to

Parameters

• toolbar (QToolbar, optional) – The toolbar to use as default

• menu (QMenu, option) – The menu to use as default

Attributes

actions
menu

Get the default menu

316 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

toolbar
Get the default toolbar

Methods

add_action([short_name, name, icon_name, ...]) Create a new action and add it to toolbar and menu
add_widget(short_name, klass, *args[, tip, ...]) Create and add a widget to a toolbar
affect_to(action_name, obj) Affect action to an object either a toolbar or a menu
connect_action(name, slot[, connect, ...]) Connect (or disconnect) the action referenced by

name to the given slot
get_action(name) Getter of a given action
has_action(action_name) Check if an action has been defined :param

action_name: The action name as defined in
setup_actions :type action_name: str

is_action_checked Dispatch methods based on type signature
is_action_enabled Dispatch methods based on type signature
is_action_visible Dispatch methods based on type signature
set_action_checked Dispatch methods based on type signature
set_action_enabled Dispatch methods based on type signature
set_action_text(action_name, text) Convenience method to set the displayed text on an

action
set_action_visible Dispatch methods based on type signature
set_menu(menu) affect a menu to self
set_toolbar(toolbar) affect a toolbar to self
setup_actions() Method where to create actions to be subclassed.

add_action(short_name: str = '', name: str = '', icon_name: str = '', tip='', checkable=False,
checked=False, toolbar=None, menu=None, visible=True, shortcut=None, auto_toolbar=True,
auto_menu=True, enabled=True)

Create a new action and add it to toolbar and menu

Parameters

• short_name (str) – the name as referenced in the dict self.actions

• name (str) – Displayed name if should be displayed in

• icon_name (str) – png file name to produce the icon

• tip (str) – a tooltip to be displayed when hovering above the action

• checkable (bool) – set the checkable state of the action

• checked (bool) – set the current state of the action

• toolbar (QToolBar) – a toolbar where action should be added. Actions can also be
added later see affect_to

• menu (QMenu) – a menu where action should be added. Actions can also be added
later see affect_to

• visible (bool) – display or not the action in the toolbar/menu

• auto_toolbar (bool) – if True add this action to the defined toolbar

• auto_menu (bool) – if True add this action to the defined menu

• enabled (bool) – set the enabled state of this action

7.8. Library Reference 317

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

See also:

affect_to, pymodaq.resources.QtDesigner_Ressources.Icon_Library, pymodaq.utils.
managers.action_manager.add_action

add_widget(short_name, klass: Union[str, QWidget], *args, tip='', toolbar: Optional[QToolBar] = None,
visible=True, signal_str=None, slot: Optional[Callable] = None, **kwargs)

Create and add a widget to a toolbar

Parameters

• short_name (str) – the name as referenced in the dict self.actions

• klass (str or QWidget) – should be a custom widget class or the name of a stan-
dard widget of QWidgets

• args (list) – variable arguments passed as is to the widget constructor

• tip (str) – a tooltip to be displayed when hovering above the widget

• toolbar (QToolBar) – a toolbar where the widget should be added.

• visible (bool) – display or not the action in the toolbar/menu

• signal_str (str) – an attribute of type Signal of the widget

• slot (Callable) – a callable connected to the signal

• kwargs (dict) – variable named arguments passed as is to the widget constructor

Return type
QtWidgets.QWidget

affect_to(action_name, obj: Union[QToolBar, QMenu])
Affect action to an object either a toolbar or a menu

Parameters

• action_name (str) – The action name as defined in setup_actions

• obj (QToolbar or QMenu) – The object where to add the action

connect_action(name, slot, connect=True, signal_name='')
Connect (or disconnect) the action referenced by name to the given slot

Parameters

• name (str) – key of the action as referenced in the self._actions dict

• slot (method) – a method/function

• connect (bool) – if True connect the trigger signal of the action to the defined slot
else disconnect it

• signal_name (str) – try to use it as a signal (for widgets added. . .) otherwise use
the triggered signal

get_action(name)→ QAction
Getter of a given action

Parameters
name (str) – The action name as defined in setup_actions

Return type
QAction

318 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

has_action(action_name)→ bool
Check if an action has been defined :param action_name: The action name as defined in setup_actions
:type action_name: str

Returns
bool

Return type
True if the action exists, False otherwise

set_action_text(action_name: str, text: str)
Convenience method to set the displayed text on an action

Parameters

• action_name (str) – The action name as defined in setup_actions

• text (str) – The text to display

set_menu(menu)
affect a menu to self

Parameters
menu – QtWidgets.QMenu

set_toolbar(toolbar)
affect a toolbar to self

Parameters
toolbar – QtWidgets.QToolBar

setup_actions()

Method where to create actions to be subclassed. Mandatory

Examples

>>> self.add_action('Quit', 'close2', "Quit program")
>>> self.add_action('Grab', 'camera', "Grab from camera", checkable=True)
>>> self.add_action('Load', 'Open', "Load target file (.h5, .png, .jpg) or␣
→˓data from camera", checkable=False)
>>> self.add_action('Save', 'SaveAs', "Save current data", checkable=False)

See also:

ActionManager.add_action

property menu

Get the default menu

property toolbar

Get the default toolbar

class pymodaq.utils.managers.parameter_manager.ParameterManager(settings_name: Optional[str] =
None, action_list: tuple = ('save',
'update', 'load'))

Class dealing with Parameter and ParameterTree

7.8. Library Reference 319

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

PyMoDAQ Documentation, Release 4.2.0

params

Defining the Parameter tree like structure

Type
list of dicts

settings_name

The particular name to give to the object parent Parameter (self.settings)

Type
str

settings

The higher level (parent) Parameter

Type
Parameter

settings_tree

widget Holding a ParameterTree and a toolbar for interacting with the tree

Type
QWidget

tree

the underlying ParameterTree

Type
ParameterTree

Attributes

settings
settings_tree
tree

Methods

child_added(param, data) Non-mandatory method to be subclassed for ac-
tions to perform when a param has been added in
self.settings

load_settings_slot([file_path]) Method to load settings into the parameter using a
xml file extension.

param_deleted(param) Non-mandatory method to be subclassed for actions
to perform when one of the param in self.settings has
been deleted

save_settings_slot([file_path]) Method to save the current settings using a xml file
extension.

update_settings_slot([file_path]) Method to update settings using a xml file extension.
value_changed(param) Non-mandatory method to be subclassed for actions

to perform (methods to call) when one of the param's
value in self._settings is changed

create_parameter
parameter_tree_changed

320 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

child_added(param, data)
Non-mandatory method to be subclassed for actions to perform when a param has been added in
self.settings

Parameters

• param (Parameter) – the parameter where child will be added

• data (Parameter) – the child parameter

load_settings_slot(file_path: Optional[Path] = None)
Method to load settings into the parameter using a xml file extension.

The starting directory is the user config folder with a subfolder called settings folder

Parameters
file_path (Path) – Path like object pointing to a xml file encoding a Parameter object
If None, opens a file explorer window to pick manually a file

param_deleted(param)

Non-mandatory method to be subclassed for actions to perform when one of the param in self.settings has
been deleted

Parameters
param (Parameter) – the parameter that has been deleted

save_settings_slot(file_path: Optional[Path] = None)
Method to save the current settings using a xml file extension.

The starting directory is the user config folder with a subfolder called settings folder

Parameters
file_path (Path) – Path like object pointing to a xml file encoding a Parameter object
If None, opens a file explorer window to save manually a file

update_settings_slot(file_path: Optional[Path] = None)
Method to update settings using a xml file extension.

The file should define the same settings structure (names and children)

The starting directory is the user config folder with a subfolder called settings folder

Parameters
file_path (Path) – Path like object pointing to a xml file encoding a Parameter object
If None, opens a file explorer window to pick manually a file

value_changed(param)

Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param’s
value in self._settings is changed

Parameters
param (Parameter) – the parameter whose value just changed

7.8. Library Reference 321

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path

PyMoDAQ Documentation, Release 4.2.0

Examples

>>> if param.name() == 'do_something':
>>> if param.value():
>>> print('Do something')
>>> self.settings.child('main_settings', 'something_done').
→˓setValue(False)

class pymodaq.utils.managers.modules_manager.ModulesManager(detectors=[], actuators=[],
selected_detectors=[],
selected_actuators=[], **kwargs)

Class to manage DAQ_Viewers and DAQ_Moves with UI to select some

Easier to connect control modules signals to slots, test, . . .

Parameters

• detectors (list of DAQ_Viewer) –

• actuators (list of DAQ_Move) –

• selected_detectors (list of DAQ_Viewer) – sublist of detectors

• selected_actuators (list of DAQ_Move) – sublist of actuators

Attributes

Nactuators
Get the number of selected actuators

Ndetectors
Get the number of selected detectors

actuators
Get the list of selected actuators

actuators_all
Get the list of all actuators

actuators_name
Get all the names of the actuators

detectors
Get the list of selected detectors

detectors_all
Get the list of all detectors

detectors_name
Get all the names of the detectors

modules
Get the list of all detectors and actuators

modules_all
Get the list of all detectors and actuators

selected_actuators_name
Get/Set the names of the selected actuators

selected_detectors_name
Get/Set the names of the selected detectors

322 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PyMoDAQ Documentation, Release 4.2.0

Methods

connect_actuators([connect, slot, signal]) Connect the selected actuators signal to a given or de-
fault slot

connect_detectors([connect, slot]) Connect selected DAQ_Viewers's grab_done_signal
to the given slot

get_det_data_list() Do a snap of selected detectors, to get the list of all
the data and processed data

get_mod_from_name(name[, mod]) Getter of a given module from its name (title)
get_mods_from_names(names[, mod]) Getter of a list of given modules from their name (ti-

tle)
get_names(modules) Get the titles of a list of Control Modules
get_selected_probed_data([dim]) Get the name of selected data names of a given di-

mensionality
grab_datas(**kwargs) Do a single grab of connected and selected detectors
move_actuators(dte_act[, mode, polling]) will apply positions to each currently selected actua-

tors.
order_positions(positions) Reorder the content of the DataToExport given the

order of the selected actuators
set_actuators(actuators, selected_actuators) Populates actuators and the subset to be selected in

the UI
set_detectors(detectors, selected_detectors) Populates detectors and the subset to be selected in

the UI
test_move_actuators() Do a move of selected actuator
value_changed(param) Non-mandatory method to be subclassed for actions

to perform (methods to call) when one of the param's
value in self._settings is changed

actuators_changed
det_done
det_done_signal
detectors_changed
move_done
move_done_signal
reset_signals
show_only_control_modules
timeout_signal

connect_actuators(connect=True, slot=None, signal='move_done')
Connect the selected actuators signal to a given or default slot

Parameters

• connect (bool) –

• slot (builtin_function_or_method) – method or function the chosen signal will
be connected to if None, then the default move_done slot is used

• signal (str) – What kind of signal is to be used:

– ’move_done’ will connect the move_done_signal to the slot

– ’current_value’ will connect the ‘current_value_signal’ to the slot

7.8. Library Reference 323

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

See also:

move_done()

connect_detectors(connect=True, slot=None)
Connect selected DAQ_Viewers’s grab_done_signal to the given slot

Parameters

• connect (bool) – if True, connect to the given slot (or default slot) if False, disconnect
all detectors (not only the currently selected ones. This is made because when selected
detectors changed if you only disconnect those one, the previously connected ones will
stay connected)

• slot (method) – A method that should be connected, if None self.det_done is con-
nected by default

get_det_data_list()

Do a snap of selected detectors, to get the list of all the data and processed data

get_mod_from_name(name, mod='det')→ Union[DAQ_Move, DAQ_Viewer]
Getter of a given module from its name (title)

Parameters

• name (str) –

• mod (str) – either ‘det’ for DAQ_Viewer modules or ‘act’ for DAQ_Move modules

get_mods_from_names(names, mod='det')
Getter of a list of given modules from their name (title)

Parameters

• names (list of str) –

• mod (str) – either ‘det’ for DAQ_Viewer modules or ‘act’ for DAQ_Move modules

classmethod get_names(modules)
Get the titles of a list of Control Modules

Parameters
modules (list of DAQ_Move and/or DAQ_Viewer) –

get_selected_probed_data(dim='0D')
Get the name of selected data names of a given dimensionality

Parameters
dim (str) – either ‘0D’, ‘1D’, ‘2D’ or ‘ND’

grab_datas(**kwargs)
Do a single grab of connected and selected detectors

move_actuators(dte_act: DataToExport, mode='abs', polling=True)→ DataToExport
will apply positions to each currently selected actuators. By Default the mode is absolute but can be

Parameters

• dte_act (DataToExport) – the DataToExport of position to apply. Its length must
be equal to the number of selected actuators

• mode (str) – either ‘abs’ for absolute positionning or ‘rel’ for relative

324 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

• polling (bool) – if True will wait for the selected actuators to reach their target
positions (they have to be connected to a method checking for the position and letting
the programm know the move is done (default connection is this object move_done
method)

Return type
DataToExport with the selected actuators’s name as key and current actuators’s value as
value

order_positions(positions: DataToExport)
Reorder the content of the DataToExport given the order of the selected actuators

set_actuators(actuators, selected_actuators)
Populates actuators and the subset to be selected in the UI

set_detectors(detectors, selected_detectors)
Populates detectors and the subset to be selected in the UI

test_move_actuators()

Do a move of selected actuator

value_changed(param)

Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param’s
value in self._settings is changed

Parameters
param (Parameter) – the parameter whose value just changed

Examples

>>> if param.name() == 'do_something':
>>> if param.value():
>>> print('Do something')
>>> self.settings.child('main_settings', 'something_done').
→˓setValue(False)

property Nactuators

Get the number of selected actuators

property Ndetectors

Get the number of selected detectors

property actuators: List[DAQ_Move]

Get the list of selected actuators

property actuators_all

Get the list of all actuators

property actuators_name

Get all the names of the actuators

property detectors: List[DAQ_Viewer]

Get the list of selected detectors

property detectors_all

Get the list of all detectors

7.8. Library Reference 325

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List

PyMoDAQ Documentation, Release 4.2.0

property detectors_name

Get all the names of the detectors

property modules

Get the list of all detectors and actuators

property modules_all

Get the list of all detectors and actuators

property selected_actuators_name: List[str]

Get/Set the names of the selected actuators

property selected_detectors_name

Get/Set the names of the selected detectors

Data Viewers

The data viewers are classes devoted to data display from scalar data up to 4 dimensions data. All the viewers inherits
from the base class ViewerBase and then offers options and interactions depending their dimensionality

Summary of the data viewers classes

pymodaq.utils.plotting.data_viewers.
viewer0D.Viewer0D([...])

this plots 0D data on a plotwidget with history.

pymodaq.utils.plotting.data_viewers.
viewer1D.Viewer1D([...])

DataWithAxis of type Data1D can be plotted using this
data viewer

pymodaq.utils.plotting.data_viewers.
viewer2D.Viewer2D([...])

Object managing plotting and manipulation of 2D data
using a View2D

pymodaq.utils.plotting.data_viewers.
viewerND.ViewerND([...])

Methods

class pymodaq.utils.plotting.data_viewers.viewer0D.Viewer0D(parent=None, title='',
show_toolbar=True,
no_margins=False)

this plots 0D data on a plotwidget with history. Display as numbers in a table is possible.

