

Welcome to PyMoDAQ’s documentation!

PyMoDAQ is an open-source software, officially supported by the CNRS, to perform modular data acquisition with Python.
It proposes a set of modules used to interface any kind of experiments. It simplifies the interaction with detector and
actuator hardware to go straight to the data acquisition of interest.

 1. PyMoDAQ’s overview

1. PyMoDAQ’s overview

[image: overview]

Fig. 1.1 PyMoDAQ control of an experimental setup using the Dashboard and a set of DAQ_Viewer and DAQ_Move modules

PyMoDAQ is an advanced user interface to control instruments (casually called Detectors) and actuators (sometimes
called Moves for historical reasons). Each of these will have their own interface called DAQ Viewer and
DAQ Move that are always the same (only some specifics about communication with the controller will differ),
so that a PyMoDAQ’s user will always find a known environment independent of the kind of instruments it controls. These
detectors and actuators are grouped together in the DashBoard and can then be controlled manually by
the user: acquisition of images, spectra… for various
positions of the actuators (see Fig. 1.1). The Dashboard has functionalities to fully configure
all its detectors and actuators and
save the configuration in a file that will, at startup, load and initialize all modules. Then
Dashboard’s extensions can be used to perform advanced and automated tasks on the detectors and actuators
(see Fig. 1.2):

	The first of these extensions is called DAQ Scan and is used to perform automated and synchronized data
acquisition as a function of multiple actuators positions. Many kind of scans are possible: 1Ds, 2Ds, NDs, set of
points and many ways to perform each of these among which Adaptive scan modes have been recently developed
(from version 2.0.1).

	The second one is the DAQ Logger. It is a layer between all the detectors within the dashboard and various ways
to log data acquired from these detectors. As of now, one can log to :

	a local binary hdf5 file

	a distant binary hdf5 file or same as hdf5 but on the cloud (see HSDS from the HDF group [https://www.hdfgroup.org/solutions/highly-scalable-data-service-hsds/] and the h5pyd [https://github.com/HDFGroup/h5pyd] package)

	a local or distant SQL Database (such as PostgreSQL). The current advantage of this solution is to be able to access
your data on the database from a web application such as Grafana [https://grafana.com/grafana/]. Soon a tutorial on this!!

	Joystick control of the dashboard actuators (and eventually detectors).

	PID closed loop interface

	Direct code execution in a Console

[image: overview]

Fig. 1.2 PyMoDAQ’s Dashboard and its extensions: DAQ_Scan for automated acquisitions, DAQ_Logger for data logging and many other.

 2. What’s new in PyMoDAQ 4

2. What’s new in PyMoDAQ 4

The main modifications in PyMoDAQ 4 is related to the hierarchy
of the modules in the source code and the data management.

The feel and shape of the control modules and the way the DAQ_Scan work have been reworked. A new extension is
introduced: the Console.

2.1. Package hierarchy

Before many modules where stored in a generic daq_utils
module. It was kind of messy and the development of much nicer code for pymo4 was the occasion to reshape the
package and its modules. Figure Fig. 2.1 shows the new layout of the package.

[image: _images/package_hierarchy.png]

Fig. 2.1 Layout of the PyMoDAQ 4 package.

The only python file at the root is the dashboard.py that contains the code about the dashoard, the starting
point of PyMoDAQ usage.

Note

There is a daq_utils.py file here as well to provide some back compatibility with pymodaq v3 but this file will soon
be deprecated (when all plugins will be updated according to this tutorial)

Then you’ll find modules for:

	Control modules: the DAQ_Viewer and the DAQ_Move and their utility modules

	Example module: contains some executable code to illustrate some features

	Extension module: contains the main extension of the DashBoard: DAQ_Scan, DAQ_Logger,
PID and H5Browser

	Post-Treatment modules: utilities to process PyMoDAQ’s data

	Resources module: contains the UI icons, templates for configuration and presets

	Utils module: contains all utility modules, see Fig. 2.2.

[image: _images/utils_module_layout.png]

Fig. 2.2 Layout of the utils module

This last utils module contains many other module needed for PyMoDAQ to run smoothly. They can also be used
in some other programs to use their features. Below is a short description of what they are related to:

	abstract: contains abstract classes (if not stored in another specific module)

	db: module related to data logging towards database (postgresql for instance)

	gui_utils: usefull UI widgets and related objects to build quickly and nicely user interfaces

	h5modules: everything related to the saving and browsing of data in hdf5 files

	managers: integrated objects managing various thing, for instance, control modules, presets, roi… In general they
have a specific UI (that you can incorporate in your main UI) and the code to interact with whatever is related to it.

	parameter: extensions of the pyqtgraph Parameter introducing other widgets and Parameter types. Includes also
serializers from/to Parameter to/from XML

	plotting: everything related to the plotting of data: including the 4 main data viewers, see Plotting Data

	scanner: objects related to the DAQ_Scan defining and managing the scans. The different types of scans are defined
using a factory pattern.

	svg: under tests to plot svg

	array_manipulation: utility functions to create, manipulate and extract info from numpy arrays

	calibration_camera: utility UI to get a calibration file from a Camera compatible with pymodaq
(to use real physical axes and not pixels in the data viewers). Old code, maybe to update for it to work

	chrono_timer: user interface to be used for timing things, see ChronoTimer

	config: objects dealing with configuration files (for instance the main config for pymodaq). Can be used elsewhere,
for instance in instrument plugin

	conftests: configuration file for the test suite

	daq_utils: deprecated

	data: module containing all objects related to Data Management

	enums: base class and method to ease the use of enumerated types

	exceptions: contains some shared exceptions. But exceptions should be in their related module…

	factory: base class to be used when defining a factory pattern

	logger: methods to initialize the logging objects in the various modules

	math_utils: a set of useful mathematical functions

	messenger: function to be used when one want to display messages (in the log or in popups)

	qvariant: definition of a QVariant object. To be used in PySide as it is not defined there…

	slicing: definition of slicing objects used in the data management to slice data

	tcp_server_client: set of classes to build TCP/IP communication

	units: methods for conversion between physical units (especially photon energy in eV, nm, cm, J…)

2.2. Data Management

See data management.

2.3. DAQ_Scan

See DAQ Scan.

 3. User’s Guide

3. User’s Guide

Contents:

	3.1. Installation
	3.1.1. Preamble

	3.1.2. Setting up a new environment

	3.1.3. Installing PyMoDAQ
	3.1.3.1. Qt5 backend

	3.1.3.2. Linux installation

	3.1.4. Creating shortcuts on Windows

	3.1.5. Plugin Manager

	3.1.6. What about the Hardware
	3.1.6.1. Serial/GPIB based hardware

	3.1.6.2. Library based hardware

	3.1.6.3. Python Versions

	3.2. How to Start
	3.2.1. From command line tool:
	3.2.1.1. Load installed scripts

	3.2.1.2. Execute a given python file

	3.2.2. Create windows’s shortcuts:

	3.3. Configuration
	3.3.1. Configs from Managers

	3.3.2. PyMoDAQ configuration for default values

	3.3.3. Plugins configuration for default values

	3.4. DashBoard and Control Modules
	3.4.1. DashBoard
	3.4.1.1. Introduction

	3.4.1.2. Menu Bar Description

	3.4.1.3. Multiple hardware from one controller

	3.4.2. Control Modules
	3.4.2.1. DAQ Move

	3.4.2.2. DAQ Viewer

	3.5. Extensions
	3.5.1. DAQ Scan
	1. Introduction

	2. Main Control Window

	3. Scan Flow

	4. Various settings

	5. Scanner

	6. Navigator

	7. Scan Batch Manager

	3.5.1. DAQ Logger
	3.5.1.1. Introduction

	3.5.1.2. Main Control Window

	3.5.1.3. H5 saving

	3.5.1.4. SQL Database saving

	3.5.2. PID Module
	3.5.2.1. Introduction

	3.5.2.2. Demonstration with a virtual beam steering system

	3.5.2.3. How to write my own PID application?

	3.5.2.4. PID module internals

	3.5.3. Bayesian Optimisation
	3.5.3.1. Introduction

	3.5.3.2. Usage

	3.5.4. H5Browser
	3.5.4.1. Exploring data

	3.5.4.2. Associating H5Browser with .h5 files

	3.5.5. Console

	3.6. Data Management
	3.6.1. What is PyMoDAQ’s Data?
	3.6.1.1. DataBase

	3.6.1.2. Axis

	3.6.1.3. DataWithAxes

	3.6.1.4. Uncertainty/error bars

	3.6.1.5. DataWithAxes and signal/navigation axes

	3.6.1.6. Uniform and Spread Data

	3.6.1.7. Special DataWithAxes

	3.6.2. DataToExport

	3.6.3. Saving and loading data
	3.6.3.1. DataSaver/DataLoader

	3.6.3.2. Module Savers

	3.6.4. Plotting Data
	3.6.4.1. Plotting scalars: Viewer0D

	3.6.4.2. Plotting vectors/waveforms: Viewer1D

	3.6.4.3. Plotting 2D data

	3.6.4.4. Plotting all other data

	3.6.4.5. Plotting multiple data object: ViewerDispatcher

	3.7. Useful Modules
	3.7.1. Introduction

	3.7.2. Module Manager
	3.7.2.1. Scan Selector

	3.7.2.2. Module Manager

	3.7.3. H5Saver

	3.7.4. Preset manager

	3.7.5. Overshoot manager

	3.7.6. ROI manager

	3.7.7. DAQ_Measurement

	3.7.8. Navigator

	3.7.9. Remote Manager

	3.7.10. ChronoTimer

	3.8. TCP/IP communication
	3.8.1. With PyMoDAQ

	3.8.2. On another software

	3.8.3. PyMoDAQ TCP/IP Communication protocol
	3.8.3.1. Serializing objects

	3.8.3.2. Making sure messages are complete:

	3.8.3.3. Sending and receiving commands (or message):

	3.8.3.4. Sending and receiving Datas:

	3.8.3.5. Custom client: how to?

 3.1. Installation

3.1. Installation

	Preamble

	Setting up a new environment

	Installing PyMoDAQ

	Creating shortcuts on Windows

	Plugin Manager

	What about the Hardware

3.1.1. Preamble

PyMoDAQ is written in Python [https://docs.python-guide.org/] and uses Python 3.7+. It uses the Qt5 [http://doc.qt.io/qt-5/qt5-intro.html] library (and a python Qt5 backend, see
Qt5 backend) and the excellent pyqtgraph [http://www.pyqtgraph.org/] package for its user interface.
For PyMoDAQ to run smoothly, you need a Python distribution to be installed. Here are some
advices.

On all platforms Windows, MacOS or Linux, Anaconda [https://www.anaconda.com/download/] or Miniconda [https://docs.conda.io/en/latest/miniconda.html] is the advised distribution/package
manager. Environments can be created to deal with different version of packages and isolate the code from other
programs. Anaconda comes with a full set of installed scientific python packages while Miniconda is a very
light package manager.

3.1.2. Setting up a new environment

	Download and install Miniconda3.

	Open a console, and cd to the location of the condabin folder, for instance: C:\Miniconda3\condabin

	Create a new environment: conda create -n my_env python=3.8, where my_env is your new environment name,
could be pymodaq353
if you plan to install PyMoDAQ version 3.5.3 for instance.. This will create the environment with python version 3.8
that is currently the recommended one, see Python Versions.

	Activate your environment so that only packages installed within this environment will be seen by Python:
conda activate my_env

3.1.3. Installing PyMoDAQ

Easiest part: in your newly created and activated environment enter: pip install pymodaq. This will install the
latest PyMoDAQ available version and all its dependencies. For a specific version enter: pip install pymodaq==x.y.z.

3.1.3.1. Qt5 backend

PyMoDAQ source code uses a python package called qtpy [https://pypi.org/project/QtPy/] that add an abstraction layer between PyMoDAQ’s code
and the actual Qt5 python implementation (either PyQt5 or PySide2, and soon PyQt6 and PySide6). Qtpy will look on what
is installed on your environment and load PyQt5 by default (see the PyMoDAQ configuration for default values to change this default behaviour).
This means you have to install one of these backends on your environment using either:

	pip install pyqt5

	pip install pyside2 (still some issues with some parts of pymodaq’s code. If you want to help fix them, please, don’t be shy!)

	pip install pyqt6 (not tested yet)

	pip install pyside6 (not tested yet)

3.1.3.2. Linux installation

For Linux installation, only Ubuntu operating system are currently being tested. In particular, one needs to make sure that the QT environment can be used. Running the following command should be sufficient to start with:

sudo apt install libxkbcommon-x11-0 libxcb-icccm4 libxcb-image0 libxcb-keysyms1 libxcb-randr0 libxcb-render-util0 libxcb-xinerama0 libxcb-xfixes0 x11-utils

It is also necessary to give some reading and writing permission access to some specific folders. In particular, PyMoDAQ creates two folders that are used to store configurations files, one assigned to the system in /etc/.pymodaq/ and one assigned to the user ~/.pymodaq/. We need to give reading/writing permission acess to the system folder.
One should then run before/after installing pymodaq:

	sudo mkdir /etc/.pymodaq/

	sudo chmod uo+rw /etc/.pymodaq

As a side note, these files are shared between different pymodaq’s versions (going from 3 to 4 for example). It is suggested to delete/remake the folder (or empty its content) when setting up a new environment with a different pymodaq version.