Datas and measurements are then exported with the signal data_to_export_signal

Attributes

labels

Methods

update_colors

class pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D(parent: Optional[QWidget] = None,
title='', show_toolbar=True,
no_margins=False, flip_axes=False)

DataWithAxis of type Data1D can be plotted using this data viewer

326 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

PyMoDAQ Documentation, Release 4.2.0

show_data:

parameter: * dwa: a DataWithaxis * scatter_dwa: an optional extra DataWithAxis to be plotted with
scatter points

it could define extra_attributes such as symbol: str (to define the symbol layout default: ‘o’)
and symbol_size: int (to define the symbol size)

Attributes

crosshair
Convenience method

labels
roi_manager

Convenience method

roi_target
To be implemented if necessary (Viewer1D and above)

Methods

activate_roi([activate]) Activate the Roi manager using the corresponding ac-
tion

move_roi_target([pos]) move a specific read only ROI at the given position
on the viewer

set_crosshair_position(xpos[, ypos]) Convenience method to set the crosshair positions

add_plot_item
crosshair_changed
double_clicked
get_axis_from_view
prepare_connect_ui
process_crosshair_lineouts
process_roi_lineouts
roi_changed
selected_region_changed
update_colors
update_status

activate_roi(activate=True)
Activate the Roi manager using the corresponding action

move_roi_target(pos: Optional[Iterable[float]] = None)
move a specific read only ROI at the given position on the viewer

set_crosshair_position(xpos, ypos=0)
Convenience method to set the crosshair positions

property crosshair

Convenience method

property roi_manager

Convenience method

7.8. Library Reference 327

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#float

PyMoDAQ Documentation, Release 4.2.0

property roi_target: InfiniteLine

To be implemented if necessary (Viewer1D and above)

class pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D(parent: Optional[QWidget] = None,
title='')

Object managing plotting and manipulation of 2D data using a View2D

Attributes

crosshair
Convenience method

image_widget
Convenience method

roi_manager
Convenience method

roi_target
To be implemented if necessary (Viewer1D and above)

x_axis
y_axis

Methods

activate_roi([activate]) Activate the Roi manager using the corresponding ac-
tion

get_axes_from_view(data) Obtain axes info from the view
get_data_at() Convenience method
move_roi_target([pos, size]) move a specific read only ROI at the given position

on the viewer
set_crosshair_position(xpos, ypos) Convenience method to set the crosshair positions
set_gradient(image_key, gradient) convenience function
set_image_transform() Deactivate some tool buttons if data type is "spread"

then apply transform_image
show_roi([show, show_roi_widget]) convenience function to control roi

autolevels_first
crosshair_changed
double_clicked
prepare_connect_ui
process_crosshair_lineouts
process_roi_lineouts
roi_changed
selected_region_changed
set_visible_items
transform_image
update_crosshair_data
update_data

activate_roi(activate=True)
Activate the Roi manager using the corresponding action

328 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Optional

PyMoDAQ Documentation, Release 4.2.0

get_axes_from_view(data: DataWithAxes)
Obtain axes info from the view

Only for uniform data

get_data_at()

Convenience method

move_roi_target(pos: Optional[Iterable[float]] = None, size: Iterable[float] = (1, 1))
move a specific read only ROI at the given position on the viewer

set_crosshair_position(xpos, ypos)
Convenience method to set the crosshair positions

set_gradient(image_key, gradient)
convenience function

set_image_transform()→ DataRaw
Deactivate some tool buttons if data type is “spread” then apply transform_image

show_roi(show=True, show_roi_widget=True)
convenience function to control roi

property crosshair

Convenience method

property image_widget

Convenience method

property roi_manager

Convenience method

property roi_target: ROI

To be implemented if necessary (Viewer1D and above)

class pymodaq.utils.plotting.data_viewers.viewerND.ViewerND(parent: Optional[QWidget] = None,
title='')

Methods

setup_actions() Method where to create actions to be subclassed.

connect_things
prepare_ui
reshape_data
set_data_test
setup_widgets
show_settings
update_data_dim
update_data_displayer
update_filters
update_widget_visibility

setup_actions()

Method where to create actions to be subclassed. Mandatory

7.8. Library Reference 329

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Optional

PyMoDAQ Documentation, Release 4.2.0

Examples

>>> self.add_action('Quit', 'close2', "Quit program")
>>> self.add_action('Grab', 'camera', "Grab from camera", checkable=True)
>>> self.add_action('Load', 'Open', "Load target file (.h5, .png, .jpg) or␣
→˓data from camera", checkable=False)
>>> self.add_action('Save', 'SaveAs', "Save current data", checkable=False)

See also:

ActionManager.add_action

Plotting utility classes

class pymodaq.utils.plotting.scan_selector.ScanSelector(viewer_items: Optional[List[SelectorItem]]
= None, positions: Optional[List] = None)

Allows selection of a given 2D viewer to get scan info

respectively scan2D or scan Tabular from respectively a rectangular ROI or a polyline

Parameters

• viewer_items (dict) – where the keys are the titles of the sources while the values are
dict with keys * viewers: list of plotitems * names: list of viewer titles

• selector_type (str) – either ‘PolyLines’ corresponding to a polyline ROI or ‘Rectan-
gle’ for a rect Roi

• positions (list) – a sequence of 2 floats sequence [(x1,y1),(x2,y2),(x3,y3),. . .]

Attributes

selector_type
source_name
viewers_items

Methods

value_changed(param) Non-mandatory method to be subclassed for actions
to perform (methods to call) when one of the param's
value in self._settings is changed

hide
remove_selector
scan_select_signal
show
show_selector
update_model
update_model_data
update_scan
update_selector_type
update_table_view

330 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyMoDAQ Documentation, Release 4.2.0

value_changed(param)

Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param’s
value in self._settings is changed

Parameters
param (Parameter) – the parameter whose value just changed

Examples

>>> if param.name() == 'do_something':
>>> if param.value():
>>> print('Do something')
>>> self.settings.child('main_settings', 'something_done').
→˓setValue(False)

class pymodaq.utils.gui_utils.widgets.lcd.LCD(parent: Optional[QObject] = None)

Methods

setvalues(values) display values on lcds :param values: :type values:
list of 0D ndarray

setupui

setvalues(values: List[ndarray])
display values on lcds :param values: :type values: list of 0D ndarray

7.8.4 Utility Libraries

Utility Classes

class pymodaq.utils.daq_utils.ThreadCommand(command: str, attribute=None, attributes=None)
Generic object to pass info (command) and data (attribute) between thread or objects using signals

Parameters

• command (str) – The command to be analysed for further action

• attribute (any type) – the attribute related to the command. The actual type and value
depend on the command and the situation

• attributes (deprecated, attribute should be used instead) –

command

The command to be analysed for further action

Type
str

7.8. Library Reference 331

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

attribute

the attribute related to the command. The actual type and value depend on the command and the situation

Type
any type

TCP/IP related methods

Serializing object to bytes and back

Created the 20/10/2023

@author: Sebastien Weber

class pymodaq.utils.tcp_ip.serializer.DeSerializer(bytes_string: Union[bytes, Socket] = None)
Used to DeSerialize bytes to python objects, numpy arrays and PyMoDAQ Axis, DataWithAxes and DataToEx-
port objects

Parameters
bytes_string (bytes or Socket) – the bytes string to deserialize into an object: int, float,
string, arrays, list, Axis, DataWithAxes. . . Could also be a Socket object reading bytes from
the network having a get_first_nbytes method

See also:

SocketString, Socket

Methods

axis_deserialization() Convert bytes into an Axis object
boolean_deserialization() Convert bytes into a boolean object
bytes_to_int(bytes_string) Convert a bytes of length 4 into an integer
bytes_to_nd_array(data, dtype, shape) Convert bytes to a ndarray given a certain numpy

dtype and shape
bytes_to_scalar(data, dtype) Convert bytes to a scalar given a certain numpy dtype
dte_deserialization() Convert bytes into a DataToExport object
dwa_deserialization() Convert bytes into a DataWithAxes object
list_deserialization() Convert bytes into a list of homogeneous objects
ndarray_deserialization() Convert bytes into a numpy ndarray object
scalar_deserialization() Convert bytes into a numbers.Number object
string_deserialization() Convert bytes into a str object

bytes_to_string
object_deserialization

axis_deserialization()→ Axis
Convert bytes into an Axis object

Convert the first bytes into an Axis reading first information about the Axis

Returns
Axis

332 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

PyMoDAQ Documentation, Release 4.2.0

Return type
the decoded Axis

boolean_deserialization()→ bool
Convert bytes into a boolean object

Get first the data type from a string deserialization, then the data length and finally convert this length of
bytes into a number (float, int) and cast it to a bool

Returns
bool

Return type
the decoded boolean

static bytes_to_int(bytes_string: bytes)→ int
Convert a bytes of length 4 into an integer

static bytes_to_nd_array(data: bytes, dtype: dtype, shape: Tuple[int])→ ndarray
Convert bytes to a ndarray given a certain numpy dtype and shape

Parameters

• data (bytes) –

• dtype (np.dtype) –

• shape (tuple of int) –

Return type
np.ndarray

static bytes_to_scalar(data: bytes, dtype: dtype)→ Number
Convert bytes to a scalar given a certain numpy dtype

Parameters

• data (bytes) –

• dtype (np.dtype) –

Return type
numbers.Number

dte_deserialization()→ DataToExport
Convert bytes into a DataToExport object

Convert the first bytes into a DataToExport reading first information about the underlying data

Returns
DataToExport

Return type
the decoded DataToExport

dwa_deserialization()→ DataWithAxes
Convert bytes into a DataWithAxes object

Convert the first bytes into a DataWithAxes reading first information about the underlying data

Returns
DataWithAxes

Return type
the decoded DataWithAxes

7.8. Library Reference 333

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/numbers.html#numbers.Number
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/numbers.html#numbers.Number

PyMoDAQ Documentation, Release 4.2.0

list_deserialization()→ list
Convert bytes into a list of homogeneous objects

Convert the first bytes into a list reading first information about the list elt types, length . . .

Returns
list

Return type
the decoded list

ndarray_deserialization()→ ndarray
Convert bytes into a numpy ndarray object

Convert the first bytes into a ndarray reading first information about the array’s data

Returns
ndarray

Return type
the decoded numpy array

scalar_deserialization()→ Number
Convert bytes into a numbers.Number object

Get first the data type from a string deserialization, then the data length and finally convert this length of
bytes into a number (float, int)

Returns
numbers.Number

Return type
the decoded number

string_deserialization()→ str
Convert bytes into a str object

Convert first the fourth first bytes into an int encoding the length of the string to decode

Returns
str

Return type
the decoded string

class pymodaq.utils.tcp_ip.serializer.Serializer(obj: Optional[Union[int, str, Number, list, ndarray,
Axis, DataWithAxes, DataToExport]] = None)

Used to Serialize to bytes python objects, numpy arrays and PyMoDAQ DataWithAxes and DataToExport objects

334 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/numbers.html#numbers.Number
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/numbers.html#numbers.Number
https://docs.python.org/3/library/stdtypes.html#list

PyMoDAQ Documentation, Release 4.2.0

Methods

axis_serialization(axis) Convert an Axis object into a bytes message together
with the info to convert it back

dte_serialization(dte) Convert a DataToExport into a bytes string
dwa_serialization(dwa) Convert a DataWithAxes into a bytes string
int_to_bytes(an_integer) Convert an unsigned integer into a byte array of

length 4 in big endian
list_serialization(list_object) Convert a list of objects into a bytes message together

with the info to convert it back
ndarray_serialization(array) Convert a ndarray into a bytes message together with

the info to convert it back
object_type_serialization(obj) Convert an object type into a bytes message as a string

together with the info to convert it back
scalar_serialization(scalar) Convert a scalar into a bytes message together with

the info to convert it back
str_len_to_bytes(message) Convert a string and its length to two bytes :param

message: the message to convert :type message: str
string_serialization(string) Convert a string into a bytes message together with

the info to convert it back
to_bytes() Generic method to obtain the bytes string from vari-

ous objects

bytes_serialization
str_to_bytes
type_and_object_serialization

axis_serialization(axis: Axis)→ bytes
Convert an Axis object into a bytes message together with the info to convert it back

Parameters
axis (Axis) –

Returns
bytes

Return type
the total bytes message to serialize the Axis

Notes

The bytes sequence is constructed as:

• serialize the type: ‘Axis’

• serialize the axis label

• serialize the axis units

• serialize the axis array

• serialize the axis

• serialize the axis spread_order

7.8. Library Reference 335

https://docs.python.org/3/library/stdtypes.html#bytes

PyMoDAQ Documentation, Release 4.2.0

dte_serialization(dte: DataToExport)→ bytes
Convert a DataToExport into a bytes string

Parameters
dte (DataToExport) –

Returns
bytes

Return type
the total bytes message to serialize the DataToExport

Notes

The bytes sequence is constructed as:

• serialize the string type: ‘DataToExport’

• serialize the timestamp: float

• serialize the name

• serialize the list of DataWithAxes

dwa_serialization(dwa: DataWithAxes)→ bytes
Convert a DataWithAxes into a bytes string

Parameters
dwa (DataWithAxes) –

Returns
bytes

Return type
the total bytes message to serialize the DataWithAxes

Notes

The bytes sequence is constructed as:

• serialize the string type: ‘DataWithAxes’

• serialize the timestamp: float

• serialize the name

• serialize the source enum as a string

• serialize the dim enum as a string

• serialize the distribution enum as a string

• serialize the list of numpy arrays

• serialize the list of labels

• serialize the origin

• serialize the nav_index tuple as a list of int

• serialize the list of axis

• serialize the errors attributes (None or list(np.ndarray))

336 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

PyMoDAQ Documentation, Release 4.2.0

• serialize the list of names of extra attributes

• serialize the extra attributes

static int_to_bytes(an_integer: int)→ bytes
Convert an unsigned integer into a byte array of length 4 in big endian

Parameters
an_integer (int) –

Return type
bytearray

list_serialization(list_object: List)→ bytes
Convert a list of objects into a bytes message together with the info to convert it back

Parameters
list_object (list) – the list could contains either scalars, strings or ndarrays or Axis
objects or DataWithAxis objects module

Returns
bytes

Return type
the total bytes message to serialize the list of objects

Notes

The bytes sequence is constructed as: * the length of the list

Then for each object:

• get data type as a string

• use the serialization method adapted to each object in the list

ndarray_serialization(array: ndarray)→ bytes
Convert a ndarray into a bytes message together with the info to convert it back

Parameters
array (np.ndarray) –

Returns
bytes

Return type
the total bytes message to serialize the scalar

Notes

The bytes sequence is constructed as:

• get data type as a string

• reshape array as 1D array and get the array dimensionality (len of array’s shape)

• convert Data array as bytes

• serialize data type

• serialize data length

7.8. Library Reference 337

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytes

PyMoDAQ Documentation, Release 4.2.0

• serialize data shape length

• serialize all values of the shape as integers converted to bytes

• serialize array as bytes

object_type_serialization(obj: Union[Axis, DataToExport, DataWithAxes])→ bytes
Convert an object type into a bytes message as a string together with the info to convert it back

Applies to Data object from the pymodaq.utils.data module

scalar_serialization(scalar: Number)→ bytes
Convert a scalar into a bytes message together with the info to convert it back

Parameters
scalar (str) –

Returns
bytes

Return type
the total bytes message to serialize the scalar

classmethod str_len_to_bytes(message: str) -> (<class 'bytes'>, <class 'bytes'>)
Convert a string and its length to two bytes :param message: the message to convert :type message: str

Returns

• bytes (message converted as a byte array)

• bytes (length of the message byte array, itself as a byte array of length 4)

string_serialization(string: str)→ bytes
Convert a string into a bytes message together with the info to convert it back

Parameters
string (str) –

Returns
bytes

Return type
the total bytes message to serialize the string

to_bytes()

Generic method to obtain the bytes string from various objects

Compatible objects are:

• bytes

• numbers.Number

• str

• numpy.ndarray

• Axis

• DataWithAxes and sub-flavours

• DataToExport

• list of any objects above

338 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/numbers.html#numbers.Number
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/numbers.html#numbers.Number
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyMoDAQ Documentation, Release 4.2.0

class pymodaq.utils.tcp_ip.serializer.SocketString(bytes_string: bytes)
Mimic the Socket object but actually using a bytes string not a socket connection

Implements a minimal interface of two methods

Parameters
bytes_string (bytes) –

See also:

Socket

Methods

check_received_length (length) Make sure all bytes (length) that should be received
are received through the socket.

get_first_nbytes(length) Read the first N bytes from the socket

check_received_length(length: int)→ bytes
Make sure all bytes (length) that should be received are received through the socket.

Here just read the content of the underlying bytes string

Parameters
length (int) – The number of bytes to be read from the socket

Return type
bytes

get_first_nbytes(length: int)→ bytes
Read the first N bytes from the socket

Parameters
length (int) – The number of bytes to be read from the socket

Returns
the read bytes string

Return type
bytes

Custom Sockets to implement PyMoDAQ protocol

Created the 26/10/2023

@author: Sebastien Weber

class pymodaq.utils.tcp_ip.mysocket.Socket(socket: Optional[socket] = None)
Custom Socket wrapping the built-in one and added functionalities to make sure message have been sent and
received entirely

Attributes

socket

7.8. Library Reference 339

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/socket.html#socket.socket

PyMoDAQ Documentation, Release 4.2.0

Methods

check_received_length (length) Make sure all bytes (length) that should be received
are received through the socket

check_sended(data_bytes) Make sure all bytes are sent through the socket :param
data_bytes: :type data_bytes: bytes

check_sended_with_serializer(obj) Convenience function to convert permitted objects to
bytes and then use the check_sended method

get_first_nbytes(length) Read the first N bytes from the socket

accept
bind
close
connect
getsockname
listen
recv
send
sendall

check_received_length(length)→ bytes
Make sure all bytes (length) that should be received are received through the socket

Parameters
length (int) – The number of bytes to be read from the socket

Return type
bytes

check_sended(data_bytes: bytes)
Make sure all bytes are sent through the socket :param data_bytes: :type data_bytes: bytes

check_sended_with_serializer(obj: object)
Convenience function to convert permitted objects to bytes and then use the check_sended method

For a list of allowed objects, see Serializer.to_bytes()

get_first_nbytes(length: int)→ bytes
Read the first N bytes from the socket

Parameters
length (int) – The number of bytes to be read from the socket

Returns
bytes

Return type
the read bytes string

340 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

PyMoDAQ Documentation, Release 4.2.0

Base classes as TCP server and client

Created on Fri Aug 30 12:21:56 2019

@author: Weber

class pymodaq.utils.tcp_ip.tcp_server_client.Grabber(parent: Optional[QObject] = None)

Methods

grab_data() Do a grab session using 2 profile :

command_tcpip
connect_tcp_ip
process_tcpip_cmds
snapshot

grab_data()

Do a grab session using 2 profile :

• if grab pb checked do a continous save and send an “update_channels” thread command and a
“grab” too.

• if not send a “stop_grab” thread command with settings “main settings-naverage” node value as
an attribute.

See also:

daq_utils.ThreadCommand, set_enabled_Ini_buttons

class pymodaq.utils.tcp_ip.tcp_server_client.MockServer(client_type='GRABBER')

class pymodaq.utils.tcp_ip.tcp_server_client.TCPClient(ipaddress='192.168.1.62', port=6341,
params_state=None,
client_type='GRABBER')

PyQt5 object initializing a TCP socket client. Can be used by any module but is a builtin functionality of all
actuators and detectors of PyMoDAQ

The module should init TCPClient, move it in a thread and communicate with it using a custom signal con-
nected to TCPClient.queue_command slot. The module should also connect TCPClient.cmd_signal to one of its
methods inorder to get info/data back from the client

The client itself communicate with a TCP server, it is best to use a server object subclassing the TCPServer class
defined within this python module

Parameters
params_state ((dict) state of the Parameter settings of the module
instantiating this client and wishing to) – export its settings to the server.
Obtained from param.saveState() where param is an instance of Parameter object, see
pyqtgraph.parametertree::Parameter

7.8. Library Reference 341

https://docs.python.org/3/library/stdtypes.html#dict

PyMoDAQ Documentation, Release 4.2.0

Methods

get_data(message)
param message

post_init([extra_commands]) To implement in a real object implementation
queue_command([command]) when this TCPClient object is within a thread, the

corresponding module communicate with it with sig-
nal and slots from module to client: module_signal
to queue_command slot from client to module:
self.cmd_signal to a module slot

ready_to_read() Do stuff (like read data) when messages arrive
through the socket

ready_to_write() Send stuff into the socket
ready_with_error() Error in the socket communication

cmd_signal
data_ready
not_connected
process_error_in_polling
send_data
send_info_string
send_infos_xml

get_data(message: str)

Parameters
message –

post_init(extra_commands=[])
To implement in a real object implementation

queue_command(command=<class 'pymodaq.utils.daq_utils.ThreadCommand'>)
when this TCPClient object is within a thread, the corresponding module communicate with it with
signal and slots from module to client: module_signal to queue_command slot from client to module:
self.cmd_signal to a module slot

ready_to_read()

Do stuff (like read data) when messages arrive through the socket

ready_to_write()

Send stuff into the socket

ready_with_error()

Error in the socket communication

class pymodaq.utils.tcp_ip.tcp_server_client.TCPServer(client_type='GRABBER')
Abstract class to be used as inherited by DAQ_Viewer_TCP or DAQ_Move_TCP

342 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

Methods

close_server() close the current opened server.
find_socket_type_within_connected_clients(sock)Find a socket type from a connected client with socket

content corresponding.
find_socket_within_connected_clients(client_type)Find a socket from a connected client with socket type

corresponding.
listen_client() Server function.
print_status(status) Print the given status.
process_cmds(command[, command_sock]) Process the given command.
read_info([sock, test_info, test_value]) if the client is not from PyMoDAQ it can use this

method to display some info into the server widget
select(rlist[, wlist, xlist, timeout]) Implements the select method, https://docs.python.

org/3/library/select.html :param rlist: :type rlist:
(list) wait until ready for reading :param wlist: :type
wlist: (list) wait until ready for writing :param xlist:
:type xlist: (list) wait for an “exceptional condition”
:param timeout: When the timeout argument is omit-
ted the function blocks until at least one file descriptor
is ready. A time-out value of zero specifies a poll and
never blocks. :type timeout: (float) optional timeout
argument specifies a time-out as a floating point num-
ber in seconds.

send_command(sock[, command]) Send one of the message contained in
self.message_list toward a socket with identity
socket_type.

timerEvent(event) Called by set timers.

command_done
command_to_from_client
emit_status
init_server
read_data
read_info_xml
read_infos
remove_client
send_data
set_connected_clients_table

close_server()

close the current opened server. Update the settings tree consequently.

See also:

set_connected_clients_table, daq_utils.ThreadCommand

find_socket_type_within_connected_clients(sock)
Find a socket type from a connected client with socket content corresponding.

Parameters Type Description
sock ??? The socket content corresponding.

7.8. Library Reference 343

https://docs.python.org/3/library/select.html
https://docs.python.org/3/library/select.html

PyMoDAQ Documentation, Release 4.2.0

Returns
the socket dictionnary

Return type
dictionnary

find_socket_within_connected_clients(client_type)→ Socket
Find a socket from a connected client with socket type corresponding.

Parameters Type Description
client_type string The corresponding client type

Returns
the socket dictionnary

Return type
dictionnary

listen_client()

Server function. Used to connect or listen incoming message from a client.

print_status(status)
Print the given status.

Parameters Type Description
status string list a string list representing the status socket

process_cmds(command, command_sock=None)
Process the given command.

read_info(sock: Optional[Socket] = None, test_info='an_info', test_value='')
if the client is not from PyMoDAQ it can use this method to display some info into the server widget

select(rlist, wlist=[], xlist=[], timeout=0)
Implements the select method, https://docs.python.org/3/library/select.html :param rlist: :type rlist: (list)
wait until ready for reading :param wlist: :type wlist: (list) wait until ready for writing :param xlist: :type
xlist: (list) wait for an “exceptional condition” :param timeout: When the timeout argument is omitted the
function blocks until at least one file descriptor is ready.

A time-out value of zero specifies a poll and never blocks.

Returns

• list (readable sockets)

• list (writable sockets)

• list (sockets with error pending)

send_command(sock: Socket, command='move_at')
Send one of the message contained in self.message_list toward a socket with identity socket_type. First
send the length of the command with 4bytes.

Parameters Type Description
sock ??? The current socket
command string The command as a string

344 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/select.html

PyMoDAQ Documentation, Release 4.2.0

See also:

utility_classes.DAQ_Viewer_base.emit_status, daq_utils.ThreadCommand,
message_to_bytes

set_connected_clients_table()

timerEvent(event)
Called by set timers. If the process is free, start the listen_client function.

Parameters Type Description
event QTimerEvent object Containing id from timer issuing this event

See also:

listen_client

Units conversion

Created the 27/10/2022

@author: Sebastien Weber

pymodaq.utils.units.Ecmrel2Enm(Ecmrel, ref_wavelength=515)
Converts energy from cm-1 relative to a ref wavelength to an energy in wavelength (nm)

Parameters

• Ecmrel (float) – photon energy in cm-1

• ref_wavelength (float) – reference wavelength in nm from which calculate the photon
relative energy

Returns
photon energy in nm

Return type
float

Examples

>>> Ecmrel2Enm(500, 515)
528.6117526302285

pymodaq.utils.units.Enm2cmrel(E_nm, ref_wavelength=515)
Converts energy in nm to cm-1 relative to a ref wavelength

Parameters

• E_nm (float) – photon energy in wavelength (nm)

• ref_wavelength (float) – reference wavelength in nm from which calculate the photon
relative energy

Returns
photon energy in cm-1 relative to the ref wavelength

Return type
float

7.8. Library Reference 345

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PyMoDAQ Documentation, Release 4.2.0

Examples

>>> Enm2cmrel(530, 515)
549.551199853453

pymodaq.utils.units.cm2nm(E_cm)

Converts photon energy from absolute cm-1 to wavelength

Parameters
E_cm (float) – photon energy in cm-1

Returns
Photon energy in nm

Return type
float

Examples

>>> cm2nm(1e5)
100

pymodaq.utils.units.eV2cm(E_eV)
Converts photon energy from electronvolt to absolute cm-1

Parameters
E_eV (float) – Photon energy in eV

Returns
photon energy in cm-1

Return type
float

Examples

>>> eV2cm(0.07)
564.5880342655984

pymodaq.utils.units.eV2nm(E_eV)
Converts photon energy from electronvolt to wavelength in nm

Parameters
E_eV (float) – Photon energy in eV

Returns
photon energy in nm

Return type
float

346 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PyMoDAQ Documentation, Release 4.2.0

Examples

>>> eV2nm(1.55)
799.898112990037

pymodaq.utils.units.l2w(x, speedlight=300)
Converts photon energy in rad/fs to nm (and vice-versa)

Parameters

• x (float) – photon energy in wavelength or rad/fs

• speedlight (float, optional) – the speed of light, by default 300 nm/fs

Return type
float

Examples

>>> l2w(800)
2.356194490192345
>>> l2w(800,3e8)
2356194.490192345

pymodaq.utils.units.nm2cm(E_nm)

Converts photon energy from wavelength to absolute cm-1

Parameters
E_nm (float) – Photon energy in nm

Returns
photon energy in cm-1

Return type
float

Examples

>>> nm2cm(0.04)
0.000025

pymodaq.utils.units.nm2eV(E_nm)

Converts photon energy from wavelength in nm to electronvolt

Parameters
E_nm (float) – Photon energy in nm

Returns
photon energy in eV

Return type
float

7.8. Library Reference 347

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PyMoDAQ Documentation, Release 4.2.0

Examples

>>> nm2eV(800)
1.549802593918197

Mathematical utilities

pymodaq.utils.math_utils.find_index(x, threshold: Union[Number, List[Number]])→ List[tuple]
find_index finds the index ix such that x(ix) is the closest from threshold

Parameters

• x (vector) –

• threshold (list of real numbers) –

Returns
out – out=[(ix0,xval0),(ix1,xval1),. . .]

Return type
list of 2-tuple containing ix,x[ix]

pymodaq.utils.math_utils.ft(x, dim=-1)
Process the 1D fast fourier transform and swaps the axis to get coorect results using ftAxis :param x: :type x:
(ndarray) the array on which the FFT should be done :param dim: :type dim: the axis over which is done the
FFT (default is the last of the array)

See also:

ftAxis, ftAxis_time, ift, ft2, ift2

pymodaq.utils.math_utils.ft2(x, dim=(-2, -1))
Process the 2D fast fourier transform and swaps the axis to get correct results using ftAxis :param x: :type x:
(ndarray) the array on which the FFT should be done :param dim: :type dim: the axis over which is done the
FFT (default is the last of the array)

See also:

ftAxis, ftAxis_time, ift, ft2, ift2

pymodaq.utils.math_utils.ftAxis(Npts, omega_max)
Given two numbers Npts,omega_max, return two vectors spanning the temporal and spectral range. They are
related by Fourier Transform

Parameters

• Npts ((int)) – A number of points defining the length of both grids

• omega_max ((float)) – The maximum circular frequency in the spectral domain. its
unit defines the temporal units. ex: omega_max in rad/fs implies time_grid in fs

Returns

• omega_grid ((ndarray)) – The spectral axis of the FFT

• time_grid ((ndarray))) – The temporal axis of the FFT

See also:

ftAxis, ftAxis_time, ift, ft2, ift2

348 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/numbers.html#numbers.Number
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/numbers.html#numbers.Number
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

PyMoDAQ Documentation, Release 4.2.0

pymodaq.utils.math_utils.ftAxis_time(Npts, time_max)
Given two numbers Npts,omega_max, return two vectors spanning the temporal and spectral range. They are
related by Fourier Transform

Parameters

• Npts (number) – A number of points defining the length of both grids

• time_max (number) – The maximum tmporal window

Returns

• omega_grid (vector) – The spectral axis of the FFT

• time_grid (vector) – The temporal axis of the FFT

See also:

ftAxis, ftAxis_time, ift, ft2, ift2

pymodaq.utils.math_utils.gauss1D(x, x0, dx, n=1)
compute the gaussian function along a vector x, centered in x0 and with a FWHM i intensity of dx. n=1 is for
the standart gaussian while n>1 defines a hypergaussian

Parameters

• x ((ndarray) first axis of the 2D gaussian) –

• x0 ((float) the central position of the gaussian) –

• dx ((float) :the FWHM of the gaussian) –

• n=1 (an integer to define hypergaussian, n=1 by default for regular
gaussian) –

Returns
out – the value taken by the gaussian along x axis

Return type
vector

pymodaq.utils.math_utils.gauss2D(x, x0, dx, y, y0, dy, n=1, angle=0)
compute the 2D gaussian function along a vector x, centered in x0 and with a FWHM in intensity of dx and smae
along y axis. n=1 is for the standard gaussian while n>1 defines a hypergaussian. optionally rotate it by an angle
in degree

Parameters

• x ((ndarray) first axis of the 2D gaussian) –

• x0 ((float) the central position of the gaussian) –

• dx ((float) :the FWHM of the gaussian) –

• y ((ndarray) second axis of the 2D gaussian) –

• y0 ((float) the central position of the gaussian) –

• dy ((float) :the FWHM of the gaussian) –

• n=1 (an integer to define hypergaussian, n=1 by default for regular
gaussian) –

• angle ((float) a float to rotate main axes, in degree) –

Returns
out

7.8. Library Reference 349

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

PyMoDAQ Documentation, Release 4.2.0

Return type
ndarray 2 dimensions

pymodaq.utils.math_utils.ift(x, dim=0)
Process the inverse 1D fast fourier transform and swaps the axis to get correct results using ftAxis :param x: :type
x: (ndarray) the array on which the FFT should be done :param dim: :type dim: the axis over which is done the
FFT (default is the last of the array)

See also:

ftAxis, ftAxis_time, ift, ft2, ift2

pymodaq.utils.math_utils.ift2(x, dim=(-2, -1))
Process the inverse 2D fast fourier transform and swaps the axis to get correct results using ftAxis :param x: :type
x: (ndarray) the array on which the FFT should be done :param dim: :type dim: the axis (or a tuple of axes) over
which is done the FFT (default is the last of the array)

See also:

ftAxis, ftAxis_time, ift, ft2, ift2

pymodaq.utils.math_utils.linspace_step(start, stop, step)
Compute a regular linspace_step distribution from start to stop values.