3.1.4. Creating shortcuts on Windows

Python packages can easily be started from the command line (see How to Start). However, Windows users
will probably prefer using shortcuts on the desktop. Here is how to do it (Thanks to Christophe Halgand for the procedure):

	First create a shortcut (see Fig. 3.1) on your desktop (pointing to any file or program, it doesn’t matter)

	Right click on it and open its properties (see Fig. 3.2)

	On the Start in field (“Démarrer dans” in french and in the figure), enter the path to the condabin folder of your miniconda or
anaconda distribution, for instance: C:\Miniconda3\condabin

	On the Target field, (“Cible” in french and in the figure), enter this string:
C:\Windows\System32\cmd.exe /k conda activate my_env & python -m pymodaq.dashboard. This means that
your shortcut will open the windows’s command line, then execute your environment activation (conda activate my_env bit),
then finally execute and start Python, opening the correct pymodaq file (here dashboard.py,
starting the Dashboard module, python -m pymodaq.dashboard bit)

	You’re done!

	Do it again for each PyMoDAQ’s module you want (to get the correct python file and it’s path, see From command line tool:).

[image: shortcut]

Fig. 3.1 Create a shortcut on your desktop

[image: shortcut properties]

Fig. 3.2 Shortcut properties

3.1.5. Plugin Manager

Any new hardware has to be included in PyMoDAQ within a plugin. A PyMoDAQ’s plugin is a python package
containing several added functionalities such as instruments objects. A instrument object is a class inheriting from either
a DAQ_Move_Base or a DAQ_Viewer_Base class and implements mandatory methods for easy and quick inclusion
of the instrument within the PyMoDAQ control modules.

The complete list of available Instrument Plugins is maintained on this GitHub repository [https://github.com/PyMoDAQ/pymodaq_plugin_manager].

While you can install them manually (for instance using pip install plugin_name), from PyMoDAQ 2.2.2 a plugin
manager is available. You can open it from the Dashboard in the help section or directly using the command
line: python -m pymodaq_plugin_manager.manager or directly plugin_manager

This will open the Plugin Manager User Interface as shown on figure Fig. 3.3 listing the available
plugins packages that can be either installed, updated or removed. It includes a description of the content of
each package and the instruments it interfaces. For instance, on figure Fig. 3.3, the selected Andor
plugin package is selected and includes two plugins: a Viewer1D to interface Andor Shamrock spectrometers and a Viewer2D
to interface Andor CCD camera.

[image: plugin_manager]

Fig. 3.3 Plugin Manager interface

3.1.6. What about the Hardware

So far, you’ve installed all the software layer managing Instrument control from the user
up to the manufacturer driver. This means you still have to install properly your specific hardware. For this, there
is no general recipe but below you’ll find some advices/steps you can follow.

3.1.6.1. Serial/GPIB based hardware

In the case where your instrument is controlled using ASCII commands (basically strings), no more steps
than plugging you instrument is needed. Just make sur the COM port or GPIB address is correct.

3.1.6.2. Library based hardware

In the case of instruments using a specific manufacturer driver (.dll, .so or .NET libraries) then
you could follow these steps:

	Install the SDK/dll driver from the manufacturer

	Test the communication is fine using the software provided by the manufacturer (if available)

	Make sure your OS (Windows, Mac or linux) is able to find the installed library (if needed add the path pointing to
your library in the PATH environment variable of your operating system

	Install the right PyMoDAQ’s plugin

	You should be good to go!

Warning

From Python 3.8 onwards, the way python looks for dlls on your system changed causing issues on existing plugins
using them. So far the right way was to add the path pointing to your dll in the system PATH environment variable.
This no longer works and ctypes LoadLibrary function raises an error. A simple solution to this issue, is to add
in the preamble of my/your plugins this instruction:

import os
os.add_dll_directory(path_dll)

where path_dll is the path pointing to your dll.

Note

Example: if you want to use a NI-DAQ instrument. You’ll have to first install their driver Ni-DAQmx, then test you hardware
using their MAX software and finally configure it using pymodaq_plugins_daqmx plugin.

3.1.6.3. Python Versions

As of today (early 2022), PyMoDAQ has been efficiently used on python 3.8 up to 3.9 versions. It’s source code
is regularly tested against those versions. Work is in progress to make it working with python 3.10/3.11, but some of
PyMoDAQ’s dependencies are not yet available for these versions.

 3.2. How to Start

3.2. How to Start

Various ways are possible in order to start modules from PyMoDAQ. In all cases after installation of the package
(using pip or setup.py, see Installation) all the modules will be installed within the
site-packages folder of python.

3.2.1. From command line tool:

Open a command line and activate your environment (if you’re using anaconda, miniconda, venv…):

3.2.1.1. Load installed scripts

During its installation, a few scripts have been installed within you environment directory, this means you can start
PyMoDAQ’s main functionalities directly writing in your console either:

	dashboard

	daq_scan

	daq_logger

	daq_viewer

	daq_move

	h5browser

	plugin_manager

3.2.1.2. Execute a given python file

If you knwow where, within PyMoDAQ directories, is the python file you want to run you can enter for instance:

	python -m pymodaq.dashboard

	python -m pymodaq.extensions.daq_scan

	python -m pymodaq.extensions.daq_logger

	python -m pymodaq.control_modules.daq_viewer

	python -m pymodaq.control_modules.daq_move

	python -m pymodaq.extensions.h5browser

	python -m pymodaq_plugin_manager.manager

for PyMoDAQ’s main modules. The -m option tells python to look within its site-packages folder (where you’ve just
installed pymodaq) In fact if one of PyMoDAQ’s file (xxx.py) as an entry point (a if __name__='__main__:'
statement at the end of the file), you can run it by calling python over it…

3.2.2. Create windows’s shortcuts:

See Creating shortcuts on Windows !

 3.3. Configuration

3.3. Configuration

All configuration files used by PyMoDAQ will be located within two folders each called
.pymodaq. One is system wide and located in one of these locations:

	Windows: ProgramData folder

	Mac: Library/Application Support folder

	Linux: /etc

while the other is restricted to the current user and located in the user’s home folder.

All configuration files that should be shared between users are in the system wide folder,
for instance all files related to the dashboard, see Fig. Fig. 3.4:

	preset configs: preset file defining the type and numbers of control modules for a given experiment

	batch configs: file describing the batch of scans to do

	layout configs: store the user interface docks arrangement

	overshoot configs: store the files defining overshoots

	remote configs: store the files defining the remote control actions

	roi configs: store the overall ROI in all DAQ_Viewers on the dashboard

[image: local_folder]

Fig. 3.4 Local folder to store configuration files

3.3.1. Configs from Managers

Each folder contains dedicated files: the log as text file and all module configuration files
as xml files. These files are generated by dedicated managers when the user is configuring one aspect
of PyMoDAQ, for instance using the Preset manager for defining Actuators and Detectors in the
Dashboard. Apart the log, a user should not interact directly with those but use their respective
manager user interface to create and modify them.

3.3.2. PyMoDAQ configuration for default values

The config_pymodaq.toml file is the only exception. It is there so that a particular user could enter
specific personal information such as the name that will be used by default in the metadata,
default preset file to load if executing directly the DAQ_Scan extension, default type of Scan
and so on. The file can be directly modified but should be accessed within the Dashboard in the file menu.

The configuration file located in the system wide folder is the default one, see below, but when a user override
the default values, they will be stored in another config_pymodaq.toml in the user .pymodaq folder. In this way,
if the computer is shared among multiple users, each can specify their own metadata, UI feel and shape,
default presets, …

Below is a non exhaustive list of configuration entries stored in the config_pymodaq.toml file:

Listing 3.1 Default Configuration file of PyMoDAQ that will be copied on the local folder where the user can modify it

 [data_saving]
 [data_saving.h5file]
 save_path = "C:\\Data" #base path where data are automatically saved
 compression_level = 5 # for hdf5 files between 0(min) and 9 (max)

 [data_saving.hsds] #hsds connection option (https://www.hdfgroup.org/solutions/highly-scalable-data-service-hsds/)
 #to save data in pymodaq using hpyd backend towards distant server or cloud (mimicking hdf5 files)
 root_url = "http://hsds.sebastienweber.fr"
 username = "pymodaq_user"
 pwd = "pymodaq"

 [general]
 debug_level = "DEBUG" #either "DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"
 debug_levels = ["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"]
 check_version = true #automatically check version at startup

 [user]
 name = "User name" # default name used as author in the hdf5 saving files

 [network]
 [network.logging]
 [network.logging.user]
 username = "pymodaq_user"
 pwd = "pymodaq"

 [network.logging.sql] #location of the postgresql database server and options where the DAQ_Logger will log data
 ip = "10.47.3.22"
 port = 5432

 [network.tcp-server]
 ip = "10.47.0.39"
 port = 6341

 [presets]
 default_preset_for_scan = "preset_default"
 default_preset_for_logger = "preset_default"

3.3.3. Plugins configuration for default values

In the same way, the file config_pymodaq.toml stores (system/user wide) default configuration values, plugins
benefits of the same features. The mechanism is as follow. The plugin package should contain (PyMoDAQ >= 4)
a resources folder containing at least the VERSION file and a config_template.toml file, see
Fig. 3.5.

[image: resources]

Fig. 3.5 Files in the resources folder of each plugin (well that should be like this as of october 2023)

This config_template.toml file holds any mandatory config values needed from within you plugin package
scripts. The first time the plugin package is imported, this config will be copied into the system wide/user
folders, to be used by the plugins scripts. They can be manually amended by each user in their .pymodaq
user folder.

Another file is mandatory, the utils.py at the root of the plugin package, see Fig. 3.5.
In there, will be defined the particular Config object to be used with each script of the package plugin:

class Config(BaseConfig):
 """Main class to deal with configuration values for this plugin"""
 config_template_path = Path(__file__).parent.joinpath('resources/config_template.toml')
 config_name = f"config_{__package__.split('pymodaq_plugins_')[1]}"

This object will automatically be linked to the system wide/user .pymodaq folder where the template will be
copied and renamed from the plugin name. For instance, the plugin package, pymodaq_plugins_optimisation will
produce a configuration file called config_optimisation.toml

 3.4. DashBoard and Control Modules

3.4. DashBoard and Control Modules

Contents:

	3.4.1. DashBoard
	3.4.1.1. Introduction

	3.4.1.2. Menu Bar Description

	3.4.1.3. Multiple hardware from one controller

	3.4.2. Control Modules
	3.4.2.1. DAQ Move
	3.4.2.1.1. Introduction

	3.4.2.1.2. Hardware initialization

	3.4.2.1.3. Positioning

	3.4.2.1.4. Advanced positioning

	3.4.2.1.5. Settings
	3.4.2.1.5.1. Main Settings

	3.4.2.1.5.2. Multiaxes controller

	3.4.2.1.5.3. Bounds

	3.4.2.1.5.4. Scaling

	3.4.2.1.5.5. Other settings

	3.4.2.1.6. Grabing the actuator’s value

	3.4.2.2. DAQ Viewer
	3.4.2.2.1. Introduction

	3.4.2.2.2. Settings
	3.4.2.2.2.1. Toolbar

	3.4.2.2.2.2. Hardware initialization

	3.4.2.2.2.3. Main settings

	3.4.2.2.3. Data Viewers

	3.4.2.2.4. Other utilities

	3.4.2.2.5. Saving data
	3.4.2.2.5.1. Snapshots

	3.4.2.2.5.2. Continuous Saving

 3.4.1. DashBoard

3.4.1. DashBoard

This module is the heart of PyMoDAQ, it will:

	Help you declare the list of actuators and detectors to be used for a given experiment (Preset manager)

	Setup automatic data acquisition of detectors as a function of one or more actuators using its DAQ_Scan extension

	Log data into advanced binary file or distant database using its DAQ_Logger extension

The flow of this module is as follow:

	At startup you have to define/load/modify a preset (see Preset manager) representing an ensemble of actuators and detectors

	Define/load/modify eventual overshoots (see Overshoot manager)

	Define/load/modify eventual ROI (Region of interests) selections (see ROI manager)

	Use the actuators and detectors manually to drive your experiment

	Select an action to perform: automated scan (DAQ_Scan) and/or log data (DAQ_Logger)

3.4.1.1. Introduction

This module has one main window,
the dashboard (Fig. 3.6) where a log and all declared actuators and detectors
will be loaded as instances of DAQ_Move and DAQ_Viewer.
The dashboard gives you full control for manual adjustments
of each actuator, checking their impact on live data from the detectors. Once all is set, one can move on to
different actions.

[image: dashboard]

Fig. 3.6 Dashboard user interface containing all declared control modules (actuators/detectors) and some initialization info.

3.4.1.2. Menu Bar Description

Figure Fig. 3.7 displays the menu of the Dashboard window with access to all the Managers useful
within PyMoDAQ and described below:

[image: dashboard_menu]

Fig. 3.7 Dashboard menu bar.

The file menu will allow you to quickly display, in a default text editor, the current log file (older logs can be found
in the pymodaq_local folder, see Configuration. The user can also access and edit the general
configuration file config.toml selecting the Show configuration file entry that will open a popup window (see
Fig. Fig. 3.8) allowing the user to modify all its fields. Finally, the user can Quit the application
or Restart it if changes have to be applied (for instance when modifying a Preset)

[image: config_file]

Fig. 3.8 Configuration popup window.