Parameters Type Description
start scalar the starting value of distribution
stop scalar the stopping value of distribution
step scalar the length of a distribution step

Returns
The computed distribution axis as an array.

Return type
scalar array

pymodaq.utils.math_utils.my_moment(x, y)
Returns the moments of a distribution y over an axe x

Parameters

• x (list or ndarray) – vector of floats

• y (list or ndarray) – vector of floats corresponding to the x axis

Returns
m – Contains moment of order 0 (mean) and of order 1 (std) of the distribution y

Return type
list

pymodaq.utils.math_utils.odd_even(x)
odd_even tells if a number is odd (return True) or even (return False)

Parameters
x (the integer number to test) –

Returns
bool

Return type
boolean

350 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PyMoDAQ Documentation, Release 4.2.0

Scan utilities

File management

pymodaq.utils.gui_utils.select_file(start_path='C:\\Data', save=True, ext=None, filter=None,
force_save_extension=False)

Opens a selection file popup for loading or saving a file

Parameters

• start_path (str or Path) – The strating point in the file/folder system to open the
popup from

• save (bool) – if True, ask you to enter a filename (with or without extension)

• ext (str) – the extension string, e.g. xml, h5, png . . .

• filter (string) – list of possible extensions, if you need several you can separate them
by ;; for example: “Images (.png *.xpm *.jpg);;Text files (.txt);;XML files (*.xml)”

• force_save_extension (bool) – if True force the extension of the saved file to be set
to ext

Returns
Path

Return type
the Path object of the file to save or load

Data Management

DataDim(value) Enum for dimensionality representation of data
DataSource(value) Enum for source of data
DataDistribution(value) Enum for distribution of data
Axis([label, units, data, index, scaling, ...]) Object holding info and data about physical axis of some

data
DataBase(name[, source, dim, distribution, ...]) Base object to store homogeneous data and metadata

generated by pymodaq's objects.
DataRaw(*args, **kwargs) Specialized DataWithAxes set with source as 'raw'.
DataCalculated(*args[, axes]) Specialized DataWithAxes set with source as 'calcu-

lated'.
DataFromPlugins(*args, **kwargs) Specialized DataWithAxes set with source as 'raw'.
DataFromRoi(*args[, axes]) Specialized DataWithAxes set with source as 'calcu-

lated'.To be used for processed data from region of in-
terest

DataToExport(name[, data]) Object to store all raw and calculated DataWithAxes data
for later exporting, saving, sending signal...

7.8. Library Reference 351

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

Axes

Created the 28/10/2022

@author: Sebastien Weber

class pymodaq.utils.data.Axis(label: str = '', units: str = '', data: Optional[ndarray] = None, index: int = 0,
scaling=None, offset=None, size=None, spread_order: int = 0)

Object holding info and data about physical axis of some data

In case the axis’s data is linear, store the info as a scale and offset else store the data

Parameters

• label (str) – The label of the axis, for instance ‘time’ for a temporal axis

• units (str) – The units of the data in the object, for instance ‘s’ for seconds

• data (ndarray) – A 1D ndarray holding the data of the axis

• index (int) – an integer representing the index of the Data object this axis is related to

• scaling (float) – The scaling to apply to a linspace version in order to obtain the proper
scaling

• offset (float) – The offset to apply to a linspace/scaled version in order to obtain the
proper axis

• size (int) – The size of the axis array (to be specified if data is None)

• spread_order (int) – An integer needed in the case where data has a spread DataDis-
tribution. It refers to the index along the data’s spread_index dimension

Examples

>>> axis = Axis('myaxis', units='seconds', data=np.array([1,2,3,4,5]), index=0)

create_linear_data(nsteps: int)
replace the axis data with a linear version using scaling and offset

find_index(threshold: float)→ int
find the index of the threshold value within the axis

get_data()→ ndarray
Convenience method to obtain the axis data (usually None because scaling and offset are used)

get_data_at(indexes: Union[int, Iterable, slice])→ ndarray
Get data at specified indexes

Parameters
indexes –

get_scale_offset_from_data(data: Optional[ndarray] = None)
Get the scaling and offset from the axis’s data

If data is not None, extract the scaling and offset

Parameters
data (ndarray) –

352 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/typing.html#typing.Optional

PyMoDAQ Documentation, Release 4.2.0

property data

get/set the data of Axis

Type
np.ndarray

property index: int

get/set the index this axis corresponds to in a DataWithAxis object

Type
int

property label: str

get/set the label of this axis

Type
str

property size: int

get/set the size/length of the 1D ndarray

Type
int

property units: str

get/set the units for this axis

Type
str

DataObjects

Created the 28/10/2022

@author: Sebastien Weber

class pymodaq.utils.data.DataBase(name: str, source: Optional[DataSource] = None, dim:
Optional[DataDim] = None, distribution: DataDistribution =
DataDistribution.uniform, data: Optional[List[ndarray]] = None,
labels: Optional[List[str]] = None, origin: str = '', **kwargs)

Base object to store homogeneous data and metadata generated by pymodaq’s objects.

To be inherited for real data

Parameters

• name (str) – the identifier of these data

• source (DataSource or str) – Enum specifying if data are raw or processed (for in-
stance from roi)

• dim (DataDim or str) – The identifier of the data type

• distribution (DataDistribution or str) – The distribution type of the data: uni-
form if distributed on a regular grid or spread if on specific unordered points

• data (list of ndarray) – The data the object is storing

• labels (list of str) – The labels of the data nd-arrays

7.8. Library Reference 353

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

• origin (str) – An identifier of the element where the data originated, for instance the
DAQ_Viewer’s name. Used when appending DataToExport in DAQ_Scan to disintricate
from which origin data comes from when scanning multiple detectors.

• kwargs (named parameters) – All other parameters are stored dynamically using the
name/value pair. The name of these extra parameters are added into the extra_attributes
attribute

name

the identifier of these data

Type
str

source

Enum specifying if data are raw or processed (for instance from roi)

Type
DataSource or str

dim

The identifier of the data type

Type
DataDim or str

distribution

The distribution type of the data: uniform if distributed on a regular grid or spread if on specific unordered
points

Type
DataDistribution or str

data

The data the object is storing

Type
list of ndarray

labels

The labels of the data nd-arrays

Type
list of str

origin

An identifier of the element where the data originated, for instance the DAQ_Viewer’s name. Used when
appending DataToExport in DAQ_Scan to disintricate from which origin data comes from when scanning
multiple detectors.

Type
str

shape

The shape of the underlying data

Type
Tuple[int]

354 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

PyMoDAQ Documentation, Release 4.2.0

size

The size of the ndarrays stored in the object

Type
int

length

The number of ndarrays stored in the object

Type
int

extra_attributes

list of string giving identifiers of the attributes added dynamically at the initialization (for instance to save
extra metadata using the DataSaverLoader

Type
List[str]

See also:

DataWithAxes, DataFromPlugins, DataRaw, DataSaverLoader

Examples

>>> import numpy as np
>>> from pymodaq.utils.data import DataBase, DataSource, DataDim, DataDistribution
>>> data = DataBase('mydata', source=DataSource['raw'], dim=DataDim['Data1D'], ␣
→˓distribution=DataDistribution['uniform'], data=[np.array([1.,2.,3.]), np.array([4.
→˓,5.,6.])], labels=['channel1', 'channel2'], origin='docutils code')
>>> data.dim
<DataDim.Data1D: 1>
>>> data.source
<DataSource.raw: 0>
>>> data.shape
(3,)
>>> data.length
2
>>> data.size
3

abs()

Take the absolute value of itself

as_dte(name: str = 'mydte')→ DataToExport
Convenience method to wrap the DataWithAxes object into a DataToExport

average(other: DataBase, weight: int)→ DataBase
Compute the weighted average between self and other DataBase

Parameters

• other_data (DataBase) –

• weight (int) – The weight the ‘other’ holds with respect to self

Returns
DataBase

7.8. Library Reference 355

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

PyMoDAQ Documentation, Release 4.2.0

Return type
the averaged DataBase object

fliplr()

Reverse the order of elements along axis 1 (left/right)

flipud()

Reverse the order of elements along axis 0 (up/down)

get_data_index(index: int = 0)→ ndarray
Get the data by its index in the list, same as self[index]

get_dim_from_data(data: List[ndarray])
Get the dimensionality DataDim from data

get_full_name()→ str
Get the data ful name including the origin attribute into the returned value

Returns
str

Return type
the name of the ataWithAxes data constructed as : origin/name

Examples

d0 = DataBase(name=’datafromdet0’, origin=’det0’)

imag()

Take the imaginary part of itself

pop(index: int)→ DataBase
Returns a copy of self but with data taken at the specified index

real()

Take the real part of itself

set_dim(dim: Union[DataDim, str])
Addhoc modification of dim independantly of the real data shape, should be used with extra care

stack_as_array(axis=0, dtype=None)→ ndarray
Stack all data arrays in a single numpy array

Parameters

• axis (int) – The new stack axis index, default 0

• dtype (str or np.dtype) – the dtype of the stacked array

Return type
np.ndarray

See also:

np.stack()

property data: List[ndarray]

get/set (and check) the data the object is storing

Type
List[np.ndarray]

356 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List

PyMoDAQ Documentation, Release 4.2.0

property dim

the enum representing the dimensionality of the stored data

Type
DataDim

property distribution

the enum representing the distribution of the stored data

Type
DataDistribution

property length

The length of data. This is the length of the list containing the nd-arrays

property shape

The shape of the nd-arrays

property size

The size of the nd-arrays

property source

the enum representing the source of the data

Type
DataSource

class pymodaq.utils.data.DataCalculated(*args, axes=[], **kwargs)
Specialized DataWithAxes set with source as ‘calculated’. To be used for processed/calculated data

class pymodaq.utils.data.DataFromPlugins(*args, **kwargs)
Specialized DataWithAxes set with source as ‘raw’. To be used for raw data generated by Detector plugins

It introduces by default to extra attributes, do_plot and do_save. Their presence can be checked in the ex-
tra_attributes list.

Parameters

• do_plot (bool) – If True the underlying data will be plotted in the DAQViewer

• do_save (bool) – If True the underlying data will be saved

do_plot

If True the underlying data will be plotted in the DAQViewer

Type
bool

do_save

If True the underlying data will be saved

Type
bool

class pymodaq.utils.data.DataFromRoi(*args, axes=[], **kwargs)
Specialized DataWithAxes set with source as ‘calculated’.To be used for processed data from region of interest

class pymodaq.utils.data.DataRaw(*args, **kwargs)
Specialized DataWithAxes set with source as ‘raw’. To be used for raw data

7.8. Library Reference 357

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

PyMoDAQ Documentation, Release 4.2.0

Data Characteristics

Created the 28/10/2022

@author: Sebastien Weber

class pymodaq.utils.data.DataDim(value)
Enum for dimensionality representation of data

class pymodaq.utils.data.DataDistribution(value)
Enum for distribution of data

class pymodaq.utils.data.DataSource(value)
Enum for source of data

Union of Data

When exporting multiple set of Data objects, one should use a DataToExport

Created the 28/10/2022

@author: Sebastien Weber

class pymodaq.utils.data.DataToExport(name: str, data: List[DataWithAxes] = [], **kwargs)
Object to store all raw and calculated DataWithAxes data for later exporting, saving, sending signal. . .

Includes methods to retrieve data from dim, source. . . Stored data have a unique identifier their name. If some
data is appended with an existing name, it will replace the existing data. So if you want to append data that has
the same name

Parameters

• name (str) – The identifier of the exporting object

• data (list of DataWithAxes) – All the raw and calculated data to be exported

name

timestamp

data

affect_name_to_origin_if_none()

Affect self.name to all DataWithAxes children’s attribute origin if this origin is not defined

average(other: DataToExport, weight: int)→ DataToExport
Compute the weighted average between self and other DataToExport and attributes it to self

Parameters

• other (DataToExport) –

• weight (int) – The weight the ‘other_data’ holds with respect to self

get_data_from_Naxes(Naxes: int, deepcopy: bool = False)→ DataToExport
Get the data matching the given number of axes

Parameters
Naxes (int) – Number of axes in the DataWithAxes objects

358 Chapter 7. Changelog

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PyMoDAQ Documentation, Release 4.2.0

Returns
DataToExport

Return type
filtered with data matching the number of axes

get_data_from_attribute(attribute: str, attribute_value: Any, deepcopy=False)→ DataToExport
Get the data matching a given attribute value

Returns
DataToExport

Return type
filtered with data matching the attribute presence and value

get_data_from_dim(dim: DataDim, deepcopy=False)→ DataToExport
Get the data matching the given DataDim

Returns
DataToExport

Return type
filtered with data matching the dimensionality

get_data_from_dims(dims: List[DataDim], deepcopy=False)→ DataToExport
Get the data matching the given DataDim

Returns
DataToExport

Return type
filtered with data matching the dimensionality

get_data_from_full_name(full_name: str, deepcopy=False)→ DataWithAxes
Get the DataWithAxes with matching full name

get_data_from_missing_attribute(attribute: str, deepcopy=False)→ DataToExport
Get the data matching a given attribute value

Parameters

• attribute (str) – a string of a possible attribute

• deepcopy (bool) – if True the returned DataToExport will contain deepcopies of the
DataWithAxes

Returns
DataToExport

Return type
filtered with data missing the given attribute

get_data_from_name(name: str)→ DataWithAxes
Get the data matching the given name

get_data_from_name_origin(name: str, origin: str = '')→ DataWithAxes
Get the data matching the given name and the given origin

get_data_from_sig_axes(Naxes: int, deepcopy: bool = False)→ DataToExport
Get the data matching the given number of signal axes

Parameters
Naxes (int) – Number of signal axes in the DataWithAxes objects

7.8. Library Reference 359

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

PyMoDAQ Documentation, Release 4.2.0

Returns
DataToExport

Return type
filtered with data matching the number of signal axes

get_data_from_source(source: DataSource, deepcopy=False)→ DataToExport
Get the data matching the given DataSource

Returns
DataToExport

Return type
filtered with data matching the dimensionality

get_data_with_naxes_lower_than(n_axes=2, deepcopy: bool = False)→ DataToExport
Get the data with n axes lower than the given number

Parameters
Naxes (int) – Number of axes in the DataWithAxes objects

Returns
DataToExport

Return type
filtered with data matching the number of axes

get_full_names(dim: Optional[DataDim] = None)
Get the ful names including the origin attribute into the returned value, eventually filtered by dim

Parameters
dim (DataDim or str) –

Returns
list of str

Return type
the names of the (filtered) DataWithAxes data constructed as : origin/name

Examples

d0 = DataWithAxes(name=’datafromdet0’, origin=’det0’)

get_names(dim: Optional[DataDim] = None)→ List[str]
Get the names of the stored DataWithAxes, eventually filtered by dim

Parameters
dim (DataDim or str) –

Returns
list of str

Return type
the names of the (filtered) DataWithAxes data

get_origins(dim: Optional[DataDim] = None)
Get the origins of the underlying data into the returned value, eventually filtered by dim

Parameters
dim (DataDim or str) –

360 Chapter 7. Changelog

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

Returns
list of str

Return type
the origins of the (filtered) DataWithAxes data

Examples

d0 = DataWithAxes(name=’datafromdet0’, origin=’det0’)

index_from_name_origin(name: str, origin: str = '')→ List[DataWithAxes]
Get the index of a given DataWithAxes within the list of data

merge_as_dwa(dim: Union[str, DataDim], name: Optional[str] = None)→ DataRaw
attempt to merge filtered dwa into one

Only possible if all filtered dwa and underlying data have same shape

Parameters

• dim (DataDim or str) – will only try to merge dwa having this dimensionality

• name (str) – The new name of the returned dwa

plot(plotter_backend: str = 'matplotlib', *args, **kwargs)
Call a plotter factory and its plot method over the actual data

pop(index: int)→ DataWithAxes
return and remove the DataWithAxes referred by its index

Parameters
index (int) – index as returned by self.index_from_name_origin

See also:

index_from_name_origin

property data: List[DataWithAxes]

get the data contained in the object

Type
List[DataWithAxes]

parameter

Extension of the pyqtgraph Parameter, ParameterTree widgets and dedicated functions to deals with Parameters (e.g.
save them in XML)

New Tree items

Documentation on the added or modified ParameterItem types compared to pyqtgraph.parametertree.
parameterTypes module.

WidgetParameterItem and SimpleParameter have been subclassed to define more options:

• int and float: represented by a custom Spinbox, see Spinbox

• bool, led, bool_push are represented respectively by a QCheckBox, a QLED, QPushButton

7.8. Library Reference 361

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List

PyMoDAQ Documentation, Release 4.2.0

• str displays a QLineEdit widget

• date_time displays a QDateTime widget

• date displays a QDate widget

• time displays a QTimeCustom widget

• pixmap displays a QPixmap in a QLabel

• pixmap_check displays a custom PixmapCheckWidget widget

Other widgets for ParameterTree have been introduced:

• group: subclassed group parameter, see GroupParameterCustom and GroupParameterItemCustom

• slide: displays a custom Spinbox and a QSlider to set floats and ints, see SliderSpinBox

• list: subclassed pyqtgraph list that displays a list and a pushbutton to let the user add entries in the list, see
ListParameter and ListParameterItem and Combo_pb

• table: subclassed pyqtgraph table, see TableParameterItem, TableParameter and TableWidget

• table_view : displaying a QTableView with custom model to be user defined, see Qt5 documentation, see
TableViewParameterItem, TableViewCustom and TableViewParameter

• ìtemselect: displays a QListWidget with selectable elements, see ItemSelectParameterItem,
ItemSelect_pb, ItemSelect and ItemSelectParameter

• browsepath: displays an edit line and a push button to select files or folders, see FileDirParameterItem,
FileDirWidget and FileDirParameter

• text`: subclassed plain text area text from pyqtgraph with limited height, see TextParameterItemCustom
and TextParameter

• text_pb: displays a plain text area and a visible button to add data into it, see PlainTextParameterItem,
PlainTextWidget and PlainTextPbParameter

Parameter and XML

Within PyMoDAQ, Parameter state are often saved or transferred (for instance when using TCP/IP) as a XML string
whose Tree structure is well adapted to represent the Parameter tree structure. Below are all the functions used to
convert from a Parameter to a XML string (or file) and vice-versa.

pymodaq.utils.parameter.ioxml.XML_file_to_parameter(file_name: Union[str, Path])→ list
Convert a xml file into pyqtgraph parameter object.

Returns
params – a list of dictionary defining a Parameter object and its children

Return type
list of dictionary

See also:

walk_parameters_to_xml

362 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

PyMoDAQ Documentation, Release 4.2.0

Examples

pymodaq.utils.parameter.ioxml.XML_string_to_parameter(xml_string)
Convert a xml string into a list of dict for initialize pyqtgraph parameter object.

Parameters Type Description
xml_string string the xml string to be converted

Returns
params

Return type
a parameter list of dict to init a parameter

See also:

walk_parameters_to_xml

Examples

pymodaq.utils.parameter.ioxml.add_text_to_elt(elt, param)

Add a text filed in a xml element corresponding to the parameter value

Parameters

• elt (XML elt) –

• param (Parameter) –

See also:

add_text_to_elt, walk_parameters_to_xml, dict_from_param

pymodaq.utils.parameter.ioxml.dict_from_param(param)

Get Parameter properties as a dictionary

Parameters
param (Parameter) –

Returns
opts

Return type
dict

See also:

add_text_to_elt, walk_parameters_to_xml, dict_from_param

pymodaq.utils.parameter.ioxml.elt_to_dict(el)
Convert xml element attributes to a dictionnary

Parameters
el –

7.8. Library Reference 363

https://docs.python.org/3/library/stdtypes.html#dict

PyMoDAQ Documentation, Release 4.2.0

pymodaq.utils.parameter.ioxml.parameter_to_xml_file(param, filename: Union[str, Path])
Convert the given parameter to XML element and update the given XML file.

Parameters Type Description
param instance of pyqtgraph parameter the parameter to be added
filename string the filename of the XML file

See also:

walk_parameters_to_xml

Examples

pymodaq.utils.parameter.ioxml.parameter_to_xml_string(param)

Convert a Parameter to a XML string.

Parameters
param (Parameter) –

Returns
str

Return type
XMl string

See also:

add_text_to_elt, walk_parameters_to_xml, dict_from_param

Examples

>>> from pyqtgraph.parametertree import Parameter
>>> #Create an instance of Parameter
>>> settings=Parameter(name='settings')
>>> converted_xml=parameter_to_xml_string(settings)
>>> # The converted Parameter
>>> print(converted_xml)
b'<settings title="settings" type="None" />'

pymodaq.utils.parameter.ioxml.set_txt_from_elt(el, param_dict)
get the value of the parameter from the text value of the xml element :param el: :type el: xml element :param
param_dict: :type param_dict: dictionnary from which the parameter will be constructed

pymodaq.utils.parameter.ioxml.walk_parameters_to_xml(parent_elt=None, param=None)
To convert a parameter object (and children) to xml data tree.

Parameters Type Description
parent_elt XML element the root element
param instance of pyqtgraph parameter Parameter object to be converted

Returns
XML element – XML element with subelements from Parameter object

364 Chapter 7. Changelog

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

PyMoDAQ Documentation, Release 4.2.0

Return type
parent_elt

See also:

add_text_to_elt, walk_parameters_to_xml, dict_from_param

pymodaq.utils.parameter.ioxml.walk_xml_to_parameter(params=[], XML_elt=None)
To convert an XML element (and children) to list of dict enabling creation of parameter object.

Parameters Type Description
params dictionnary list the list to create parameter object
XML_elt XML object the XML object to be converted

Returns
params – list of dict to create parameter object

Return type
dictionnary list

Examples

>>> from pyqtgraph.parametertree import Parameter, ParameterItem
>>> import xml.etree.ElementTree as ET
>>> tree = ET.parse('text_bis.xml')
>>> root = tree.getroot()
>>> params=walk_xml_to_parameter(XML_elt=root)
>>> settings_xml=Parameter.create(name='Settings XML', type='group',␣
→˓children=params)
>>> settings=Parameter.create(name='Settings', type='group', children=params)

See also:

walk_parameters_to_xml

Parameter management

Utility functions to work with Parameter object

pymodaq.utils.parameter.utils.get_param_from_name(parent, name)→ Parameter
Get Parameter under parent whose name is name

Parameters

• parent (Parameter) –

• name (str) –

Return type
Parameter

pymodaq.utils.parameter.utils.get_param_path(param)

Parameters
param –

7.8. Library Reference 365

https://docs.python.org/3/library/stdtypes.html#str

PyMoDAQ Documentation, Release 4.2.0

pymodaq.utils.parameter.utils.iter_children(param, childlist=[])
Get a list of parameters name under a given Parameter | Returns all childrens names.

Parameters Type Description
param instance of pyqtgraph parameter the root node to be coursed
childlist list the child list recetion structure

Returns
childlist – The list of the children from the given node.

Return type
parameter list

pymodaq.utils.parameter.utils.iter_children_params(param, childlist=[])
Get a list of parameters under a given Parameter

366 Chapter 7. Changelog

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

367

PyMoDAQ Documentation, Release 4.2.0

368 Chapter 8. Indices and tables

PYTHON MODULE INDEX

p
pymodaq.utils.daq_utils, 331
pymodaq.utils.data, 358
pymodaq.utils.gui_utils, 351
pymodaq.utils.h5modules.browsing, 309
pymodaq.utils.h5modules.data_saving, 305
pymodaq.utils.h5modules.module_saving, 311
pymodaq.utils.h5modules.saving, 299
pymodaq.utils.math_utils, 348
pymodaq.utils.parameter.ioxml, 362
pymodaq.utils.parameter.pymodaq_ptypes, 362
pymodaq.utils.parameter.utils, 365
pymodaq.utils.scanner, 351
pymodaq.utils.tcp_ip.mysocket, 339
pymodaq.utils.tcp_ip.serializer, 332
pymodaq.utils.tcp_ip.tcp_server_client, 341
pymodaq.utils.units, 345

369

PyMoDAQ Documentation, Release 4.2.0

370 Python Module Index

INDEX

A
abs() (pymodaq.utils.data.DataBase method), 355
ActionManager (class in py-

modaq.utils.managers.action_manager),
316

activate_roi() (pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D
method), 327

activate_roi() (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D
method), 328

Actuator, 259
actuator (pymodaq.control_modules.daq_move.DAQ_Move

property), 281
actuator_init (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI

property), 283
actuators (pymodaq.utils.managers.modules_manager.ModulesManager

property), 325
actuators (pymodaq.utils.scanner.Scanner property),

315
actuators_all (pymodaq.utils.managers.modules_manager.ModulesManager

property), 325
actuators_name (pymodaq.utils.managers.modules_manager.ModulesManager

property), 325
ActuatorSaver (class in py-

modaq.utils.h5modules.module_saving),
311

add_action() (pymodaq.utils.managers.action_manager.ActionManager
method), 317

add_axis() (pymodaq.utils.h5modules.data_saving.AxisSaverLoader
method), 302

add_bkg() (pymodaq.utils.h5modules.module_saving.DetectorSaver
method), 311

add_comments() (pymodaq.utils.h5modules.browsing.H5Browser
method), 310

add_data() (pymodaq.utils.h5modules.data_saving.DataEnlargeableSaver
method), 305

add_data() (pymodaq.utils.h5modules.data_saving.DataExtendedSaver
method), 306

add_data() (pymodaq.utils.h5modules.data_saving.DataSaverLoader
method), 303

add_data() (pymodaq.utils.h5modules.data_saving.DataToExportEnlargeableSaver
method), 306

add_data() (pymodaq.utils.h5modules.data_saving.DataToExportExtendedSaver

method), 307
add_data() (pymodaq.utils.h5modules.data_saving.DataToExportSaver

method), 304
add_data() (pymodaq.utils.h5modules.data_saving.DataToExportTimedSaver

method), 308
add_data() (pymodaq.utils.h5modules.module_saving.LoggerSaver

method), 312
add_group() (pymodaq.utils.h5modules.backends.H5Backend

method), 297
add_nav_axes() (pymodaq.utils.h5modules.data_saving.DataToExportExtendedSaver

method), 307
add_text_to_elt() (in module py-

modaq.utils.parameter.ioxml), 363
add_widget() (pymodaq.utils.managers.action_manager.ActionManager

method), 318
addaction() (in module py-

modaq.utils.managers.action_manager),
316

affect_name_to_origin_if_none() (py-
modaq.utils.data.DataToExport method),
358

affect_to() (pymodaq.utils.managers.action_manager.ActionManager
method), 318

append_data() (pymodaq.control_modules.daq_viewer.DAQ_Viewer
method), 268

as_dte() (pymodaq.utils.data.DataBase method), 355
attribute (pymodaq.utils.daq_utils.ThreadCommand

attribute), 331
average() (pymodaq.utils.data.DataBase method), 355
average() (pymodaq.utils.data.DataToExport method),

358
Axis (class in pymodaq.utils.data), 352
axis_deserialization() (py-

modaq.utils.tcp_ip.serializer.DeSerializer
method), 332

axis_name (pymodaq.control_modules.move_utility_classes.DAQ_Move_base
property), 287

axis_names (pymodaq.control_modules.move_utility_classes.DAQ_Move_base
property), 287

axis_serialization() (py-
modaq.utils.tcp_ip.serializer.Serializer
method), 335

371

PyMoDAQ Documentation, Release 4.2.0

axis_value (pymodaq.control_modules.move_utility_classes.DAQ_Move_base
property), 288

AxisSaverLoader (class in py-
modaq.utils.h5modules.data_saving), 302

B
BayesianModelDefault (class in pymodaq.extensions),

292
BayesianModelGeneric (class in pymodaq.extensions),

291
BayesianOptimisation (class in pymodaq.extensions),

288
bkg (pymodaq.control_modules.daq_viewer.DAQ_Viewer

property), 272
BkgSaver (class in py-

modaq.utils.h5modules.data_saving), 305
boolean_deserialization() (py-

modaq.utils.tcp_ip.serializer.DeSerializer
method), 333

bounds_signal (pymodaq.control_modules.daq_move.DAQ_Move
attribute), 278

bytes_to_int() (pymodaq.utils.tcp_ip.serializer.DeSerializer
static method), 333

bytes_to_nd_array() (py-
modaq.utils.tcp_ip.serializer.DeSerializer
static method), 333

bytes_to_scalar() (py-
modaq.utils.tcp_ip.serializer.DeSerializer
static method), 333