The Settings menu is allowing the user to save/load layouts of docked windows within the Dashboard.

Note

Docked Windows Layout: when a Preset has been loaded and if the arrangement of the Control Modules (their docked panels) is
modified, then a layout configuration file whose name derive from the loaded preset filename will be created.
At each later loading of this preset, the Control Modules arrangement will then be restored.

The Preset Modes menu enables to create or modify (using the Preset manager) presets that are XML
files defining a set of actuators and detectors used for a given experiment. Each experiment has therefore a corresponding
preset file. At startup, the program checks for existing preset files and create a menu entry for each of them.

The Overshoot Modes menu is used to configure actions like stoping the acquisition orseting hte value of a given
actuator when a detected value (from a running detector module) gets
out of range with respect to some predefined bounds. For details, see Overshoot manager.

The ROI Modes menu, see ROI manager, is used to save the state of all regions of interest defined by a user
within the 1D or 2D viewers declared in the DAQ_Viewers control modules in the Dashboard. You can then, in one go,
recall a particular complex configuration for data acquisition.

The Remote/Shortcuts Control menu, see Remote Manager, is used to define key sequences on a keyboard or buttons/joysticks on a gamepad to
trigger specific actions from the Control modules, for instance jogging of the actuator values using a joystick or grabing
data from a detector using a button.

The Extensions menu let the user load a specific installed extensions. Default ones are the DAQ_Scan and
DAQ_Logger ones. More specific ones can be installed, for instance the package Pymodaq Femto [https://pymodaq-femto.readthedocs.io/en/latest/]

3.4.1.3. Multiple hardware from one controller

Sometimes one hardware controller can drive multiple actuators and sometimes detectors (for instance a XY translation stage). For
this particular case the controller should not be initialized multiple times. One should identify one actuator
referred to as Master and the other ones will be referred to as Slave. They will share the same controller
address represented in the settings tree by the Controller ID entry. These settings will be activated
within the plugin script where one can define a unique identifier for each actuator (U or V for the conex
in Fig. 3.12). This feature can be enabled for both DAQ_Move and DAQ_Viewer modules but will be
most often encountered with actuators, so see for more details: Multiaxes controller. This has to be done using the Preset Manager

 3.4.2. Control Modules

3.4.2. Control Modules

DAQ_Move and DAQ_Viewer can be used as stand alone user
interface to manually control hardware. DAQ_Viewer can be used like this to monitor and/or log data from a specific
detector. However, the main use is through the DashBoard module and its extensions (such as the DAQ Scan
that will be used to perform automatic data acquisition)

Contents:

	3.4.2.1. DAQ Move
	3.4.2.1.1. Introduction

	3.4.2.1.2. Hardware initialization

	3.4.2.1.3. Positioning

	3.4.2.1.4. Advanced positioning

	3.4.2.1.5. Settings
	3.4.2.1.5.1. Main Settings

	3.4.2.1.5.2. Multiaxes controller

	3.4.2.1.5.3. Bounds

	3.4.2.1.5.4. Scaling

	3.4.2.1.5.5. Other settings

	3.4.2.1.6. Grabing the actuator’s value

	3.4.2.2. DAQ Viewer
	3.4.2.2.1. Introduction

	3.4.2.2.2. Settings
	3.4.2.2.2.1. Toolbar

	3.4.2.2.2.2. Hardware initialization

	3.4.2.2.2.3. Main settings

	3.4.2.2.3. Data Viewers

	3.4.2.2.4. Other utilities

	3.4.2.2.5. Saving data
	3.4.2.2.5.1. Snapshots

	3.4.2.2.5.2. Continuous Saving

 3.4.2.1. DAQ Move

3.4.2.1. DAQ Move

This module is to be used to control any Actuator hardware. An Actuator is, in a general sense, any parameter
that one can control and may vary during an experiment. The default actuator
is a Mock one (a kind of software based
actuator displaying a position and accepting absolute or relative positioning).

3.4.2.1.1. Introduction

This module has a generic interface in the form of a dockable panel containing the interface for initialization,
the manual control of the actuator position and a side tree like interface displaying all the settings.
Fig. 3.9 shows the minimal interface of the module (in order to take minimal place in the
Dashboard)

[image: daq_move_gui_base]

Fig. 3.9 Minimal DAQ_Move user interface

3.4.2.1.2. Hardware initialization

	Actuator: list of available instrument plugins of the DAQ_Move type, see Fig. 3.10.

	[image: init]: Initialize the hardware with the given settings (see Instrument Plugins for details
on how to set hardware settings.)

	[image: quit]: De-initialize the hardware and quit the module

[image: daq_move_gui_base]

Fig. 3.10 Menu list displaying the available instrument plugin of type DAQ_Move

3.4.2.1.3. Positioning

Once the hardware is initialized, the actuator’s value is displayed on the Current value display
(bottom of Fig. 3.9) while the absolute value can be set using one of the top spinbox
(respectively green or red) and apply it using respectively the [image: green_arrow] or [image: red_arrow] button. This double
positioning allows to quickly define two values and switch between them.

3.4.2.1.4. Advanced positioning

More options can be displayed in order to precisely control the actuator by pressing the [image: plus_button] button.
The user interface will then look like Fig. 3.11.

[image: daq_move_gui_rel]

Fig. 3.11 DAQ_Move user interface with finer controls

The two new displayed spinbox relate to Absolute positioning and Relative one.

	[image: home]: the actuator will try to reach a home position (known position or physical switch limit)

	[image: abs]: the actuator will try to reach the set absolute position

	[image: move_rel]: the actuator will try to reach a relative position (+increment)

	[image: move_rel_m]: the actuator will try to reach a relative position (-increment)

	[image: where]: will update the current actuator’s value display

	[image: stop]: stop the current motion (if possible)

3.4.2.1.5. Settings

The hardware and module settings can be displayed by pressing the [image: settings] button.
The user interface will then look like Fig. 3.12.

[image: daq_move_gui_settings]

Fig. 3.12 Full DAQ_Move user interface with controls and settings

In the settings tree, there is two sections. The first relates to the Main settings of the actuator while
the second relates to the hardware settings (the ones the hardware will need in order
to initialize…). There is also specific settings explained below.

(not much there for
the moment apart for the selected stage type and Controller ID that is related to multi-axes controller.

3.4.2.1.5.1. Main Settings

	Actuator type: is recalling the instrument plugin class being selected

	Actuator name: is the name as defined in the preset (otherwise it is defaulted to test)

	Controller ID: is related to multi-axes controller (see Multiaxes controller)

	Refresh value: is the timer duration when grabbing the actuator’s current value (see Grabing the actuator’s value).

3.4.2.1.5.2. Multiaxes controller

Sometimes one hardware controller can drive multiple actuators (for instance a XY translation stage). In the
simplest use case, one should just initialize the instrument plugin and select (in the settings) which axis to
use, see Fig. 3.13.

[image: daq_move_gui_settings]

Fig. 3.13 Selection of one of the axis this controller is able to drive.

Then the selected axis can be driven normally and you can switch at any time to another one.

It is more complex when you want to drive two or more of these multi-axes during a scan. Indeed, each one should be
considered in the Dashboard as one actuator. But if no particular care is taken, the Dashboard will try to initialize
the controller multiple times, but only one communication channel exists, for instance a COM port. The solution
in PyMoDAQ is to identify one actuator (one axis) as Master and the other ones will be referred to as Slave.
They will share the same controller
address (and actual driver, wrapper, …) represented in the settings tree by the Controller ID entry.
These settings will be activated
within the instrument plugin class where one can define a unique identifier for each actuator
(U or V for the conex
in Fig. 3.12).

	Controller ID: unique identifier of the controller driving the stage

	is Multiaxes: boolean

	Status: Master or Slave

	Axis: identifier defined in the plugin script

These settings are
really valid only when the module is used within the Dashboard framework that deals with multiple modules
at the same time as configured in the Preset manager interface.

3.4.2.1.5.3. Bounds

if this section is activated (by clicking the Set Bounds entry) then the actuator positions will
be software limited between min and max. This can be used to prevent the actuator to reach dangerous
values for the experiment or anything else.

3.4.2.1.5.4. Scaling

If this section is activated (by clicking the Use scaling entry) then the set and displayed positions
will be scaled as:

new_position=scaling*old_position+offset

This can be useful for instance when one deals with translation stage used to delay a laser pulse with
respect to another. In that case it is easier to work with temporal units such as femtoseconds compared
to mm or other native controller unit.

3.4.2.1.5.5. Other settings

	epsilon: -very important feature- the actuator will try to reach the target position with a precision
epsilon. So one could use it if one want to be sure the actuator really reached a given position before moving on.
However if the set precision is too small, the actuator may never reached it and will issue a timeout

	Timeout: maximum amout of time the module will wait for the actuator to reach the desired position.

3.4.2.1.6. Grabing the actuator’s value

 3.4.2.2. DAQ Viewer

3.4.2.2. DAQ Viewer

This module is to be used to interface any detector. It will display hardware settings
and display data as exported by the hardware plugins (see Emission of data). The default detector
is a Mock one (a kind of software based
detector generating data and useful to test the program development). Other detectors may be loaded as
plugins, see Instrument Plugins.

3.4.2.2.1. Introduction

This module has a generic interface comprised of a dockable panel related to the settings and one or more data
viewer panels specific of the type of data to be acquired (see Plotting Data). For instance, Fig. 3.14 displays a typical
DAQ_Viewer GUI with a settings dockable panel (left) and a 2D viewer on the right panel.

[image: Viewer panel]

Fig. 3.14 Typical DAQ_Viewer GUI with a dockable panel for settings (left) and a 2D data viewer on the right panel. Red,
green and purple rectangles highlight respectively the toolbar, the initialization and hardware settings.

3.4.2.2.2. Settings

The settings panel is comprised of 3 sections, the top one (red rectangle) displays a toolbar with buttons to grab/snap
data, save them, open other settings sections and quit the application. Two types of settings can be
shown/hidden: for hardware choice/initialization (green rectangle) and advanced settings to control the hardware/software
(purple rectangle).

3.4.2.2.2.1. Toolbar

[image: Viewer panel]

Fig. 3.15 DAQ_Viewer toolbar

The toolbar, Fig. 3.15 allows data acquisition and other actions as described below:

	[image: grab]: Start a continuous grab of data. Detector must be initialized.

	[image: snap]: Start a single grab (snap). Strongly advised for the first time data is acquired after initialization.

	[image: save]: Save current data

	[image: snap&save]: Do a new snap and then save the data

	[image: open]: Load data previously saved with the save button

	[image: showsettings]: Display or hide initialization and background settings

	[image: showsettings]: Display or hide hardware/software advanced settings

	[image: quit]: quit the application

	[image: log]: open the log in a text editor

	[image: green_led]: LED reflecting the data grabbed status (green when data has been taken)

3.4.2.2.2.2. Hardware initialization

[image: Viewer panel]

Fig. 3.16 Hardware choice, initialization and background management

The second section, Fig. 3.16 allows the choice of the instrument plugin of type detector
selection. They are subdivided by dimensionality of the data they are generating (DAQ2D for cameras, DAQ1D for waveforms,
timeseries… and DAQ0D for detectors generating scalars such as powermeter, voltmeter…). Once selected, the
[image: ini_det] button will start the initialization using eventual advanced settings. If the initialization is fine,
the corresponding LED will turn green and you’ll be able to snap data or take background:

	[image: take_bkg]: do a specific snap where the data will be internally saved as a background (and saved in a hdf5 file if
you save data)

	[image: do_bkg]: use the background previously snapped to correct the displayed (only displayed, saved data are still
raw data) data.

The last section of the settings (purple rectangle) is a ParameterTree allowing advanced control of the UI and of the
hardware.

3.4.2.2.2.3. Main settings

Main settings refers to settings common to all instrument plugin. They are mostly related to the UI control.

[image: settings]

Fig. 3.17 Typical DAQ_Viewer Main settings.

	DAQ type: readonly string recalling the DAQ type used

	Detector type: readonly string recalling the selected plugin

	Detector Name: readonly string recalling the given name of the detector (from the preset)

	Controller ID: integer used to deal with a controller controlling multiple hardware, see Multiple hardware from one controller

	Show data and process: boolean for plotting (or not data in the data viewer)

	Refresh time: integer used to slow down the refreshing of the display (but not of the eventual saving…)

	Naverage: integer to set in order to do data averaging, see Hardware averaging.

	Show averaging: in the case of software averaging (see Hardware averaging), if this is set to True,
intermediate averaging data will be displayed

	Live averaging: show averaging must be set to False. If set to True, a live grab will perform
non-stop averaging (current averaging value will be displayed just below). Could be used to check how much one
should average, then set Naverage to this value

	Wait time (ms): Extra waiting time before sending data to viewer, can be used to cadence DAQ_Scan execution, or data logging

	Continuous saving: useful for data logging. Will display new options below in order to set a h5 file to log live data, see Continuous Saving.