C
channel_formatter() (py-

modaq.utils.h5modules.data_saving.DataToExportSaver
static method), 304

check_bound() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base
method), 286

check_received_length() (py-
modaq.utils.tcp_ip.mysocket.Socket method),
340

check_received_length() (py-
modaq.utils.tcp_ip.serializer.SocketString
method), 339

check_sended() (pymodaq.utils.tcp_ip.mysocket.Socket
method), 340

check_sended_with_serializer() (py-
modaq.utils.tcp_ip.mysocket.Socket method),
340

check_version() (py-
modaq.utils.h5modules.browsing.H5Browser
method), 310

child_added() (pymodaq.control_modules.daq_viewer.DAQ_Viewer
method), 268

child_added() (pymodaq.utils.managers.parameter_manager.ParameterManager
method), 320

close() (pymodaq.control_modules.daq_viewer.DAQ_Detector
method), 274

close_file() (pymodaq.utils.h5modules.backends.H5Backend
method), 297

close_server() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer
method), 343

cm2nm() (in module pymodaq.utils.units), 346
command (pymodaq.utils.daq_utils.ThreadCommand at-

tribute), 331
command_hardware (py-

modaq.control_modules.utils.ControlModule
attribute), 261

command_sig (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI
attribute), 281

command_sig (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI
attribute), 275

command_sig (pymodaq.control_modules.utils.ControlModuleUI
attribute), 264

command_tcpip (pymodaq.control_modules.utils.ControlModule
attribute), 261

commit_settings() (py-
modaq.control_modules.move_utility_classes.DAQ_Move_base
method), 286

connect_action() (py-
modaq.utils.managers.action_manager.ActionManager
method), 318

connect_actuators() (py-
modaq.utils.managers.modules_manager.ModulesManager
method), 323

connect_detectors() (py-
modaq.utils.managers.modules_manager.ModulesManager
method), 324

connect_tcp_ip() (py-
modaq.control_modules.daq_viewer.DAQ_Viewer
method), 268

connect_things() (py-
modaq.control_modules.daq_move_ui.DAQ_Move_UI
method), 282

connect_things() (py-
modaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI
method), 276

connect_things() (py-
modaq.extensions.BayesianOptimisation
method), 289

connect_things() (py-
modaq.utils.gui_utils.CustomApp method),
294

Control Modules, 259
controller (pymodaq.control_modules.daq_viewer.DAQ_Detector

attribute), 273
controller (pymodaq.control_modules.move_utility_classes.DAQ_Move_base

attribute), 284
controller_adress (py-

modaq.control_modules.daq_viewer.DAQ_Detector

372 Index

PyMoDAQ Documentation, Release 4.2.0

attribute), 273
controller_units (py-

modaq.control_modules.move_utility_classes.DAQ_Move_base
property), 288

ControlModule (class in py-
modaq.control_modules.utils), 261

ControlModuleUI (class in py-
modaq.control_modules.utils), 264

convert_input() (py-
modaq.extensions.BayesianModelDefault
method), 292

convert_input() (py-
modaq.extensions.BayesianModelGeneric
method), 291

convert_output() (py-
modaq.extensions.BayesianModelDefault
method), 292

convert_output() (py-
modaq.extensions.BayesianModelGeneric
method), 291

create_earray() (py-
modaq.utils.h5modules.backends.H5Backend
method), 297

create_linear_data() (pymodaq.utils.data.Axis
method), 352

create_vlarray() (py-
modaq.utils.h5modules.backends.H5Backend
method), 297

crosshair (pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D
property), 327

crosshair (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D
property), 329

current_data (pymodaq.control_modules.daq_viewer.DAQ_Viewer
property), 272

current_value (pymodaq.control_modules.move_utility_classes.DAQ_Move_base
attribute), 285

custom_sig (pymodaq.control_modules.daq_viewer.DAQ_Viewer
attribute), 265

CustomApp (class in pymodaq.utils.gui_utils), 293

D
DAQ_Detector (class in py-

modaq.control_modules.daq_viewer), 273
DAQ_Move (class in py-

modaq.control_modules.daq_move), 278
DAQ_Move_base (class in py-

modaq.control_modules.move_utility_classes),
284

DAQ_Move_UI (class in py-
modaq.control_modules.daq_move_ui), 281

daq_type (pymodaq.control_modules.daq_viewer.DAQ_Viewer
property), 272

daq_type_changed_from_ui() (py-
modaq.control_modules.daq_viewer.DAQ_Viewer

method), 268
daq_types (pymodaq.control_modules.daq_viewer.DAQ_Viewer

property), 272
DAQ_Viewer (class in py-

modaq.control_modules.daq_viewer), 265
DAQ_Viewer_UI (class in py-

modaq.control_modules.daq_viewer_ui),
275

DashBoard, 259
data (pymodaq.utils.data.Axis property), 352
data (pymodaq.utils.data.DataBase attribute), 354
data (pymodaq.utils.data.DataBase property), 356
data (pymodaq.utils.data.DataToExport attribute), 358
data (pymodaq.utils.data.DataToExport property), 361
data_ready() (pymodaq.control_modules.daq_viewer.DAQ_Detector

method), 274
data_type (pymodaq.utils.h5modules.data_saving.AxisSaverLoader

attribute), 302
data_type (pymodaq.utils.h5modules.data_saving.BkgSaver

attribute), 305
data_type (pymodaq.utils.h5modules.data_saving.DataEnlargeableSaver

attribute), 305
data_type (pymodaq.utils.h5modules.data_saving.DataExtendedSaver

attribute), 306
data_type (pymodaq.utils.h5modules.data_saving.DataManagement

attribute), 303
data_type (pymodaq.utils.h5modules.data_saving.DataSaverLoader

attribute), 303
DataBase (class in pymodaq.utils.data), 353
DataCalculated (class in pymodaq.utils.data), 357
DataDim, 259
DataDim (class in pymodaq.utils.data), 358
DataDistribution, 260
DataDistribution (class in pymodaq.utils.data), 358
DataEnlargeableSaver (class in py-

modaq.utils.h5modules.data_saving), 305
DataExtendedSaver (class in py-

modaq.utils.h5modules.data_saving), 305
DataFromPlugins (class in pymodaq.utils.data), 357
DataFromRoi (class in pymodaq.utils.data), 357
DataLoader (class in py-

modaq.utils.h5modules.data_saving), 308
DataManagement (class in py-

modaq.utils.h5modules.data_saving), 303
DataRaw (class in pymodaq.utils.data), 357
DataSaverLoader (class in py-

modaq.utils.h5modules.data_saving), 303
DataSource, 259
DataSource (class in pymodaq.utils.data), 358
DataToExport (class in pymodaq.utils.data), 358
DataToExportEnlargeableSaver (class in py-

modaq.utils.h5modules.data_saving), 306
DataToExportExtendedSaver (class in py-

modaq.utils.h5modules.data_saving), 307

Index 373

PyMoDAQ Documentation, Release 4.2.0

DataToExportSaver (class in py-
modaq.utils.h5modules.data_saving), 304

DataToExportTimedSaver (class in py-
modaq.utils.h5modules.data_saving), 307

define_compression() (py-
modaq.utils.h5modules.backends.H5Backend
method), 297

DeSerializer (class in pymodaq.utils.tcp_ip.serializer),
332

Detector, 259
detector (pymodaq.control_modules.daq_viewer.DAQ_Detector

attribute), 273
detector (pymodaq.control_modules.daq_viewer.DAQ_Viewer

property), 272
detector_init (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI

property), 277
DetectorEnlargeableSaver (class in py-

modaq.utils.h5modules.module_saving),
311

DetectorExtendedSaver (class in py-
modaq.utils.h5modules.module_saving),
311

detectors (pymodaq.control_modules.daq_viewer.DAQ_Viewer
property), 272

detectors (pymodaq.utils.managers.modules_manager.ModulesManager
property), 325

detectors_all (pymodaq.utils.managers.modules_manager.ModulesManager
property), 325

detectors_name (pymodaq.utils.managers.modules_manager.ModulesManager
property), 325

DetectorSaver (class in py-
modaq.utils.h5modules.module_saving),
311

dict_from_param() (in module py-
modaq.utils.parameter.ioxml), 363

dim (pymodaq.utils.data.DataBase attribute), 354
dim (pymodaq.utils.data.DataBase property), 356
display_value() (py-

modaq.control_modules.daq_move_ui.DAQ_Move_UI
method), 282

display_value() (py-
modaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI
method), 275

distribution (pymodaq.utils.data.DataBase attribute),
354

distribution (pymodaq.utils.data.DataBase property),
357

do_bkg (pymodaq.control_modules.daq_viewer.DAQ_Viewer
property), 272

do_grab() (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI
method), 276

do_init() (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI
method), 282, 283

do_init() (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI

method), 275, 277
do_init() (pymodaq.control_modules.utils.ControlModuleUI

method), 264
do_plot (pymodaq.utils.data.DataFromPlugins at-

tribute), 357
do_save (pymodaq.utils.data.DataFromPlugins at-

tribute), 357
do_snap() (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI

method), 277
do_stop() (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI

method), 277
dte, 260
dte_deserialization() (py-

modaq.utils.tcp_ip.serializer.DeSerializer
method), 333

dte_serialization() (py-
modaq.utils.tcp_ip.serializer.Serializer
method), 335

dwa, 260
dwa_deserialization() (py-

modaq.utils.tcp_ip.serializer.DeSerializer
method), 333

dwa_serialization() (py-
modaq.utils.tcp_ip.serializer.Serializer
method), 336

E
Ecmrel2Enm() (in module pymodaq.utils.units), 345
elt_to_dict() (in module py-

modaq.utils.parameter.ioxml), 363
emit_new_file() (py-

modaq.utils.h5modules.saving.H5Saver
method), 299

emit_status() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base
method), 286

emit_temp_data() (py-
modaq.control_modules.daq_viewer.DAQ_Detector
method), 274

emit_value() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base
method), 286

Enm2cmrel() (in module pymodaq.utils.units), 345
eV2cm() (in module pymodaq.utils.units), 346
eV2nm() (in module pymodaq.utils.units), 346
export_data() (pymodaq.utils.h5modules.browsing.H5Browser

method), 310
export_data() (pymodaq.utils.h5modules.browsing.H5BrowserUtil

method), 311
extra_attributes (pymodaq.utils.data.DataBase at-

tribute), 355

F
find_index() (in module pymodaq.utils.math_utils),

348
find_index() (pymodaq.utils.data.Axis method), 352

374 Index

PyMoDAQ Documentation, Release 4.2.0

find_part_in_path_and_subpath() (py-
modaq.utils.h5modules.saving.H5SaverBase
class method), 300

find_socket_type_within_connected_clients()
(pymodaq.utils.tcp_ip.tcp_server_client.TCPServer
method), 343

find_socket_within_connected_clients() (py-
modaq.utils.tcp_ip.tcp_server_client.TCPServer
method), 344

fliplr() (pymodaq.utils.data.DataBase method), 356
flipud() (pymodaq.utils.data.DataBase method), 356
flush() (pymodaq.utils.h5modules.module_saving.ModuleSaver

method), 312
ft() (in module pymodaq.utils.math_utils), 348
ft2() (in module pymodaq.utils.math_utils), 348
ftAxis() (in module pymodaq.utils.math_utils), 348
ftAxis_time() (in module pymodaq.utils.math_utils),

348

G
gauss1D() (in module pymodaq.utils.math_utils), 349
gauss2D() (in module pymodaq.utils.math_utils), 349
get_action() (pymodaq.utils.managers.action_manager.ActionManager

method), 318
get_actuator_value() (py-

modaq.control_modules.daq_move.DAQ_Move
method), 279

get_axes() (pymodaq.utils.h5modules.data_saving.AxisSaverLoader
method), 302

get_axes() (pymodaq.utils.h5modules.data_saving.DataSaverLoader
method), 303

get_axes_from_view() (py-
modaq.utils.plotting.data_viewers.viewer2D.Viewer2D
method), 328

get_children() (pymodaq.utils.h5modules.backends.H5Backend
method), 297

get_continuous_actuator_value() (py-
modaq.control_modules.daq_move.DAQ_Move
method), 279

get_data() (pymodaq.utils.data.Axis method), 352
get_data() (pymodaq.utils.tcp_ip.tcp_server_client.TCPClient

method), 342
get_data_arrays() (py-

modaq.utils.h5modules.data_saving.DataSaverLoader
method), 303

get_data_at() (pymodaq.utils.data.Axis method), 352
get_data_at() (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D

method), 329
get_data_from_attribute() (py-

modaq.utils.data.DataToExport method),
359

get_data_from_dim() (py-
modaq.utils.data.DataToExport method),
359

get_data_from_dims() (py-
modaq.utils.data.DataToExport method),
359

get_data_from_full_name() (py-
modaq.utils.data.DataToExport method),
359

get_data_from_missing_attribute() (py-
modaq.utils.data.DataToExport method),
359

get_data_from_name() (py-
modaq.utils.data.DataToExport method),
359

get_data_from_name_origin() (py-
modaq.utils.data.DataToExport method),
359

get_data_from_Naxes() (py-
modaq.utils.data.DataToExport method),
358

get_data_from_sig_axes() (py-
modaq.utils.data.DataToExport method),
359

get_data_from_source() (py-
modaq.utils.data.DataToExport method),
360

get_data_index() (pymodaq.utils.data.DataBase
method), 356

get_data_with_naxes_lower_than() (py-
modaq.utils.data.DataToExport method),
360

get_det_data_list() (py-
modaq.utils.managers.modules_manager.ModulesManager
method), 324

get_dim_from_data() (pymodaq.utils.data.DataBase
method), 356

get_first_nbytes() (py-
modaq.utils.tcp_ip.mysocket.Socket method),
340

get_first_nbytes() (py-
modaq.utils.tcp_ip.serializer.SocketString
method), 339

get_full_name() (pymodaq.utils.data.DataBase
method), 356

get_full_names() (pymodaq.utils.data.DataToExport
method), 360

get_h5_attributes() (py-
modaq.utils.h5modules.browsing.H5BrowserUtil
method), 311

get_h5file_scans() (py-
modaq.utils.h5modules.browsing.H5BrowserUtil
method), 311

get_indexes_from_scan_index() (py-
modaq.utils.scanner.Scanner method), 314

get_last_node() (py-
modaq.utils.h5modules.module_saving.ModuleSaver

Index 375

PyMoDAQ Documentation, Release 4.2.0

method), 312
get_last_node_name() (py-

modaq.utils.h5modules.data_saving.DataManagement
method), 303

get_last_scan() (py-
modaq.utils.h5modules.saving.H5SaverBase
method), 300

get_mod_from_name() (py-
modaq.utils.managers.modules_manager.ModulesManager
method), 324

get_mods_from_names() (py-
modaq.utils.managers.modules_manager.ModulesManager
method), 324

get_names() (pymodaq.utils.data.DataToExport
method), 360

get_names() (pymodaq.utils.managers.modules_manager.ModulesManager
class method), 324

get_nav_group() (py-
modaq.utils.h5modules.data_saving.DataLoader
method), 308

get_node() (pymodaq.utils.h5modules.data_saving.DataLoader
method), 309

get_node_name() (py-
modaq.utils.h5modules.backends.H5Backend
method), 298

get_node_path() (py-
modaq.utils.h5modules.backends.H5Backend
method), 298

get_origins() (pymodaq.utils.data.DataToExport
method), 360

get_param_from_name() (in module py-
modaq.utils.parameter.utils), 365

get_param_path() (in module py-
modaq.utils.parameter.utils), 365

get_position_with_scaling() (py-
modaq.control_modules.move_utility_classes.DAQ_Move_base
method), 286

get_scale_offset_from_data() (py-
modaq.utils.data.Axis method), 352

get_scaling_options() (py-
modaq.control_modules.daq_viewer.DAQ_Viewer
method), 268

get_scan_index() (py-
modaq.utils.h5modules.saving.H5SaverBase
method), 300

get_scan_info() (pymodaq.utils.scanner.Scanner
method), 314

get_scanner_sub_settings() (py-
modaq.utils.scanner.Scanner method), 314

get_selected_probed_data() (py-
modaq.utils.managers.modules_manager.ModulesManager
method), 324

get_set_group() (py-
modaq.utils.h5modules.backends.H5Backend

method), 298
get_set_node() (pymodaq.utils.h5modules.module_saving.ModuleSaver

method), 312
get_set_node() (pymodaq.utils.h5modules.module_saving.ScanSaver

method), 313
get_tree_node_path() (py-

modaq.utils.h5modules.browsing.H5Browser
method), 310

grab() (pymodaq.control_modules.daq_move.DAQ_Move
method), 279

grab() (pymodaq.control_modules.daq_viewer.DAQ_Viewer
method), 268

grab() (pymodaq.control_modules.utils.ControlModule
method), 262

grab_data() (pymodaq.control_modules.daq_viewer.DAQ_Detector
method), 274

grab_data() (pymodaq.control_modules.daq_viewer.DAQ_Viewer
method), 268

grab_data() (pymodaq.utils.tcp_ip.tcp_server_client.Grabber
method), 341

grab_datas() (pymodaq.utils.managers.modules_manager.ModulesManager
method), 324

grab_done_signal (py-
modaq.control_modules.daq_viewer.DAQ_Viewer
attribute), 265

grab_state (pymodaq.control_modules.daq_viewer.DAQ_Viewer
property), 272

Grabber (class in py-
modaq.utils.tcp_ip.tcp_server_client), 341

H
H5Backend (class in py-

modaq.utils.h5modules.backends), 295
H5Browser (class in py-

modaq.utils.h5modules.browsing), 309
H5BrowserUtil (class in py-

modaq.utils.h5modules.browsing), 311
H5Saver (class in pymodaq.utils.h5modules.saving), 299
H5SaverBase (class in py-

modaq.utils.h5modules.saving), 299
has_action() (pymodaq.utils.managers.action_manager.ActionManager

method), 318

I
ift() (in module pymodaq.utils.math_utils), 350
ift2() (in module pymodaq.utils.math_utils), 350
imag() (pymodaq.utils.data.DataBase method), 356
image_widget (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D

property), 329
index (pymodaq.utils.data.Axis property), 353
index_from_name_origin() (py-

modaq.utils.data.DataToExport method),
361

376 Index

PyMoDAQ Documentation, Release 4.2.0

ini_attributes() (py-
modaq.control_modules.move_utility_classes.DAQ_Move_base
method), 287

ini_detector() (pymodaq.control_modules.daq_viewer.DAQ_Detector
method), 274

ini_model() (pymodaq.extensions.BayesianModelDefault
method), 293

ini_model() (pymodaq.extensions.BayesianModelGeneric
method), 291

ini_stage_init() (py-
modaq.control_modules.move_utility_classes.DAQ_Move_base
method), 287

init_file() (pymodaq.utils.h5modules.saving.H5SaverBase
method), 300

init_hardware() (py-
modaq.control_modules.daq_viewer.DAQ_Viewer
method), 269

init_hardware() (py-
modaq.control_modules.utils.ControlModule
method), 262

init_hardware_ui() (py-
modaq.control_modules.daq_move.DAQ_Move
method), 279

init_hardware_ui() (py-
modaq.control_modules.utils.ControlModule
method), 262

init_signal (pymodaq.control_modules.daq_move.DAQ_Move
attribute), 278

init_signal (pymodaq.control_modules.utils.ControlModule
attribute), 261

initialized_state (py-
modaq.control_modules.daq_move.DAQ_Move
property), 281

initialized_state (py-
modaq.control_modules.utils.ControlModule
property), 264

insert_data() (pymodaq.control_modules.daq_viewer.DAQ_Viewer
method), 269

int_to_bytes() (pymodaq.utils.tcp_ip.serializer.Serializer
static method), 337

is_multiaxes (pymodaq.control_modules.move_utility_classes.DAQ_Move_base
attribute), 284

is_node_in_group() (py-
modaq.utils.h5modules.backends.H5Backend
method), 298

isopen() (pymodaq.utils.h5modules.data_saving.DataSaverLoader
method), 304

isopen() (pymodaq.utils.h5modules.data_saving.DataToExportSaver
method), 304

ispolling (pymodaq.control_modules.move_utility_classes.DAQ_Move_base
property), 288

iter_children() (in module py-
modaq.utils.parameter.utils), 365

iter_children_params() (in module py-

modaq.utils.parameter.utils), 366

L
l2w() (in module pymodaq.utils.units), 347
label (pymodaq.utils.data.Axis property), 353
labels (pymodaq.utils.data.DataBase attribute), 354
LCD (class in pymodaq.utils.gui_utils.widgets.lcd), 331
length (pymodaq.utils.data.DataBase attribute), 355
length (pymodaq.utils.data.DataBase property), 357
linspace_step() (in module py-

modaq.utils.math_utils), 350
list_deserialization() (py-

modaq.utils.tcp_ip.serializer.DeSerializer
method), 333

list_serialization() (py-
modaq.utils.tcp_ip.serializer.Serializer
method), 337

listen_client() (py-
modaq.utils.tcp_ip.tcp_server_client.TCPServer
method), 344

load_axis() (pymodaq.utils.h5modules.data_saving.AxisSaverLoader
method), 303

load_data() (pymodaq.control_modules.daq_viewer.DAQ_Viewer
static method), 269

load_data() (pymodaq.utils.h5modules.data_saving.DataLoader
method), 309

load_data() (pymodaq.utils.h5modules.data_saving.DataSaverLoader
method), 304

load_file() (pymodaq.utils.h5modules.saving.H5SaverBase
method), 301

load_settings_slot() (py-
modaq.utils.managers.parameter_manager.ParameterManager
method), 321

LoggerSaver (class in py-
modaq.utils.h5modules.module_saving),
312

M
manage_ui_actions() (py-

modaq.control_modules.utils.ControlModule
method), 263

menu (pymodaq.utils.managers.action_manager.ActionManager
property), 319

merge_as_dwa() (pymodaq.utils.data.DataToExport
method), 361

MockServer (class in py-
modaq.utils.tcp_ip.tcp_server_client), 341

Module, 260
module

pymodaq.utils.daq_utils, 331
pymodaq.utils.data, 352, 353, 358
pymodaq.utils.gui_utils, 351
pymodaq.utils.h5modules.browsing, 309

Index 377

PyMoDAQ Documentation, Release 4.2.0

pymodaq.utils.h5modules.data_saving, 302,
305

pymodaq.utils.h5modules.module_saving,
311

pymodaq.utils.h5modules.saving, 299
pymodaq.utils.math_utils, 348
pymodaq.utils.parameter.ioxml, 362
pymodaq.utils.parameter.pymodaq_ptypes,

362
pymodaq.utils.parameter.utils, 365
pymodaq.utils.scanner, 351
pymodaq.utils.tcp_ip.mysocket, 339
pymodaq.utils.tcp_ip.serializer, 332
pymodaq.utils.tcp_ip.tcp_server_client,

341
pymodaq.utils.units, 345

module_type (pymodaq.control_modules.utils.ControlModule
property), 264

modules (pymodaq.utils.managers.modules_manager.ModulesManager
property), 326

modules_all (pymodaq.utils.managers.modules_manager.ModulesManager
property), 326

modules_manager (py-
modaq.extensions.BayesianOptimisation
property), 290

modules_manager (pymodaq.utils.gui_utils.CustomApp
property), 294

ModuleSaver (class in py-
modaq.utils.h5modules.module_saving),
312

ModulesManager (class in py-
modaq.utils.managers.modules_manager),
322

move() (pymodaq.control_modules.daq_move.DAQ_Move
method), 280

move_abs() (pymodaq.control_modules.daq_move.DAQ_Move
method), 280

move_actuators() (py-
modaq.utils.managers.modules_manager.ModulesManager
method), 324

move_done (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI
property), 283

move_done() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base
method), 287

move_done_bool (pymodaq.control_modules.daq_move.DAQ_Move
property), 281

move_done_signal (py-
modaq.control_modules.daq_move.DAQ_Move
attribute), 278

move_done_signal (py-
modaq.control_modules.move_utility_classes.DAQ_Move_base
attribute), 284

move_home() (pymodaq.control_modules.daq_move.DAQ_Move
method), 280

move_rel() (pymodaq.control_modules.daq_move.DAQ_Move
method), 280

move_roi_target() (py-
modaq.utils.plotting.data_viewers.viewer1D.Viewer1D
method), 327

move_roi_target() (py-
modaq.utils.plotting.data_viewers.viewer2D.Viewer2D
method), 329

my_moment() (in module pymodaq.utils.math_utils), 350

N
Nactuators (pymodaq.utils.managers.modules_manager.ModulesManager

property), 325
name (pymodaq.utils.data.DataBase attribute), 354
name (pymodaq.utils.data.DataToExport attribute), 358
Navigation, 260
ndarray_deserialization() (py-

modaq.utils.tcp_ip.serializer.DeSerializer
method), 334

ndarray_serialization() (py-
modaq.utils.tcp_ip.serializer.Serializer
method), 337

Ndetectors (pymodaq.utils.managers.modules_manager.ModulesManager
property), 325

nm2cm() (in module pymodaq.utils.units), 347
nm2eV() (in module pymodaq.utils.units), 347

O
object_type_serialization() (py-

modaq.utils.tcp_ip.serializer.Serializer
method), 338

odd_even() (in module pymodaq.utils.math_utils), 350
order_positions() (py-

modaq.utils.managers.modules_manager.ModulesManager
method), 325

origin (pymodaq.utils.data.DataBase attribute), 354
overshoot_signal (py-

modaq.control_modules.daq_viewer.DAQ_Viewer
attribute), 265

P
param_deleted() (py-

modaq.control_modules.daq_viewer.DAQ_Viewer
method), 269

param_deleted() (py-
modaq.utils.managers.parameter_manager.ParameterManager
method), 321

parameter_to_xml_file() (in module py-
modaq.utils.parameter.ioxml), 363

parameter_to_xml_string() (in module py-
modaq.utils.parameter.ioxml), 364

ParameterManager (class in py-
modaq.utils.managers.parameter_manager),
319

378 Index

PyMoDAQ Documentation, Release 4.2.0

params (pymodaq.control_modules.move_utility_classes.DAQ_Move_base
attribute), 284

params (pymodaq.utils.managers.parameter_manager.ParameterManager
attribute), 319

plot() (pymodaq.utils.data.DataToExport method), 361
Plugin, 260
poll_moving() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base

method), 287
pop() (pymodaq.utils.data.DataBase method), 356
pop() (pymodaq.utils.data.DataToExport method), 361
populate_tree() (py-

modaq.utils.h5modules.browsing.H5Browser
method), 310

positions_at() (pymodaq.utils.scanner.Scanner
method), 314

post_init() (pymodaq.utils.tcp_ip.tcp_server_client.TCPClient
method), 342

Preset, 259
print_status() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer

method), 344
process_cmds() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer

method), 344
process_tcpip_cmds() (py-

modaq.control_modules.daq_viewer.DAQ_Viewer
method), 269

process_ui_cmds() (py-
modaq.control_modules.daq_viewer.DAQ_Viewer
method), 269

pymodaq.utils.daq_utils
module, 331

pymodaq.utils.data
module, 352, 353, 358

pymodaq.utils.gui_utils
module, 351

pymodaq.utils.h5modules.browsing
module, 309

pymodaq.utils.h5modules.data_saving
module, 302, 305

pymodaq.utils.h5modules.module_saving
module, 311

pymodaq.utils.h5modules.saving
module, 299

pymodaq.utils.math_utils
module, 348

pymodaq.utils.parameter.ioxml
module, 362

pymodaq.utils.parameter.pymodaq_ptypes
module, 362

pymodaq.utils.parameter.utils
module, 365

pymodaq.utils.scanner
module, 351

pymodaq.utils.tcp_ip.mysocket
module, 339

pymodaq.utils.tcp_ip.serializer
module, 332

pymodaq.utils.tcp_ip.tcp_server_client
module, 341

pymodaq.utils.units
module, 345

Q
QAction (class in py-

modaq.utils.managers.action_manager),
316

queue_command() (py-
modaq.control_modules.daq_viewer.DAQ_Detector
method), 274

queue_command() (py-
modaq.utils.tcp_ip.tcp_server_client.TCPClient
method), 342

quit_fun() (pymodaq.control_modules.daq_move.DAQ_Move
method), 280

quit_fun() (pymodaq.control_modules.daq_viewer.DAQ_Viewer
method), 270

quit_fun() (pymodaq.control_modules.utils.ControlModule
method), 263

quit_fun() (pymodaq.utils.h5modules.browsing.H5Browser
method), 310

quit_signal (pymodaq.control_modules.utils.ControlModule
attribute), 261

R
read_info() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer

method), 344
ready_to_read() (py-

modaq.utils.tcp_ip.tcp_server_client.TCPClient
method), 342

ready_to_write() (py-
modaq.utils.tcp_ip.tcp_server_client.TCPClient
method), 342

ready_with_error() (py-
modaq.utils.tcp_ip.tcp_server_client.TCPClient
method), 342

real() (pymodaq.utils.data.DataBase method), 356
roi_manager (pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D

property), 327
roi_manager (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D

property), 329
roi_target (pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D

property), 327
roi_target (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D

property), 329
runner_initialized() (py-

modaq.extensions.BayesianModelGeneric
method), 292

Index 379

PyMoDAQ Documentation, Release 4.2.0

S
save_current() (pymodaq.control_modules.daq_viewer.DAQ_Viewer

method), 270
save_new() (pymodaq.control_modules.daq_viewer.DAQ_Viewer

method), 270
save_settings_slot() (py-

modaq.utils.managers.parameter_manager.ParameterManager
method), 321

scalar_deserialization() (py-
modaq.utils.tcp_ip.serializer.DeSerializer
method), 334

scalar_serialization() (py-
modaq.utils.tcp_ip.serializer.Serializer
method), 338

Scanner (class in pymodaq.utils.scanner), 313
ScanSaver (class in py-

modaq.utils.h5modules.module_saving),
312

ScanSelector (class in py-
modaq.utils.plotting.scan_selector), 330

select() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer
method), 344

select_file() (in module pymodaq.utils.gui_utils),
351

selected_actuators_name (py-
modaq.utils.managers.modules_manager.ModulesManager
property), 326

selected_detectors_name (py-
modaq.utils.managers.modules_manager.ModulesManager
property), 326

send_command() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer
method), 344

send_init() (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI
method), 283

send_init() (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI
method), 277

send_init() (pymodaq.control_modules.utils.ControlModuleUI
method), 264

send_param_status() (py-
modaq.control_modules.move_utility_classes.DAQ_Move_base
method), 287

Serializer (class in pymodaq.utils.tcp_ip.serializer),
334

set_abs_spinbox_properties() (py-
modaq.control_modules.daq_move_ui.DAQ_Move_UI
method), 283

set_action_text() (py-
modaq.utils.managers.action_manager.ActionManager
method), 319

set_actuators() (py-
modaq.utils.managers.modules_manager.ModulesManager
method), 325

set_connected_clients_table() (py-
modaq.utils.tcp_ip.tcp_server_client.TCPServer

method), 345
set_crosshair_position() (py-

modaq.utils.plotting.data_viewers.viewer1D.Viewer1D
method), 327

set_crosshair_position() (py-
modaq.utils.plotting.data_viewers.viewer2D.Viewer2D
method), 329

set_current_scan_path() (py-
modaq.utils.h5modules.saving.H5SaverBase
class method), 301

set_data_to_viewers() (py-
modaq.control_modules.daq_viewer.DAQ_Viewer
method), 270

set_detectors() (py-
modaq.utils.managers.modules_manager.ModulesManager
method), 325

set_dim() (pymodaq.utils.data.DataBase method), 356
set_gradient() (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D

method), 329
set_image_transform() (py-

modaq.utils.plotting.data_viewers.viewer2D.Viewer2D
method), 329

set_menu() (pymodaq.utils.managers.action_manager.ActionManager
method), 319

set_position_relative_with_scaling() (py-
modaq.control_modules.move_utility_classes.DAQ_Move_base
method), 287

set_position_with_scaling() (py-
modaq.control_modules.move_utility_classes.DAQ_Move_base
method), 287

set_scan() (pymodaq.utils.scanner.Scanner method),
314

set_scan_type_and_subtypes() (py-
modaq.utils.scanner.Scanner method), 315

set_toolbar() (pymodaq.utils.managers.action_manager.ActionManager
method), 319

set_txt_from_elt() (in module py-
modaq.utils.parameter.ioxml), 364

settings (pymodaq.control_modules.move_utility_classes.DAQ_Move_base
attribute), 284

settings (pymodaq.utils.h5modules.saving.H5SaverBase
attribute), 300

settings (pymodaq.utils.managers.parameter_manager.ParameterManager
attribute), 320

settings_name (pymodaq.utils.managers.parameter_manager.ParameterManager
attribute), 320

settings_tree (pymodaq.utils.h5modules.saving.H5SaverBase
attribute), 300

settings_tree (pymodaq.utils.managers.parameter_manager.ParameterManager
attribute), 320

setup_actions() (py-
modaq.control_modules.daq_move_ui.DAQ_Move_UI
method), 283

setup_actions() (py-

380 Index

PyMoDAQ Documentation, Release 4.2.0

modaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI
method), 277

setup_actions() (py-
modaq.extensions.BayesianOptimisation
method), 289

setup_actions() (py-
modaq.utils.h5modules.browsing.H5Browser
method), 310

setup_actions() (py-
modaq.utils.managers.action_manager.ActionManager
method), 319

setup_actions() (py-
modaq.utils.plotting.data_viewers.viewerND.ViewerND
method), 329

setup_continuous_saving() (py-
modaq.control_modules.daq_viewer.DAQ_Viewer
method), 270

setup_docks() (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI
method), 283

setup_docks() (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI
method), 277

setup_docks() (pymodaq.extensions.BayesianOptimisation
method), 290

setup_docks() (pymodaq.utils.gui_utils.CustomApp
method), 294

setup_menu() (pymodaq.extensions.BayesianOptimisation
method), 290

setup_menu() (pymodaq.utils.gui_utils.CustomApp
method), 294

setvalues() (pymodaq.utils.gui_utils.widgets.lcd.LCD
method), 331

shape (pymodaq.utils.data.DataBase attribute), 354
shape (pymodaq.utils.data.DataBase property), 357
show_config() (pymodaq.control_modules.utils.ControlModule

method), 263
show_data() (pymodaq.control_modules.daq_viewer.DAQ_Viewer

method), 270
show_h5_data() (pymodaq.utils.h5modules.browsing.H5Browser

method), 310
show_log() (pymodaq.control_modules.utils.ControlModule

method), 263
show_roi() (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D

method), 329
show_temp_data() (py-

modaq.control_modules.daq_viewer.DAQ_Viewer
method), 271

Signal, 260
single() (pymodaq.control_modules.daq_viewer.DAQ_Detector

method), 274
size (pymodaq.utils.data.Axis property), 353
size (pymodaq.utils.data.DataBase attribute), 354
size (pymodaq.utils.data.DataBase property), 357
snap() (pymodaq.control_modules.daq_viewer.DAQ_Viewer

method), 271

snapshot() (pymodaq.control_modules.daq_viewer.DAQ_Viewer
method), 271

Socket (class in pymodaq.utils.tcp_ip.mysocket), 339
SocketString (class in pymodaq.utils.tcp_ip.serializer),