	Overshoot options: useful to protect the experiment. If this is activated, then as soon as any value of the datas exported by this
detector reaches the overshoot value, the module will throw a overshoot_signal (boolean PyQtSignal). The overshoot manager of the
Dashboard generalize this feature (see Overshoot manager) by triggering actions on actuators if overshoot signals are detected.
Other features related will soon be added (action triggered on a DAQ_Move, for instance a shutter on a laser beam)

	Axis options: only valid for 2D detector. You can add labels, units, scaling and offset (with respect to pixels)
to both x and y axis of the detector. Redundant with the plugin data export feature (see Emission of data)

3.4.2.2.3. Data Viewers

Data Viewers presented in section Plotting Data are the one used to display data from detectors controlled from
the DAQ_Viewer. By default, one viewer will be set with its type (0D, 1D, 2D, ND) depending on the detector main
dimensionality (DAQ_type: DAQ0D, DAQ1D, DAQ2D…) but in fact the data viewers are set depending on the data exported
from the detector plugin using the data_grabed_signal or data_grabed_signal_temp signals.

These two signals emit a
list of DataFromPlugins objects. The length of this list will set the number of dedicated data viewers. In
general one, but think about data from a Lockin amplifier generating an amplitude in volt and a phase in degrees.
They are unrelated physical values better displayed in separated axes or viewers. The DataFromPlugins’s attribute
dim (a string either equal to Data0D, Data1D, Data2D, DataND) will determine the data viewer type to set.

This code in a plugin

self.data_grabed_signal.emit([
 DataFromPlugins(name='Mock1', data=data1, dim='Data0D'),
 DataFromPlugins(name='Mock2', data=data2, dim='Data2D')])

will trigger two separated viewers displaying respectively 0D data and 2D data.

3.4.2.2.4. Other utilities

There are other functionalities that can be triggered in specific conditions. Among those, you’ll find:

	The LCD screen to display 0D Data

	The ROI_select button and ROI on a Viewer2D

3.4.2.2.5. Saving data

Data saved from the DAQ_Viewer are data objects has described in What is PyMoDAQ’s Data? and their saving mechanism
use one of the objects defined in Module Savers. There are three possibilities to save data within the
DAQ_Viewer.

	The first one is a direct one using the snapshots buttons to save current or new data from the
detector, it uses a DetectorSaver object to do so. The private method triggering the saving is _save_data.

	The second one is the continuous saving mode. It uses a DetectorEnlargeableSaver object to continuously
save data within enlargeable arrays. Methods related to this are: append_data and _init_continuous_save

	The third one is not used directly from the DAQ_Viewer but triggered by extensions such as the DAQ_Scan.
Data are indexed within an already defined array using a DetectorExtendedSaver. Methods related to this are:
insert_data and some code in the DAQ_Scan, see below.

for det in self.modules_manager.detectors:
 det.module_and_data_saver = module_saving.DetectorExtendedSaver(det, self.scan_shape)
self.module_and_data_saver.h5saver = self.h5saver # will update its h5saver and all submodules's h5saver

3.4.2.2.5.1. Snapshots

Datas saved directly from a DAQ_Viewer (for instance the one on Fig. 3.22) will be recorded in
a h5file whose structure will be represented
like Fig. 3.55 using PyMoDAQ’s h5 browser.

3.4.2.2.5.2. Continuous Saving

When the continuous saving parameter is set, new parameters are appearing on the DAQ_Viewer panel
(see Fig. 3.18). This is in fact the settings associated with the H5Saver object used under the hood,
see H5Saver.

	Base path: indicates where the data will be saved. If it doesn’t exist the module will try to create it

	Base name: indicates the base name from which the save file will derive

	Current Path: readonly, complete path of the saved file

	Do Save: Initialize the file and logging can start. A new file is created if clicked again.

	Compression options: data can be compressed before saving, using one of the proposed library and the given value of compression [0-9], see pytables documentation.

[image: continuous]

Fig. 3.18 Continuous Saving options

The saved file will follow this general structure:

D:\Data\2018\20181220\Data_20181220_16_58_48.h5

With a base path (D:\Data in this case) followed by a subfolder year, a subfolder day and a filename
formed from a base name followed by the date of the day and the time at which you started to log data.
Fig. 3.19 displays the tree structure of such a file, with two nodes (prefixed as
enlargeable, EnlData) and a navigation axis corresponding to the timestamps at the time of each snapshot taken
once the continuous saving has been activated (ticking the Do Save checkbox)

[image: continuous]

Fig. 3.19 Continuous Saving options

 3.5. Extensions

3.5. Extensions

The DashBoard module can load extensions to perform dedicated tasks, such as automated data acquisition.

Contents:

	3.5.1. DAQ Scan
	1. Introduction

	2. Main Control Window

	3. Scan Flow
	3.1. Selecting detectors and actuators

	3.2. Selecting the type of scan

	3.3. Selecting the data to render live

	4. Various settings
	4.1. Toolbar

	4.2. Menu Bar Description

	4.3. Settings
	4.3.1. General Settings

	4.3.2. Saving: Dataset and scans

	5. Scanner
	5.1. Scan1D

	5.2. Scan2D

	5.3. Sequential

	5.4. Tabular
	5.4.1. Tabular Linear/Manual case

	5.4.2. Tabular Linear/Polylines case

	5.4.3. Tabular Adaptive case

	5.5. Adaptive
	5.5.1. Bounds

	5.5.2. Feedback

	5.5.3. Loss

	6. Navigator

	7. Scan Batch Manager

	3.5.1. DAQ Logger
	3.5.1.1. Introduction

	3.5.1.2. Main Control Window

	3.5.1.3. H5 saving

	3.5.1.4. SQL Database saving

	3.5.2. PID Module
	3.5.2.1. Introduction
	3.5.2.1.1. First example: a boiler

	3.5.2.1.2. The PID Model

	3.5.2.2. Demonstration with a virtual beam steering system
	3.5.2.2.1. Preset configuration

	3.5.2.2.2. PID module

	3.5.2.2.3. PID configuration

	3.5.2.2.4. Automatic control of the setpoints

	3.5.2.3. How to write my own PID application?
	3.5.2.3.1. Package structure for a PID application

	3.5.2.3.2. Detector/actuator plugins

	3.5.2.3.3. How to write a PID model?

	3.5.2.4. PID module internals
	3.5.2.4.1. Files locations

	3.5.2.4.2. Packages

	3.5.2.4.3. General structure of the module

	3.5.2.4.4. The PID loop

	3.5.3. Bayesian Optimisation
	3.5.3.1. Introduction
	3.5.3.1.1. Gaussian Processes:

	3.5.3.1.2. Acquisition function:

	3.5.3.2. Usage
	3.5.3.2.1. Toolbar:

	3.5.3.2.2. Settings

	3.5.3.2.3. Observable and Probed Data

	3.5.3.2.4. Models

	3.5.4. H5Browser
	3.5.4.1. Exploring data

	3.5.4.2. Associating H5Browser with .h5 files

	3.5.5. Console

 3.5.1. DAQ Scan

DAQ Scan

This module is an extension of the DashBoard but is the heart of PyMoDAQ, it will:

	setup automatic data acquisition of detectors as a function of one or more actuators

	save datas in hierarchical hdf5 binary files (compatible with the H5Browser used to display/explore
data)

The flow of this module is as follow:

	at startup you have to define/load a preset (see Preset manager) in the Dashboard

	Select DAQ_Scan in the actions menu

	A dataset will be declared the first time you set a scan. A dataset is equivalent to a single saved file
containing multiple scans. One can see a dataset as a series of scans related to single subject/sample to be characterized.

	Metadata can be saved for each dataset and then for each scan and be later retrieved from the saved file
(see Module Savers and H5Browser)

	Performs multiple scans exploring all the parameters needed for your experiment

Contents:

	1. Introduction

	2. Main Control Window

	3. Scan Flow
	3.1. Selecting detectors and actuators

	3.2. Selecting the type of scan

	3.3. Selecting the data to render live

	4. Various settings
	4.1. Toolbar

	4.2. Menu Bar Description

	4.3. Settings
	4.3.1. General Settings

	4.3.2. Saving: Dataset and scans

	5. Scanner
	5.1. Scan1D

	5.2. Scan2D

	5.3. Sequential

	5.4. Tabular
	5.4.1. Tabular Linear/Manual case

	5.4.2. Tabular Linear/Polylines case

	5.4.3. Tabular Adaptive case

	5.5. Adaptive
	5.5.1. Bounds

	5.5.2. Feedback

	5.5.3. Loss

	6. Navigator

	7. Scan Batch Manager

 1. Introduction

1. Introduction

The dashboard gives you full control for manual adjustments (using the UI)
of each actuator, checking their impact on live data from the detectors. Once all is set, one can move to
an automated scan using the main control window of the DAQ_Scan, see Fig. 2.3.

2. Main Control Window

The main control window is comprised of various panels to set all parameters and
display live data taken during a scan.

[image: daq_scan_main]

Fig. 2.3 Main DAQ_Scan user interface.

	The instrument selection panel allows to quickly select the detectors and the actuators to use for the next scan

	The settings panel is divided in three sections (see Settings for more details):

	Scanner settings: select and set the next scan type and values.

	General settings: options on timing, scan averaging and plotting.

	Save settings: everything about what should be saved, how and where.

	The Live plots selection panel allows to select which data produced from selected detectors should be rendered live

	The Live Plots panels renders the data as a function of varying parameters as selected in the Live plots selection
panel

3. Scan Flow

Performing a scan is typically done by:

	Selecting which detectors to save data from

	Selecting which actuators will be the scan varying parameters

	Selecting the type of scan (see Selecting the type of scan): 1D, 2D, … and subtypes

	For a given type and subtype, settings the start, stop, … of the selected actuators

	Selecting data to be rendered live (none by default)

	Starting the scan

3.1. Selecting detectors and actuators

The Instrument selection panel is the user interface of the module manager (see Module Manager for details).
It allows the user to select the actuators and detectors for the next scan (see Fig. 3.20). This interface
is also used for the DAQ_Logger extension.

[image: list_modules]

Fig. 3.20 List of declared modules from a preset

3.2. Selecting the type of scan

All specifics of the upcoming scan are configured using the scanner_paragrah module interface as seen on
Fig. 3.21 in the case of a spiral Scan2D scan configuration.

[image: scanner_fig]

Fig. 3.21 The Scanner user interface set on a Scan2D scan type and an adaptive scan subtype and its particular settings.

3.3. Selecting the data to render live

For a data acquisition system to be efficient, live data must be plotted in order to follow the
experiment behaviour and check if something is going wrong or successfully without the need to perform a
full data analysis. For this PyMoDAQ live data display will allows the user to select data to be plotted from
the selected detectors.

The list of all possible data to be plotted can be obtained by clicking on the [image: get_data] button. All data will
be classified by dimensionality (0D, 1D). The total dimensionality of the data + the scan dimensions
(1 for scan1D and 2 for Scan2D…) should not exceed 2 (this means one cannot plot more complex plots than 2D intensity
plots). It also means that you should use ROI to generate lower dimensionality data from your raw data for a proper
live plot.

For instance, if the chosen detector is a 1D one, see Fig. 3.22. Such a detector can generate various
type of live data.

[image: 1Ddetector]

Fig. 3.22 An example of a 1D detector having 2 channels. 0D data are generated as well from the integration of channel CH0
within the regions of interest (ROI_00 and ROI_01).

It will export the raw 1D data and the 1D lineouts and integrated 0D data from the declared ROI as shown
on Fig. 3.23

[image: 1Ddetector_data]

Fig. 3.23 An example of all data generated from a 1D detector having 2 channels. 0D data and 1D data are generated
as well from the
integration of channel CH0 within the regions of interest (ROI_00 and ROI_01).

Given these constraints, one live plot panel will be created by selected data to be rendered with some
specificities. One of these is that by default, all 0D data will be grouped on a single viewer panel,
as shown on Fig. 2.3 (this can be changed using the General Settings)

The viewer type will be chosen (Viewer1D or 2D) given the dimensionality of the data to be ploted and the number
of selected actuators.

	if the scan is 1D:

	exported 0D datas will be displayed on a Viewer1D panel as a line as a function of the actuator
position, see Fig. 2.3.

	exported 1D datas will be displayed on a Viewer2D panel as color levels as a function of the
actuator position, see Fig. 3.24.

[image: scan1D_1D]

Fig. 3.24 An example of a detector exporting 1D live data plotted as a function of the actuator position. Channel
CH0 is plotted in red while channel CH1 is plotted in green.

	if the scan is 2D:

	exported 0D datas will be displayed on a Viewer2D panel as a pixel map where each pixel coordinates
represents a scan coordinate. The color and intensity of the pixels refer to channels and data
values, see Fig. 3.25 for a linear 2D scan.

[image: scan2D_0D]

Fig. 3.25 An example of a detector exporting 0D live data plotted as a function of the 2 actuators’s
position. Integrated regions of channel CH0 are plotted in red and green.

So at maximum, 2D dimensionality can be represented. In order to see live data from 2D detectors, one
should therefore export lineouts from ROIs or integrate data. All these operations are extremely simple
to perform using the ROI features of the data viewers (see Plotting Data)

4. Various settings

4.1. Toolbar

The toolbar is comprised of buttons to start and stop a scan as well as quit the application. Some other functionalities
can also be triggered with other buttons as described below:

	[image: quit]: will shut down all modules and quit the application (redundant with: File/Quit menu)

	Init. Positions: will move all selected actuators to their initial positions as defined by the currently set scan.

	[image: start]: will start the currently set scan (first it will set it then start it)

	[image: stop]: stop the currently running scan (in case of a batch of scans, it will skips the current one).

	[image: goto]: when checked, allows currently actuators to be moved by double clicking on a position in the live plots

	[image: log]: opens the logs in a text editor

4.2. Menu Bar Description

There are two entries in the menu bar: File and Settings

The File entry will let you:

	load a previously saved scan file (and keep saving scans on it)

	Save the current file in another filename than the default one

	Load the content of the current file into the H5Browser

The Settings entry will let you:

	display the Navigator see Navigator

	Display and activate the Scan Batch Manager

4.3. Settings

The settings tree as shown on Fig. 2.3 is actually divided in a few subtrees that contain everything
needed to define a given scan, save data and plot live information.

4.3.1. General Settings

The General Settings are comprised of:

	Time Flow

	Wait time step: extra time the application wait before moving on to the next scan step. Enable
rough timing if needed

	Wait time between: extra time the application wait before starting a detector’s grab after the actuators
reached their final value.

	timeout: raise a timeout if one of the scan step (moving or detecting) is taking a longer time than timeout to respond

	Scan options :

	N average: Select how many scans to average. Save all individual scans.

	Scan options :
* Get Data probe selected detectors to get info on the data they are generating (including processed data from ROI)
* Group 0D data: Will group all generated 0D data to be plotted on the same viewer panel (work only for 0D data)
* Plot 0D shows the list of data that are 0D
* Plot 1D shows the list of data that are 1D
* Prepare Viewers generates viewer panels depending on the selected data to be live ploted
* Plot at each step

	if checked, update the live plots at each step in the scan

	if not, display a Refresh plots integer parameter, say T. Will update the live plots every T milliseconds

	Save Settings: See h5saver_settings

4.3.2. Saving: Dataset and scans

DAQ_Scan module will save your data in datasets. Each dataset is a unique h5 file and may contain multiple scans. The
idea behind this is to have a unique file for a set of related data (the dataset) together with all the meta information:
logger data, module parameters (settings, ROI…) even png screenshots of the various panels.

Fig. 4.1 displays the content of a typical dataset file containing various scans and how each data
and metadata is used by the H5Browser to display the info to the user.

[image: h5 browser]

Fig. 4.1 h5 browser and arrows to explain how each data or metadata is being displayed

The Save Settings (see Fig. 4.2) is the user interface of the H5Saver, it is a general
interface to parametrize data saving in the hdf5 file:

[image: list_modules]

Fig. 4.2 Save settings for the DAQ_Scan extension

In order to save correctly your datas, saving modules are to be used, see Module Savers.

 5. Scanner

5. Scanner

The Scanner module is an object dealing with configuration of scan modes and is mainly used by the DAQ_Scan extension.
It features a graphical interface, see Fig. 5.2, allowing the configuration of the scan type and all its
particular settings. The Scan type sets the type of scan, Scan1D for a scan as a function of only one actuator,
Scan2D for a scan as a function of two actuators, Sequential for scans as a function of 1, 2…N actuators and
Tabular for a list of points coordinates in any number of actuator phase space. All specific features of these scan
types are described below:

5.1. Scan1D

The possible settings are visible on Fig. 5.1 and described below:

	scan subtype: either Linear (usual uniform 1D scan), Back to start (the actuator comes back to the initial position
after each linear step, for a referenced measurement for instance), Random same as Linear except the
predetermined positions are sampled randomly and from version 2.0.1 Adaptive that features no predetermined
positions. These will be determined by an algorithm influenced by the signal returned from a detector on the
previously sampled positions (see Adaptive)

	Start: Initial position of the selected actuator (in selected actuator controller unit)

	Stop: Last position of the scan (in selected actuator controller unit)

	Step: Step size of the step (in selected actuator controller unit)

For the special case of the Adaptive mode, one more feature is available: the Loss type*. It modifies the algorithm
behaviour (see Adaptive)

[image: scanner_fig]

Fig. 5.1 The Scanner user interface set on a Scan1D scan type and the visible list of scan subtype.

5.2. Scan2D

The possible settings are visible on Fig. 5.2 and described below:

[image: scanner_fig]

Fig. 5.2 The Scanner user interface set on a Scan2D scan type and a Spiral scan subtype and its particular settings.

	Scan subtype: See Fig. 5.3 either linear (scan line by line), linear back and forth (scan line by line
but in reverse direction each 2 lines), spiral (start from the center and scan as a spiral), Random (random
sampling of the linear case) and Adaptive (see Adaptive)

	Start, Stop, Step: for each axes (each actuators)

	Rmax, Rstep, Npts/axis: in case of spiral scan only. Rmax is the maximum radius of the spiral (calculated),
and Npts/axis is the number of points for both axis (total number of points is therefore Npts/axis²).

	Selection: see Scan Selector

[image: scannersubtypes_fig]

Fig. 5.3 The main Scan2D subtypes: Linear, Back and Forth and Spiral.

5.3. Sequential

The possible settings are visible on Fig. 5.4 and described below:

	Scan subtype: only linear this means the scan have a sequence of Scan1D of the last specified actuator
(on Fig. 5.4, it is Xaxis) for all positions of the last but end actuator (here Yaxis) and so on. So on
Fig. 5.4 there will be 11 steps for Xaxis times 11 steps for Yaxis times 10 steps for Theta axis
so in total 11x11x10=1210 total steps for this 3 dimensions scan.

Note

If only 1 actuator is selected, then the Sequential scan is identical to the Scan1D scan but where only the linear
subtype is available. If 2 actuators are selected, then the Sequential scan is identical to the Scan2D scan but
where only the linear subtype is available.

[image: scanner_fig]

Fig. 5.4 The Scanner user interface set on a Sequential scan type with a sequence of three actuators

5.4. Tabular

The tabular scan type consists of a list of positions (for each selected actuators).

5.4.1. Tabular Linear/Manual case

In the Linear/Manual case, the module will
move actuators on each positions and grab datas. On Fig. 5.5, a list of 79 positions has been set.
By right clicking on the table, a context manager pops up and gives the possibility to:

	add one more position in the list

	remove the selected position

	clear all the positions

	load positions from a text file (as many columns as selected actuators with their positions separated by a tab)

	save the current list of positions in a text file (for later quick loading of positions)

One can also drag and drop elements of the list at a different index in the list.

[image: scanner_fig]

Fig. 5.5 The Scanner user interface set on a Tabular scan type with a list of points for 2 actuators. A context menu with
other options is also visible (right click on the table to show it)

5.4.2. Tabular Linear/Polylines case

In the particular case of 2 selected actuators, it could be more interesting to draw the positions for the tabular scan.
One possibility is to draw segments on a 2D viewer (see Fig. 5.6) and positions will be points along
these segments (it will be a kind of 1D cuts within a 2D phase space). A new setting, Curvilinear step appears. The
positions will be points starting from the start of the first segment and then step along them by the value of this setting.
That gives, for Fig. 5.6, 40 points defined along the segments.

[image: scan_selector]

Fig. 5.6 An example of 1D complex sections selected within a 2D area

5.4.3. Tabular Adaptive case

Valid for 1 or 2 selected actuators. The tabular adaptive case will be similar to scan1D adaptive mode, except that one
adaptive Scan1D will be done for each segments defined by the list of positions in the table. For instance,
Fig. 5.7 shows a list of 4 positions defining 4 segments in a 2D space. The adaptive scan will
be done on/along these 4 segments. Positions can be set manually or from a Polylines selection as seen on Fig. 5.6.

[image: scanner_fig]

Fig. 5.7 The Scanner user interface set on a Tabular scan type with a list of points for 2 actuators. A context menu with
other options is also visible (right click on the table to show it)

5.5. Adaptive

All the adaptive features are using the python-adaptive [https://adaptive.readthedocs.io/en/latest/] package (Parallel active learning of
mathematical functions, 10.5281/zenodo.1182437). And the reader is invited to explore their tutorials to discover how
these algorithms work. In PyMoDAQ the learner1D [https://adaptive.readthedocs.io/en/latest/tutorial/tutorial.Learner1D.html] algorithm is used for the Scan1D and Tabular scan types while the
learner2D [https://adaptive.readthedocs.io/en/latest/tutorial/tutorial.Learner2D.html] one is used for Scan2D scan type.

5.5.1. Bounds

As a general rule, the adaptive algorithm will need bounds to work with. For Scan1D scan type, these will be defined
from the start and stop settings. For Tabular, it is the start and ends of the segments. Finally for Scan2D, it
is the: Start Ax 1, Stop Ax 1 and Start Ax 2, Stop Ax 2 that are defining scan bounds.

5.5.2. Feedback

The adaptive algorithm will need for each probed positions a feedback value telling it the fitness of the probed points.
From these on all previous points, it will determine the best next points to probe. In order to provide such a feedback,
on has to choose a signal among all available from the DashBoard detectors. It has to be a Scalar so originate from a 0D
detector or integrated ROI from 1D or 2D detectors. The module manager user interface (right most setting tree in the
DAQ_Scan module ,see Fig. 3.72) will let you probe available datas exported from currently selected
detectors. You can then pick the Data0D one you want to use as the Adaptive feedback. For instance, on Fig. 3.72,
three Data0D are available, one from a 0D detector (CH000) and 2 from the Measurements ROIs of a 1D detector. In that case the
CH000 data has been selected and will therefore be use as feedback for the Adaptive algorithm.

5.5.3. Loss

All the Adaptive options are called Loss on the Scanner UI. These influence the adaptive algorithm, using previously
probed positions and their feedback to guess the next point to probe. See the Adaptive documentation [https://adaptive.readthedocs.io/en/latest/tutorial/tutorial.custom_loss.html] on loss
to understand all the possibilities.

 6. Navigator

6. Navigator

From version 1.4.0, a new module has been added: the Navigator (daq_utils.plotting.navigator). It is most useful when
dealing with 2D scans such as XY
cartography. As such, it is not displayed by default. It consists of a tree like structure displaying all
currently saved 2D scans (in the current dataset) and a viewer where selected scans can be displayed at their respective
locations. It can be displayed using the Settings menu, Show Navigator option. Fig. 6.1 shows the DAQ_scan extension
with activated Navigator and a few scans. This navigator can also be used as a Scan Selector viewer to
quickly explore and select areas to scan on a 2D phase space.

[image: navigator]

Fig. 6.1 An example of dataset displaying several 2D scans at their respective locations (up and right axis)

 7. Scan Batch Manager

7. Scan Batch Manager

If the Scan Batch Manager is activated, a new menu entry will appear: Batch Configs, that let the user
define, modify or load scan batch configurations. When loaded, a particular configuration will
be displayed in the batch window. This window (see Fig. 7.1) displays (in a tree) a list of scans to perform.
Each scan is defined by a set of actuators/detectors to use and scan settings (Scan1D, Linear… just as described in
Settings).

[image: scanbatch]

Fig. 7.1 An example of a Scan Batch configuration displaying several scans to perform

A new start button [image: startbatch] will also appear on the main window to start the currently loaded
scan batch.

 3.5.1. DAQ Logger

3.5.1. DAQ Logger

This module is an extension of the dashboard, it will:

	ask you where to log data from all selected detectors

	save log datas in hierarchical binary files (compatible with the H5Browser)

The flow of this module is as follow:

	at startup you have to define/load a preset (see Preset manager) in the Dashboard

	Select DAQ_Logger in the actions menu

	Select the destination of the logged data: binary hdf5 file or SQL database

3.5.1.1. Introduction

In construction

3.5.1.2. Main Control Window

In construction

3.5.1.3. H5 saving

In construction

3.5.1.4. SQL Database saving

In construction

 3.5.2. PID Module

3.5.2. PID Module

Note

For now this module is not compatible with PyMoDAQ 4. Please use the PyMoDAQ 3.6.8 version, as mentioned latter in this documentation. We are currently working on to update the PID extension.

3.5.2.1. Introduction

This documentation is complementary to the video on the module :

https://www.youtube.com/watch?v=u8ifY4WqQEA

The PID module is useful if you would like to control a parameter of a physical system (a temperature, the length of an interferometer, the beam pointing of a laser…). In order to achieve this, you need a set of detectors to read the current state of the system, an interpretation of this reading, and a set of actuators to perform the correction.

Note

Notice that the speed of the corrections that can be achieved with this module are inherently limited below 100 Hz, because the feedback system uses a computer. If you need a faster correction, you should probably consider an analogic solution.

3.5.2.1.1. First example: a boiler

Let consider this physical system. Some water is put in a jar, let say we want to keep the temperature of the water to 40°C, this is our setpoint. The system is composed of a heating element (an actuator), and a thermometer (a detector).

[image: boiler scheme]

Fig. 3.26 The boiler system.

The control of the heater and the thermometer is a prerequisite to achieve the control of the temperature, but we also need a logic. For example:

	if T - T_setpoint < 5°C then heater is ON

	if T - T_setpoint > 5°C then heater is OFF

With this logic, when the hot water will have dissipated enough energy in its environment to reach 35°C, the heater will be switch on to heat it up to 45°C and then switch off. The temperature of the water will then be oscillating approximatelly around 40°C.

The difference between the setpoint and the current value of the control parameter, here T - T_setpoint, is called the error signal.

3.5.2.1.2. The PID Model

Depending on the system you want to control, there will be a different number of actuators or detectors, and a different logic. For example, if you want to control the pointing of a laser on a camera, you will need a motorized optical mount to hold a mirror with two actuators that control the tip and tilt axes, what we call a beam steering system. The way you calculate your error signal will be different: you will need a way to define the center of the laser beam on the camera, like the barycenter of the illuminated pixels, and the error signal will be a 2D vector, one for the vertical and one for the horizontal direction.