338
source (pymodaq.utils.data.DataBase attribute), 354
source (pymodaq.utils.data.DataBase property), 357
stack_as_array() (pymodaq.utils.data.DataBase

method), 356
stop() (pymodaq.control_modules.daq_viewer.DAQ_Viewer

method), 271
stop_grab() (pymodaq.control_modules.daq_viewer.DAQ_Viewer

method), 271
stop_grab() (pymodaq.control_modules.utils.ControlModule

method), 263
stop_motion() (pymodaq.control_modules.daq_move.DAQ_Move

method), 280
str_len_to_bytes() (py-

modaq.utils.tcp_ip.serializer.Serializer class
method), 338

string_deserialization() (py-
modaq.utils.tcp_ip.serializer.DeSerializer
method), 334

string_serialization() (py-
modaq.utils.tcp_ip.serializer.Serializer
method), 338

T
take_bkg() (pymodaq.control_modules.daq_viewer.DAQ_Viewer

method), 271
target_value (pymodaq.control_modules.move_utility_classes.DAQ_Move_base

attribute), 285
TCPClient (class in py-

modaq.utils.tcp_ip.tcp_server_client), 341
TCPServer (class in py-

modaq.utils.tcp_ip.tcp_server_client), 342
test_move_actuators() (py-

modaq.utils.managers.modules_manager.ModulesManager
method), 325

thread_status() (py-
modaq.control_modules.daq_move.DAQ_Move
method), 280

thread_status() (py-
modaq.control_modules.daq_viewer.DAQ_Viewer
method), 271

thread_status() (py-
modaq.control_modules.utils.ControlModule
method), 263

ThreadCommand (class in pymodaq.utils.daq_utils), 331
timerEvent() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer

method), 345
timestamp (pymodaq.utils.data.DataToExport at-

tribute), 358

Index 381

PyMoDAQ Documentation, Release 4.2.0

title (pymodaq.control_modules.utils.ControlModule
property), 264

to_bytes() (pymodaq.utils.tcp_ip.serializer.Serializer
method), 338

toolbar (pymodaq.utils.managers.action_manager.ActionManager
property), 319

tree (pymodaq.utils.managers.parameter_manager.ParameterManager
attribute), 320

U
units (pymodaq.utils.data.Axis property), 353
update_file_paths() (py-

modaq.utils.h5modules.saving.H5SaverBase
method), 301

update_plots() (pymodaq.extensions.BayesianModelGeneric
method), 292

update_settings() (py-
modaq.control_modules.daq_viewer.DAQ_Detector
method), 275

update_settings() (py-
modaq.control_modules.move_utility_classes.DAQ_Move_base
method), 287

update_settings() (py-
modaq.extensions.BayesianModelDefault
method), 293

update_settings() (py-
modaq.extensions.BayesianModelGeneric
method), 292

update_settings_slot() (py-
modaq.utils.managers.parameter_manager.ParameterManager
method), 321

update_status() (py-
modaq.control_modules.utils.ControlModule
method), 263

update_viewers() (py-
modaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI
method), 277

V
value_changed() (py-

modaq.control_modules.daq_viewer.DAQ_Viewer
method), 272

value_changed() (py-
modaq.extensions.BayesianOptimisation
method), 290

value_changed() (py-
modaq.utils.h5modules.saving.H5SaverBase
method), 301

value_changed() (py-
modaq.utils.managers.modules_manager.ModulesManager
method), 325

value_changed() (py-
modaq.utils.managers.parameter_manager.ParameterManager
method), 321

value_changed() (py-
modaq.utils.plotting.scan_selector.ScanSelector
method), 330

value_changed() (pymodaq.utils.scanner.Scanner
method), 315

Viewer0D (class in py-
modaq.utils.plotting.data_viewers.viewer0D),
326

Viewer1D (class in py-
modaq.utils.plotting.data_viewers.viewer1D),
326

Viewer2D (class in py-
modaq.utils.plotting.data_viewers.viewer2D),
328

viewer_docks (pymodaq.control_modules.daq_viewer.DAQ_Viewer
property), 272

ViewerND (class in py-
modaq.utils.plotting.data_viewers.viewerND),
329

viewers (pymodaq.control_modules.daq_viewer.DAQ_Viewer
property), 272

viewers_docks (pymodaq.control_modules.daq_viewer.DAQ_Viewer
property), 273

W
walk_nodes() (pymodaq.utils.h5modules.data_saving.DataLoader

method), 309
walk_parameters_to_xml() (in module py-

modaq.utils.parameter.ioxml), 364
walk_xml_to_parameter() (in module py-

modaq.utils.parameter.ioxml), 365

X
XML_file_to_parameter() (in module py-

modaq.utils.parameter.ioxml), 362
XML_string_to_parameter() (in module py-

modaq.utils.parameter.ioxml), 363

382 Index

	Training
	Information
	Credits
	Contribution
	They use it
	Citation
	Changelog
	PyMoDAQ’s overview
	What’s new in PyMoDAQ 4
	Package hierarchy
	Data Management
	DAQ_Scan

	User’s Guide
	Installation
	Preamble
	Setting up a new environment
	Installing PyMoDAQ
	Qt5 backend
	Linux installation

	Creating shortcuts on Windows
	Plugin Manager
	What about the Hardware
	Serial/GPIB based hardware
	Library based hardware
	Python Versions

	How to Start
	From command line tool:
	Load installed scripts
	Execute a given python file

	Create windows’s shortcuts:

	Configuration
	Configs from Managers
	PyMoDAQ configuration for default values
	Plugins configuration for default values

	DashBoard and Control Modules
	DashBoard
	Introduction
	Menu Bar Description
	Multiple hardware from one controller

	Control Modules
	DAQ Move
	Introduction
	Hardware initialization
	Positioning
	Advanced positioning
	Settings
	Main Settings
	Multiaxes controller
	Bounds
	Scaling
	Other settings
	Grabing the actuator’s value

	DAQ Viewer
	Introduction
	Settings
	Toolbar
	Hardware initialization
	Main settings
	Data Viewers
	Other utilities
	Saving data
	Snapshots
	Continuous Saving

	Extensions
	DAQ Scan
	Introduction
	Main Control Window
	Scan Flow
	Selecting detectors and actuators
	Selecting the type of scan
	Selecting the data to render live

	Various settings
	Toolbar
	Menu Bar Description
	Settings
	General Settings
	Saving: Dataset and scans

	Scanner
	Scan1D
	Scan2D
	Sequential
	Tabular
	Tabular Linear/Manual case
	Tabular Linear/Polylines case
	Tabular Adaptive case
	Adaptive
	Bounds
	Feedback
	Loss

	Navigator
	Scan Batch Manager

	DAQ Logger
	Introduction
	Main Control Window
	H5 saving
	SQL Database saving

	PID Module
	Introduction
	First example: a boiler
	The PID Model

	Demonstration with a virtual beam steering system
	Preset configuration
	PID module
	PID configuration
	Automatic control of the setpoints

	How to write my own PID application?
	Package structure for a PID application
	Detector/actuator plugins
	How to write a PID model?

	PID module internals
	Files locations
	Packages
	General structure of the module
	The PID loop

	Bayesian Optimisation
	Introduction
	Gaussian Processes:
	Acquisition function:

	Usage
	Toolbar:
	Settings
	Observable and Probed Data
	Models

	H5Browser
	Exploring data
	Associating H5Browser with .h5 files

	Console

	Data Management
	What is PyMoDAQ’s Data?
	DataBase
	Axis
	DataWithAxes
	Uncertainty/error bars
	DataWithAxes and signal/navigation axes
	Uniform and Spread Data
	Special DataWithAxes

	DataToExport
	Saving and loading data
	DataSaver/DataLoader
	AxisSaverLoader
	DataSaverLoader
	DataToExportSaver
	DataLoader
	Special DataSaver

	Module Savers

	Plotting Data
	Plotting scalars: Viewer0D
	Plotting vectors/waveforms: Viewer1D
	Plotting 2D data
	Uniform data
	Spread Data
	Toolbar

	Plotting all other data
	Uniform Data
	Spread Data

	Plotting multiple data object: ViewerDispatcher

	Useful Modules
	Introduction
	Module Manager
	Scan Selector
	Module Manager

	H5Saver
	Preset manager
	Overshoot manager
	ROI manager
	DAQ_Measurement
	Navigator
	Remote Manager
	ChronoTimer

	TCP/IP communication
	With PyMoDAQ
	On another software
	PyMoDAQ TCP/IP Communication protocol
	Serializing objects
	Making sure messages are complete:
	Sending and receiving commands (or message):
	Sending and receiving Datas:
	Custom client: how to?

	Developer’s Guide
	Contributing
	How to contribute
	Branch structure and release cycle
	Where to contribute
	Factory Patterns (to be completed)
	Data Exporting
	Math functions in ROI
	Scanning modes

	Contributors
	Main modules
	Functionalities
	Cleaning

	Plugins
	Extensions
	Documentation
	Testing

	Plugins
	Plugins package configuration file
	Instrument Plugins
	Installation
	Contributions
	Naming convention
	Hardware Settings
	Emission of data
	Data ready?
	Synchronous example:
	Asynchronous example:
	Hardware averaging
	Live Mode

	Hardware needed files
	Actuator plugin having multiple axis
	Modifying the UI from the instrument plugin class
	Splash Screen and info
	Modifying the UI settings
	DAQ_Move specific commands
	DAQ_Viewer specific commands

	Extension Plugins

	Custom App
	Managers and Mixin Objects
	Parameter Manager
	Action Manager
	Modules Manager
	ROI Manager

	Tutorials
	Git/GitHub
	Create an account & raise an issue on GitHub
	What is GitHub?
	Create an account
	Troubleshoot PyMoDAQ: raise an issue

	Basics of Git and GitHub
	Why Git?
	How do I organize my code development efficiently? (local use)
	How do I work with my colleagues on the same code? (remote use)
	How does it do that?

	Installation & configuration for Windows
	Installation
	Configuration

	Installation & configuration for Ubuntu
	Installation
	Configuration

	Local use of Git
	Before we start…
	The init command: start a new project
	The status command
	The add command
	The commit command
	The log command
	The diff command
	The revert command
	Work with branches
	Local development workflow

	Remote use of Git: GitHub
	Create an account
	Create a remote repository
	Authentication to GitHub with an SSH key
	Push our local repository to GitHub
	The clone command

	Git in practice: integration within PyCharm
	Link our GitHub account to PyCharm
	Clone a project
	Configure our Python environment
	Create a new branch
	Diff, commit and push
	Add a file
	Log

	Conclusion

	Authenticate to GitHub with an SSH key
	Prerequisite
	What is SSH?
	How to make a secure connection with SSH?
	Generate our SSH key pair
	Add our private key to the ssh-agent
	Add our public key to our GitHub account

	Concluding remarks

	How to modify existing PyMoDAQ’s code?
	Prerequisite
	The PyMoDAQ repositories
	PyMoDAQ branches
	How to propose a modification of the code of PyMoDAQ?
	(1) Fork the upstream repository
	(2) Clone our new remote repository locally
	(3) Do modifications and push
	(4) Pull request (PR) to the upstream repository

	How to create a new plugin/package for PyMoDAQ?
	Prerequisite
	The PyMoDAQ’s plugin template repository
	Configuring a new plugin repository
	Publishing on Pypi

	Story of an instrument plugin development
	The controller manual
	The installer
	The blue route: use the manufacturer GUI
	A shortcut through an existing green route? Readily available PyMoDAQ instrument plugins
	The gold route: control your device with a Python script
	What is a DLL?
	What is a Python wrapper?
	PIPython wrapper
	External open-source libraries
	Back to PIPython wrapper
	I’ve found nothing to control my device with Python! :(

	The green route: control your device with PyMoDAQ
	What is GitHub?
	Prepare your remote repository
	Prepare your local repository
	Install your package in edition mode
	Open the package with an adapted IDE
	Debug of the original plugin
	Write the class for our new instrument
	Commit our changes with Git
	Push our changes to our remote repository
	Pull request to the upstream repository

	Conclusion

	How to contribute to PyMoDAQ’s documentation?
	The documentation of PyMoDAQ
	Documentation of the source code: docstrings
	Tests
	Website

	Sphinx
	Preparation
	Build the website locally
	Add a new tutorial
	reStructuredText (RST) language
	Page structure
	List
	External link (URL)
	Integrate an image
	Cross-referencing
	Glossary terms

	Submit our documentation to the upstream repository

	Updating your instrument plugin for PyMoDAQ 4
	What’s new in PyMoDAQ 4
	What should be modified
	Imports
	Data emission
	Requirements

	Tutorial On Data Manipulation and analysis
	Loading Data
	Plotting data
	Data Analysis
	Slicing the data
	Fitting the Data
	Electrons:
	Phonons:
	Resampling
	FFT

	Summary

	Who use it?
	Institutions using PyMoDAQ
	What they think of PyMoDAQ?
	Some Scientific publication on/using PyMoDAQ

	Glossary Terms
	Library Reference
	Control modules
	ControlModule base classes
	DAQ_Viewer class
	DAQ_Detector class
	The Viewer UI class
	The DAQ_Move Class
	The DAQ_Move UI class
	The DAQ_Move Plugin Class

	Extensions
	DAQ_Scan module
	The Bayesian Extension and utilities
	The Extension module
	The Base Models

	The CustomApp base class

	Utility Modules
	Hdf5 module and classes
	Hdf5 backends
	Low Level saving
	High Level saving/loading
	Base data class saver/loader
	Specific data class saver/loader

	Specialized loading
	Browsing Data
	Module savers

	Scanner module and classes
	Managers
	Data Viewers
	Plotting utility classes

	Utility Libraries
	Utility Classes
	TCP/IP related methods
	Serializing object to bytes and back
	Custom Sockets to implement PyMoDAQ protocol
	Base classes as TCP server and client

	Units conversion
	Mathematical utilities
	Scan utilities
	File management
	Data Management
	Axes
	DataObjects
	Data Characteristics
	Union of Data

	parameter
	New Tree items
	Parameter and XML
	Parameter management

	Indices and tables
	Python Module Index
	Index