[image: beam steering scheme]
Fig. 3.27 The beam steering scheme.

Another exemple consists it propagating a continuous laser in the two arms of an interferometer to produce an interference pattern. The phase of the fringes depending on the difference in the arms’ lengths, it is possible to retrieve an error signal from this interference pattern to lock the interferometer, or even to sweep its length while it is locked.

[image: ../_images/interferometer_scheme.png]

Fig. 3.28 The interferometer scheme.

The PID Model is a configuration of the PID module which depends on the physical system we want to control. It contains:

	the number and the dimensionality of the required detectors

	the number of actuators

	the number of setpoints

	the logic to calculate the error signal from the detectors’ signals

A PID model is associated to each different physical system we want to control.

3.5.2.2. Demonstration with a virtual beam steering system

Lucky you, you do not need a real system to test the PID module! A computer and an internet connection are enough. For our demonstration, we will install some mock plugins that simulate a beam steering system.

Let us start from scratch, we follow the installation procedure of PyMoDAQ that you can find in the installation page: https://pymodaq.cnrs.fr/en/latest/usage/Installation.html

We suppose that you have Miniconda3 or Anaconda3 installed.

In a console, first create a dedicated environment and activate it

conda create -n mock_beam_steering python=3.8

conda activate mock_beam_steering

Install PyMoDAQ with the version that have been tested while writing this documentation

pip install pymodaq==3.6.8

and the Qt5 backend

pip install pyqt5

We also need to install (from source) another package that contains all the mock plugins to test the PID module. This step is optional if you wish to use the PID module with real actuators and detectors.

pip install git+https://github.com/PyMoDAQ/pymodaq_plugins_pid.git

3.5.2.2.1. Preset configuration

Launch a dashboard

dashboard

Note

If at this step you get an error from the console, try to update to a newest version of the package “tables”, for instance pip install tables==3.7 and try again to launch a dashboard.

In the main menu go to

Preset Modes > New Preset

Let us choose a name, for example preset_mock_beam_steering.

Under the Moves section add two actuators by selecting BeamSteering in the menu, and configure them as follow. The controller ID parameter could be different from the picture in your case. Let this number unchanged for the first actuator, but it is important that all the two actuators and the detector have the same controller ID number. It is also important that the controller status of the first actuator be Master, and that the status of the second actuator and the detector be Slave. (This configuration is specific to the demonstration. Underneath the actuators and the detector share a same virtual controller to mimic a real beam steering system, but you do not need to understand that for now!)

[image: ../_images/preset_actuators_config.png]

Fig. 3.29 The mock actuators configuration.

Now, add a 2D detector by selecting DAQ2D/BeamSteering in the menu, and configure it as follow

[image: ../_images/preset_camera.png]

Fig. 3.30 The mock camera configuration.

and click SAVE.

Back to the dashboard menu

Preset Modes > Load preset > preset_mock_beam_steering

Your dashboard should look like this once you have grabbed the camera and unwrapped the option menus of the actuators.

[image: ../_images/dashboard_preset_loaded.png]

Fig. 3.31 The dashboard after loading the preset.

If you now try a relative move with Xpiezo or Ypiezo, you will see that the position of the laser spot on your virtual camera is moving horizontally or vertically, as if you were playing with a motorized optical mount.

Our mock system is now fully configured, we are ready for the PID module!

3.5.2.2.2. PID module

The loading of the PID module is done through the dashboard menu

Extensions > PID Module

It will popup a new window, in Model class select PIDModelBeamSteering and (1) initialize the model.

Configure it as follow:

	camera refresh time (in the dashboard) = 200 ms

	PID controls/sample time = 200 ms

	PID controls/refresh plot time = 200 ms

	threshold = 2

Then (2) intialize the PID and (3) start the PID loop with the PLAY button. Notice that at this stage the corrections are calculated, but the piezo motors are not moving. It is only when you will (4) untick the PAUSE button that the corrections will be applied.

[image: ../_images/pid_kp_change_v2.png]

Fig. 3.32 The PID module interface.

3.5.2.2.3. PID configuration

Output limits

The output limits are here mainly to prevent the feedback system to send crazy high corrections and move our beam out of the chip.

If we put them too low, the feedback system will only send tiny corrections, and it will take a long time to correct an error, or if we change the setpoint.

If we increase them, then our system will be able to move much faster.

The units of the output limits are the same as the piezo motors, let say in microns. Put an output limit to +500 means “If at any time the PID outputs a correction superior to 500 microns, then only correct 500 microns.”

The output limits are not here to slow down the correction, if we want to do that we can decrease the proportional parameter (see next section). They are here to define what we consider as a crazy correction.

To define them we can pause the PID loop and play manually with the piezo actuators. We can see that if we do a 10000 step, we almost get out of the chip of the camera, thus an output limit of 1000 seems reasonable.

If we do a big change of setpoint and see that every step of the piezo corresponds to the output limit we configured, then it means the corrections are saturated by the output limits.

Configuring the PID parameters

The proportional, integral, derivative parameters of the PID filter, respectively Kp, Ki and Kd, will dictate the behavior of the feedback system.

Stay at a fixed position while the correction loop is closed, and start with Kp = 1, Ki = 0, Kd = 0. Then change the setpoint to go close to an edge of the camera. We see that the system is doing what it is supposed to do: the beam goes to the setpoint… but veeeeeeeeeeeeery slowly. This is not necessarily bad. If your application does only need to keep the beam at a definite position (e.g. if you inject an optical fiber), this can be a good configuration. If we take a look at the PID input display, which is just the measured position of the beam on the chip in pixel, we can see that reducing Kp will decrease the fluctuations of the beam around the target position. Thus a low Kp can increase the stability of your pointing.

Let say now that we intend to move regularly the setpoint. We need a more reactive system. Let us increase progressively the value of Kp until we see that the beam start to oscillate strongly around the target position (this should happen for Kp close to 200 - 300). We call this value of Kp the ultimate gain. Some heuristic method says that dividing the ultimate gain by 2 is a reasonable value for Kp. So let us take Kp = 100.

We will not go further in this documentation about how to configure a PID filter. For lots of applications, having just Kp is enough. If you want to go further you can start with this Wikipedia page: https://en.wikipedia.org/wiki/PID_controller.

3.5.2.2.4. Automatic control of the setpoints

Let us imagine now that we want to use this beam to characterize a sample, and that we need a long acquisition time at each position of the beam on the sample to perform our measurement. Up to now our feedback system allows to keep a stable position on the sample, which is nice. But it would be even better to be able to scan the surface of the sample automatically rather than moving the setpoints manually. That is the purpose of this section!

In order to do that, we will create virtual actuators on the dashboard that will control the setpoints of the PID module. Then, PyMoDAQ will see them as standard actuators, which means that we will be able to use any of the other modules, and in particular, perform any scan that can be configured with the DAQ_Scan module.

Preset configuration

Start with a fresh dashboard, we have to change a bit the configuration of our preset to configure this functionality. Go to

Preset Modes > Modify preset

and select the one that we defined previously. You just need to tick Use PID as actuator and save it.

[image: ../_images/preset_pid_as_actuator.png]

Fig. 3.33 Configuration of the preset for automatic control of the setpoints.

Moving the setpoints from the dashboard

Load this new preset. Notice that it now automatically loaded the PID module, and that our dashboard got two more actuators of type PID named Xaxis and Yaxis. If you change manually the position of those actuators, you should see that they control the setpoints of the PID module.

[image: ../_images/setpoints_as_actuators_v2.png]

Fig. 3.34 Virtual actuators on the dashboard control the setpoints of the PID module.

Moving the setpoints with the DAQ Scan module

Those virtual actuators can be manipulated as normal actuators, and you can ask PyMoDAQ to perform a scan of those guys! Go to

Extensions > Do scans

[image: ../_images/scan_configuration_v8.png]

Fig. 3.35 Configuration of a scan with the DAQ_Scan module.

Some popup windows will ask you to name your scan. This is not important here. Configure the scan as follow

	Select Camera, Xaxis, Yaxis (maintain Ctrl command to select several actuators)

	Click Probe detector’s data

	Click Test actuators and select a position at the center of the camera

	Define a 2D scan as follow. Notice that Ax1 (associated to the Xaxis) corresponds to the main loop of the scan: its value is changed, then all the values of Ax2 are scanned, then the value of Ax1 is changed, and so on…

	Set scan

	Start and look at the camera

The beam should follow automatically the scan that we have defined. Of course in this demonstration with a virtual system, this sounds quite artificial, but if you need to perform stabilized scans with long acquisition times, this feature can be very useful!

[image: ../_images/scan_on_camera.png]

Fig. 3.36 Movement of the beam on the camera with a scan of the setpoints.

3.5.2.3. How to write my own PID application?

3.5.2.3.1. Package structure for a PID application

To write your own PID application, you should create a package with a similar structure as a standard
pymodaq_plugins_xxx package. There are few modifications. Let us have a look at the pymodaq_plugins_pid.

Notice there is a models folder next to the hardware folder, at the root of the package.
This folder will contains the PID models.

[image: ../_images/pid_package_structure.png]

Fig. 3.37 Structure of a package containing PID models.

Then python will be able to probe into those as they have been configured as entry points during installation of the package. You should check that those lines are present in the setup.py file of your package.

[image: ../_images/pid_package_setup.svg]
Fig. 3.38 Declaration of entry points in the setup.py file.

This declaration allows PyMoDAQ to find the installed models when executing the PID module. Internally, it will call the get_models method that is defined in the daq_utils.

[image: ../_images/pid_get_models_method.png]

Fig. 3.39 The get_models method in the daq_utils.

In order to use the PID module for our specific physical system, we need:

	A set of detector and actuator plugins that is needed to stabilize our system.

	A PID model to implement the logic that is needed to translate the detectors’ signals into a correction.

3.5.2.3.2. Detector/actuator plugins

In the beam steering example, this corresponds to one actuator plugin (if you use the same motor model for horizontal and vertical axis), and a camera plugin.

The first thing to do is to check the list of readily available plugins [https://github.com/CEMES-CNRS/pymodaq_plugin_manager/blob/main/doc/PluginList.md].

The easy scenario is that you found that the plugins for your hardware are already developped. You then just have to test if they properly move or make an acquisition with the DAQ Move [https://pymodaq.cnrs.fr/en/latest/usage/modules/DAQ_Move.html] and DAQ Viewer [https://pymodaq.cnrs.fr/en/latest/usage/modules/DAQ_Viewer.html] modules. That’s it!

If there is no plugin developped for the hardware you want to use, you will have to develop your own. Don’t panic, that’s quite simple! Everything is explained in the Plugins [https://pymodaq.cnrs.fr/en/latest/usage/modules/Plugins.html] section of the documentation, and in this video [https://www.youtube.com/watch?v=9O6pqz89UT8]. Moreover, you can find a lot of examples for any kind of plugins in the list given above and in the GitHub repository of PyMoDAQ [https://github.com/orgs/PyMoDAQ/repositories?type=all]. If at some point, you stick on a problem, do not hesite to raise an issue in the GitHub repository or address your question to the mailing list pymodaq@services.cnrs.fr.

Note

It is not necessary that the plugins you use are declared in the same package as your model. Actually a model is in principle independent of the hardware. If you use plugins that are declared in other packages, you just need them to be installed in your python environment.

3.5.2.3.3. How to write a PID model?

Naming convention

Similarly to plugins [https://pymodaq.cnrs.fr/en/latest/usage/modules/Plugins.html#naming-convention], there exist naming conventions that you should follow, so that PyMoDAQ will be able to parse correctly and find the classes and the files that are involved.

	The name of the file declaring the PID model should be named PIDModelXxxx.py

	The class declared in the file should be named PIDModelXxxx

Number of setpoints and naming of the control modules

The number of setpoints, their names, and the naming of the control modules are declared at the begining of the class declaration. It is important that those names are reported in the preset file associated to the model. We understand now that those names are actually set in the PID model class.

[image: ../_images/pid_model_configuration.png]

Fig. 3.40 Configuration of a PID model.

The required methods of a PID model class

There are two required methods in a PID model class:

	convert_input that will translate the acquisitions of the detectors into an understandable input for the PID filter (which is defined in an external package).

	convert_output that will translate the output of the PID filter(s) into an understandable order for the actuators.

[image: ../_images/pid_model_methods.png]

Fig. 3.41 The important methods of a PID model class.

In this example of the PIDModelBeamSteering, the convert_input method get the acquisition of the camera, remove the threshold value defined by the user through the UI (this is to remove the background noise), calculate the center of mass of the image, and send the coordinates as input to the PID filter.

Note

The PID filter is aware of the setpoints values, thus you just have to send him absolute values for the positioning of the system. He will calculate the difference himself.

As for the convert_output method, it only transferts the output of the PID filter directly as relative orders to the actuators.

Note

The output of the PID filter is a correction that is relative to the current values of the actuators.

That’s it!

Note

In this example, there is actually no other methods defined in the model, but you can imagine more complex systems where, for example, the translation from the detectors acquisitions to the input to the filter would need a calibration scan. Then you will probably need to define other methods. But, whatever it is, all the logic that is specific to your system should be defined in this class.

If you want to go deeper, the next section is for you!

3.5.2.4. PID module internals

This section is intended for the advanced user that intend to develop its custom application based on the PID module, or the one that is simply curious about the PID module internals. We will try to introduce here the main structure of the module, hoping that it will help to graps the code more easily :)

3.5.2.4.1. Files locations

The files regarding the PID module are stored in the /src/pymodaq/pid/ folder which contains:

	utils.py which defines some utility classes, and in particular the PIDModelGeneric class from which all PID models inherit.

	daq_move_PID.py which defines a virtual actuator that control the setpoint of the PID module. This is useful for example if the user wants to scan the control parameter while it is locked.

	pid_controller.py. It is the core file of the module that defines the DAQ_PID and the PIDRunner classes that will be presented below.

3.5.2.4.2. Packages

	PyMoDAQ/pymodaq_plugins_pid This package contains some mock plugins and models to test the module without hardware. It is for development purposes and thus optional.

	PyMoDAQ/pymodaq_pid_models This package stores the PID models that have already been developped. Better to have a look before developping its own!

3.5.2.4.3. General structure of the module

[image: ../_images/PID_StructureOverview.svg]
Fig. 3.42 The structure of the PID module.

The DAQ_PID class is the main central class of the module. It manages the initialization of the program: settings of the user interface, loading of the PID model, instanciation of the PIDRunner class… It also makes a bridge between the user, who acts through the UI, and the PIDRunner class, which is the one that is in direct relation with the detectors and the actuators.

Since each of those classes is embbeded in a thread, the communication between them is done through the command_pid_signal and the queue_command method.

The PIDRunner class is created and configured by the DAQ_PID at the initialization of the PID loop. It is in charge of synchronizing the instruments to perform the PID loop.

A PIDModel class is defined for each physical system the user wants to control. Here are defined the actuator/detector modules involved, the number of setpoints, and the methods to convert the information received from the detectors as orders to the actuators to perform the desired control.

3.5.2.4.4. The PID loop

The conductor of the PID loop is the PIDRunner, in particular the start_PID method. The workflow for each iteration of the loop can be mapped as in the following figure.

[image: ../_images/PIDLoop.svg]
Fig. 3.43 An iteration of the PID loop.

The starting of the PID loop is triggered by the user through the PLAY button.

The PIDRunner will ask the detector(s) to start an acquisition. When all are done, the wait_for_det_done method will send the data (det_done_datas) to the PIDModel class.

A PIDModel class should be defined for each specific physical system the user wants to control. Here are defined how much detectors/actuators are involved, and how the information sent by the detector(s) should be converted as orders to the actuators (output_to_actuators) to reach the targeted position (the setpoint). The PIDModel class is thus an iterface between the PID class and the detectors/actuators. The important methods of those classes are convert_input, which will convert the detectors data to an input for the PID object, and the convert_output method which will translate the output of the PID object to the actuators.

The PID class is defined in an external package (simple_pid: https://github.com/m-lundberg/simple-pid). It implements a pid filter. The tunnings (Kp, Ki, Kd) and the setpoint are configured by the user through the user interface. From the input, which corresponds to the current position of the system measured by the detectors, it will return an output that corresponds to the order to send to the actuators to stabilize the system around the setpoint (given that the configuration has been done correctly). Notice that the input for the PID object should be an absolute value, and not a relative value from the setpoint. The setpoint is entered as a parameter of the object so it can make the difference itself.

 3.5.3. Bayesian Optimisation

3.5.3. Bayesian Optimisation

First of all, this work is heavily supported by the work of Fernando Nogueira through its python package:
bayesian-optimization [https://github.com/bayesian-optimization/BayesianOptimization] and the underlying use
of Gaussian Process regression from scikit-learn [https://scikit-learn.org/stable/modules/gaussian_process.html].

3.5.3.1. Introduction

You’ll find below, a very short introduction, for a more detailed one, you can also read
this article [https://medium.com/@okanyenigun/step-by-step-guide-to-bayesian-optimization-a-python-based-approach-3558985c6818]
from Okan Yenigun from which this introduction is derived.

Bayesian optimization is a technique used for the global optimization (finding an optimum) of black-box functions. Black box
functions are mathematical functions whose internal details are unknown. However given a set of input parameters,
one can evaluate the possibly noisy output of the function. In the PyMoDAQ ecosystem, such a black box would
often be the physical system of study and the physical observation we want to optimize given a certain number
of parameters. Two approaches are possible: do a grid search or random search using the DAQ_Scan extension that can
prove inefficient (you can miss the right points) and very lengthy in time or
do a more intelligent phase space search by building a probabilistic surrogate model of our black box by using the
history of tested parameters.

3.5.3.1.1. Gaussian Processes:

The surrogate model we use here is called Gaussian Process, GP. A Gaussian process defines a distribution
of functions potentially fitting the data. This finite set of function values follows a multivariate Gaussian
distribution. In the context of Bayesian optimization, a GP is used to model the unknown objective function,
and it provides a posterior distribution over the function values given the observed data.

[image: Gaussian Process]

Fig. 3.44 Illustration of Gaussian process regression in one dimension. Gaussian processes are specified by an
estimation function and the uncertainty function evolving constantly as more and more points are being tested.
Source [https://www.researchgate.net/publication/327613136_Bayesian_optimization_for_likelihood-free_cosmological_inference]

From this distribution, a mean value (µ) and standard deviation (std) of the function distribution is computed. These are then used
to model our black box system. To go one step beyond, the algorithm should predict which parameters should be probed
next to optimize the mean and std. For this we’ll construct a simple function based on the probability output of the GP:
the acquisition function.

Note

GPs are themselves based on various kernels (or covariance matrix or function generator). Which kernel to use
may depend on your particular problem, even if the standard ones (as provided in PyMoDAQ) should just work fine.
If you want to know more on this just browse this thesis [https://www.cs.toronto.edu/~duvenaud/thesis.pdf].

3.5.3.1.2. Acquisition function:

Choosing which point to probe next is the essential step in optimizing our black box. It should quantify the utility of the
next point either to directly optimize our problem or to increase the fitness of the model. Should it favor the
exploration of the input parameters phase space? Should it perform exploitation of the known points to find the optimum?

All acquisition function will allow one or the other of these, or propose an hyperparameter to change the behaviour
during the process of optimisation. Among the possibilities, you’ll find:

	The Expected Improvement function (EI)

	The Upper Confidence Bound function (UCB)

	The Probability of Improvement function (PI)

	…

You can find details and implementation of each in here [https://medium.com/@okanyenigun/step-by-step-guide-to-bayesian-optimization-a-python-based-approach-3558985c6818].
PyMoDAQ uses by default the Upper Confidence Bound function together with its kappa hyperparameter,
see Settings and here [http://bayesian-optimization.github.io/BayesianOptimization/exploitation_vs_exploration.html].

Note

You can find a notebook illustrating the whole optimisation process on PyMoDAQ’s Github:
here [https://github.com/PyMoDAQ/notebooks/blob/main/notebooks/gaussian_process.ipynb], where you can
define your black box function (that in general you don’t know) and play with kernels and utility functions.

3.5.3.2. Usage

Fig. 3.45 shows the GUI of the Bayesian Optimisation extension. It consists of three panels:

	Settings (left): allow configuration of the model, the search bounds, the acquisition function, selection of which
detector and actuators will participate to the optimisation.

	Observable (middle): here will be plotted the evolution of the result of the optimisation. On the top, the best
reached target value will be plotted. On the bottom, the coordinates (value) of the input parameters that gave the
best reached target will be plotted.

	Probed Data: this is a live plotter of the history of tested input parameters and reached target

[image: GUI]

Fig. 3.45 User Interface of the Bayesian Optimization extension.

3.5.3.2.1. Toolbar:

	[image: quit]: quit the extension

	[image: ini]: Initialise the selected model

	[image: ini]: Initialise the Bayesian algorithm with given settings

	[image: run]: Run the Bayesian algorithm

	[image: goto]: Move the selected actuators to the values given by the best target reached by the algorithm

3.5.3.2.2. Settings

	Actuators and detectors

First of all, you’ll have to select the detectors and actuators that will be used by the algorithm,
see Fig. 3.46.

[image: GUI]

Fig. 3.46 Zoom on the settings of the GUI for selection of the detectors and actuators to be used in the optimization.

	Model selection

Then you have to select a model (see Fig. 3.47 and Models)
allowing the customization of the extension with respect of what is the
signal to be optimized, which particular plot should be added… . If the signal
to be optimized is just one of the 0D data generated by one of the selected detector, then the
BayesianModelDefault is enough and no model programming is needed. If not, read Models.
In the case of the BayesianModelDefault, you’ll have to select a 0D signal to be used as the target to be optimized,
see bottom of Fig. 3.47.

	Algorithm parameters

Then, you’ll have to specify the number of initial random state. This number means that before running a fit using the GPs,
the first N iteration will be made using a random choice of input parameters among the considered bounds. This allows for
a better initial exploration of the algorithm.

[image: GUI]

Fig. 3.47 Zoom on the settings of the GUI.

The value of the bounds is a crucial parameter. You have to enter the limits (min/max) for each selected actuator. The
algorithm will then optimize the signal on this specified phase space.

Then you can run the algorithm, [image: run] button, and see what happens…

Note

Some parameters of the algorithm can be changed on the fly while the algorithm is running. This is the case for:

	the bounds

	the utility function hyper parameters

3.5.3.2.3. Observable and Probed Data

Once you run the algorithm, the plots will be updated at each loop. The observable will update the current best
reached target value (fitness) and corresponding values of the actuators (input parameters). The right panel
will plot all the collected targets at their respective actuators value. In the case of a 2D optimisation, it
will look like on figure Fig. 3.48. The white crosshair shows the current tested target while
the yellow crosshair shows the best reached value.

[image: GUI]

Fig. 3.48 User Interface of the Bayesian Optimization extension during a run.

Once you stop the algorithm (pause it in fact), the [image: goto] button will be enabled allowing to move the actuators
to the best reached target values ending the work of the algorithm. If you want you can also restart it. If you press
the [image: run] button, the algorithm will begin where it stops just before. It you want to reinitialize it, then press the
[image: ini] button twice (eventually changing some parameters in between).

3.5.3.2.4. Models

In case the default model is not enough. It could be because what you want to optimize is a particular mathematical treatment
of some data, or the interplay of different data (like the ratio of two regions of interest) or whatever complex
thing you want to do.

In that case, you’ll have to create a new Bayesian model. To do so, you’ll have to:

	create a python script

	place it inside the models folder of a PyMoDAQ plugin (it could be a plugin you use with custom instruments, or you
could devote a plugin just for holding your models: PID, Optimization… In that case, no need to publish it on pypi.
Just hosting it locally (and backed up on github/gitlab) will do. You’ll find an example of such a Model in the
pymodaq_plugins_mockexamples

	create a class (your model) with a name in the form BayesianModelXXX (replace XXX by what you want). This class
should inherit a base model class either BayesianModelDefault or BayesianModelGeneric to properly work and be
recognized by the extension.

	Re-implement any method, property you need. In general it will be the convert_input one. This method receive
as a parameter a DataToExport object containing all the data acquired by all selected detectors and should return
a float: the target value to be optimized. For more details on the methods to be implemented, see The Bayesian Extension and utilities.

[image: GUI]

Fig. 3.49 Example of a custom Bayesian model.

 3.5.4. H5Browser

3.5.4. H5Browser

3.5.4.1. Exploring data

The h5 browser is an object that helps browsing of data and metadata. It asks you to select a h5 file
and then display a window such as Fig. 3.50. Depending the element of the file you are
selecting in the h5 file tree, various metadata can be displayed, such as scan settings or
module settings at the time of saving. When double clicking on data type entries in the tree, the
data viewer (type Plotting all other data that can display data dimensionality up to 4) will display the selected data
node
.

[image: h5 browser]

Fig. 3.50 h5 browser to explore saved datas

Some options are available when right clicking on a node, see Fig. 3.51.

[image: h5 browser]

Fig. 3.51 h5 browser options

	Export as: allow exporting of the data in the selected node to another known file format

	Add Comment: add a comment into the metadata of the node

	Plot Node: plot data (equivalent as double clicking)

	Plot Nodes: plot data hanging from the same channel

	Plot Node with Bkg: plot data with subtracted background (if present)

	Plot Nodes with Bkg: plot data hanging from the same channel with subtracted background (if present)

3.5.4.2. Associating H5Browser with .h5 files

By default, the H5Browser always asks the user to select a file. One can instead open a specified .h5 file directly,
using the –input optional command line argument as follows:

h5browser --input my_h5_file.h5.

One can also associate H5Browser to all .h5 file so that it directly opens a file when double clicking on it. Here is
how to do it on Windows. Let us assume that you have a conda environment named my_env, in which PyMoDAQ is installed.

In Windows, the path to your conda executable will be something like:

C:\Miniconda3\condabin\conda.bat

Now that you have written down this path, open your favorite text editing tool (e.g. notepad) and create a file
called H5Opener.bat (for instance) with the following contents:

@ECHO OFF
call C:\Miniconda3\condabin\conda.bat activate my_env
h5browser --input %1

Note

The precise path of your environment may be different from the one we wrote just above. Check
your conda installation to verify this: conda info and conda env list

After creating the file, simply right click on any .h5 file, choose Open with, Try an app on this PC, you should see a list of programs, at the bottom
you have to tick Always use this app to open .h5 files and then click Look for another app on this PC. You can browse to the location
of H5Opener.bat and you are done. Double clicking any .h5 file will now open the H5Browser directly loading the selected file.

 3.5.5. Console

3.5.5. Console

Under construction

 3.6. Data Management

3.6. Data Management

Data are at the center of the PyMoDAQ ecosystem. From their acquisition up to
their saving and plotting, you’ll be confronted with them. It is therefore of
paramount importance that data objects be well understood and be used
transparently by all of PyMoDAQ’s modules.

Contents:

	3.6.1. What is PyMoDAQ’s Data?
	3.6.1.1. DataBase

	3.6.1.2. Axis

	3.6.1.3. DataWithAxes

	3.6.1.4. Uncertainty/error bars

	3.6.1.5. DataWithAxes and signal/navigation axes

	3.6.1.6. Uniform and Spread Data

	3.6.1.7. Special DataWithAxes

	3.6.2. DataToExport

	3.6.3. Saving and loading data
	3.6.3.1. DataSaver/DataLoader
	3.6.3.1.1. AxisSaverLoader

	3.6.3.1.2. DataSaverLoader

	3.6.3.1.3. DataToExportSaver

	3.6.3.1.4. DataLoader

	3.6.3.1.5. Special DataSaver

	3.6.3.2. Module Savers

	3.6.4. Plotting Data
	3.6.4.1. Plotting scalars: Viewer0D

	3.6.4.2. Plotting vectors/waveforms: Viewer1D

	3.6.4.3. Plotting 2D data
	3.6.4.3.1. Uniform data

	3.6.4.3.2. Spread Data

	3.6.4.3.3. Toolbar

	3.6.4.4. Plotting all other data
	3.6.4.4.1. Uniform Data

	3.6.4.4.2. Spread Data

	3.6.4.5. Plotting multiple data object: ViewerDispatcher

 3.6.1. What is PyMoDAQ’s Data?

3.6.1. What is PyMoDAQ’s Data?

Data in PyMoDAQ are objects with many characteristics:

	a type: float, int, …

	a dimensionality: Data0D, Data1D, Data2D and we will discuss about DataND

	units

	axes

	actual data as numpy arrays

	uncertainty/error bars

[image: What is data?]

Fig. 3.52 What is PyMoDAQ’s data?.

Because of this variety, PyMoDAQ introduce a set of objects including metadata (for instance the time of acquisition)
and various methods and properties to manipulate those (getting name, slicing, concatenating…). The most basic object
is DataLowLevel whose all data objects will inherit. It is very basic and will only store a name as a string and a
timestamp from its time of creation.

Then one have DataBase objects that stores homogeneous data (data of same type) having the same shape as a list of numpy arrays.

Numpy is fundamental in python and it was obvious to choose that. However, instruments can acquire data having the same
type and shape but from different channels. It then makes sense to have a list of numpy arrays.

Figure Fig. 3.53 presents the different types of data objects introduced by
PyMoDAQ, which are also described below with examples on how to use them.

[image: Zoology]

Fig. 3.53 Zoology of PyMoDAQ’s data objects.

3.6.1.1. DataBase

DataBase, see Data Management, is the most basic object to store data (it should in fact not be used for real cases,
please use DataWithAxes). It takes as argument a name,
a DataSource, a DataDim, a DataDistribution, the actual data
as a list of numpy arrays (even for scalars), labels (a name for each element
in the list), eventually an origin (a string from which module it originates) and
optional named arguments.

>>> import numpy as np
>>> from pymodaq.utils.data import DataBase, DataSource, DataDim, DataDistribution
>>> data = DataBase('mydata', source=DataSource['raw'],\
distribution=DataDistribution['uniform'], data=[np.array([1,2,3]), np.array([4,5,6])],\
labels=['channel1', 'channel2'], origin="documentation's code")

When instantiated, some checks are performed:

	checking the homogeneity of the data

	the consistency of the dimensionality and the shape of the numpy arrays

	if no dimensionality is given, it is inferred from the data’s shape

Useful properties can then be used to check and manipulate the data.
For instance one can check the length of the object (number of numpy arrays in the list), the size (number of elements
in the numpy arrays), the shape (shape of the numpy arrays).

>>> data.dim
<DataDim.Data1D: 1>
>>> data.source
<DataSource.raw: 0>
>>> data.shape
(3,)
>>> data.length
2
>>> data.size
3

One can also make mathematical operations between data
objects (sum, substraction, averaging) or appending numpy arrays (of same type and shape) to the data object and
iterating over the numpy arrays with the standard for loop.

>>> for subdata in data:
 print(subdata)
 print(subdata.shape)
[1 2 3]
(3,)
[4 5 6]
(3,)

For a full description see What is PyMoDAQ’s Data?.

Of course for data that are not scalar, a very important information is the axis associated with the data (one axis
for waveforms, two for 2D data or more for hyperspectral data). PyMoDAQ therefore introduces Axis and DataWithAxes
objects.

3.6.1.2. Axis

The Axis object stores the information about the data’s axis

>>> from pymodaq.utils.data import Axis
>>> axis = Axis('myaxis', units='seconds', data=np.array([3,7,11,15]), index=0)
>>> axis
Axis: <label: myaxis> - <units: seconds> - <index: 0>

It has a name, units, actual data as a numpy array and an index referring to which dimension of Data
the axis is referring to. For example, index=0 for the vertical axis of 2D data and index=1 for the
horizontal (or inversely, it’s up to you…).

Because there is no need to store a linearly spaced array, when instantiated, the Axis object will, for linear
axis’s data replace it by None but compute an offset and a scaling factor

>>> axis.data
None
>>> axis.offset
3
>>> axis.scaling
4.0
>>> axis.size
4

Axis object has also properties and methods to manipulate the object, for instance to retrieve the
associated numpy array:

>>> axis.get_data()
array([3., 7., 11., 15.])

and mathematical methods:

>>> axis.mean()
11.0
>>> axis.find_index(11.0)
2

and a special slicer property to get subparts of the axis’s data (but as a new Axis object):

>>> axis.iaxis[2:].get_data()
array([11., 15.])

3.6.1.3. DataWithAxes

When dealing with data having axes (even 0D data can be defined as DataWithAxes),
the DataBase object is no more enough to describe the data.
PyMoDAQ therefore introduces DataWithAxes which inherits from DataBase and introduces more
metadata and functionalities.

>>> from pymodaq.utils.data import DataWithAxes
>>> data = DataWithAxes('mydata', source=DataSource['raw'], dim=DataDim['Data2D'], \
distribution=DataDistribution['uniform'], data=[np.array([[1,2,3], [4,5,6]])],\
axes=[Axis('vaxis', index=0, data=np.array([-1, 1])),
Axis('haxis', index=1, data=np.array([10, 11, 12]))])
>>> data
<DataWithAxes, mydata, (|2, 3)>
>>> data.axes
[Axis: <label: vaxis> - <units: > - <index: 0>,
 Axis: <label: haxis> - <units: > - <index: 1>]

This object has a few more methods and properties related to the presence of axes. It has in particular an
AxesManager attribute that deals with the Axis objects and the Data’s representation (|2, 3)
Here meaning the data has a signal shape of (2, 3). The notion of signal will be highlighted in the next
paragraph.

It also has a slicer property to get subdata:

>>> sub_data = data.isig[1:, 1:]
>>> sub_data.data[0]
array([5, 6])
>>> sub_data = data.isig[:, 1:]
>>> sub_data.data[0]
array([[2, 3],
 [5, 6]])

3.6.1.4. Uncertainty/error bars

The result of a measurement can be captured through averaging of several identical data. This
batch of data can be saved as a higher dimensionality data (see DAQ Scan averaging).
However the data could also be represented by the mean of this average and the standard deviation from
the mean. DataWithAxes introduces therefore this concept as another object attribute: errors.

data = DataWithAxes('mydata', source=DataSource['raw'], dim=DataDim['Data1D'],
 data=[np.array([1,2,3])],
 axes=[Axis('axis', index=0, data=np.array([-1, 0, 1])),
 errors=[np.array([0.01, 0.03, 0,1])])

The errors parameter should be either None (default) or a list of numpy arrays (list as long as there are
data numpy arrays) having the same shape as the actual data.

3.6.1.5. DataWithAxes and signal/navigation axes

Signal and Navigation is a term taken from the hyperspy package vocabulary. It is useful when dealing with
multidimensional data. Imagine data you obtained from a camera (256x1024 pixels) during a linear 1D scan of one actuator
(100 steps). The final shape of the data would be (100, 256, 1024). The first dimension corresponds to a Navigation axis
(the scan), and the rest to Signal axes (the real detector’s data). The corresponding data has a dimensionality of
DataND and a representation of (100|256,1024).

This is why DataWithAxes can be instantiated with another parameter: nav_indexes. This is a tuple
containing the index of the axes that should be considered as Navigation. For instance:

>>> data = DataWithAxes('mydata', source=DataSource['raw'], dim=DataDim['Data2D'], \
distribution=DataDistribution['uniform'], data=[np.array([[1,2,3], [4,5,6]])],\
axes=[Axis('vaxis', index=0, data=np.array([-1, 1])),
Axis('haxis', index=1, data=np.array([10, 11, 12]))],
nav_indexes = (1,))

here because I specified nav_indexes as a non-empty tuple, the dimensionality of the data is actually DataND:

>>> data.dim
<DataDim.DataND: 3>

and the representation shows the navigation/signal parts of the data

>>> data
<DataWithAxes, mydata, (3|2)>

That is completely controlled from the nav_indexes attribute and the corresponding Axis’s attribute: ìndex.

>>> data.nav_indexes = (0,)
>>> data
<DataWithAxes, mydata, (2|3)>
>>> data.sig_indexes
(1,)

>>> data.nav_indexes = (0, 1)
>>> data
<DataWithAxes, mydata, (2,3|)>
>>> data.sig_indexes
()

>>> data.nav_indexes = ()
>>> data
<DataWithAxes, mydata, (|2, 3)>
>>> data.dim
<DataDim.Data2D: 2>
>>> data.sig_indexes
(0, 1)

When using DataND another slicer property can be used:

>>> data.nav_indexes = (0, 1)
>>> sub_data = data.inav[1:, 1:]
>>> sub_data
<DataWithAxes, mydata, (2|)>
>>> sub_data.data[0]
array([5, 6])

but sub_data is a DataWithAxes so could be further sliced also along the signal dimension:

>>> data.nav_indexes = (0,)
>>> data
<DataWithAxes, mydata, (2|3)>
>>> data.inav[0]
<DataWithAxes, mydata, (|3)>
>>> data.inav[0].isig[2]
<DataWithAxes, mydata, (|1)>

3.6.1.6. Uniform and Spread Data

So far, everything we’ve said can be well understood for data taken on a uniform grid (1D, 2D or more). But
some scanning possibilities of the DAQ_Scan (Tabular) allows to scan on specifics (and possibly random) values
of the actuators. In that case the distribution is DataDistribution['spread']. Such distribution will be
differently plotted and differently saved in a h5file. It’s dimensionality will be DataND and a specific AxesManager
will be used. Let’s consider an example:

One can take images data (20x30 pixels) as a function of 2 parameters, say xaxis and yaxis non-uniformly spaced

>>> data.shape = (150, 20, 30)
>>> data.nav_indexes = (0,)

The first dimension (150) corresponds to the navigation (there are 150 non uniform data points taken)
The second and third correspond to signal data, here an image of size (20x30 pixels)
so:

	nav_indexes is (0,)

	sig_indexes is (1, 2)

>>> xaxis = Axis(name=xaxis, index=0, data=...)
>>> yaxis = Axis(name=yaxis, index=0, data=...)

both of length 150 and both referring to the first index (0) of the shape

In fact from such a data shape the number of navigation axes is unknown . In our example, they are 2. To somehow
keep track of some ordering in these navigation axes, one adds an attribute to the Axis object: the spread_order

>>> xaxis = Axis(name=xaxis, index=0, spread_order=0, data=...)
>>> yaxis = Axis(name=yaxis, index=0, spread_order=1, data=...)

This ordering will be very important for plotting of the data, see for instance below for an adaptive scan:

[image: nonregular_plot_adaptive]

Fig. 3.54 Non uniform 2D plotting of Spread DataWithAxes.

3.6.1.7. Special DataWithAxes

For explicit meaning, several classes are inheriting DataWithAxes with adhoc attributes such as:

	DataRaw: DataWithAxes with its source set to DataSource['raw']

	DataFromPlugins: explicit DataRaw to be used within Instrument plugins

	DataCalculated: DataWithAxes with its source set to DataSource['calculated']

	DataFromRoi: explicit DataCalculated to be used when processing data using ROI.

3.6.2. DataToExport

In general a given instrument (hence its PyMoDAQ’s Instrument plugin) will generate similar data (for instance several
Data1D waveforms for each channel of an oscilloscope). Such data can be completely defined using DataWithAxes as we
saw above.

However, when then plotting such data, the user can decide to use ROI to extract some meaningfull information to be
displayed in a live DAQ_Scan plot. This means that the corresponding DAQ_Viewer will produce both Data1D’s data but also
several Data0D’s ones depending on the number of used ROIs. To export (emit signals) or save (to h5), it would be much
better to have a specialized object to deal with these non-similar data. This is the role of the DataToExport
object.

DataToExport is a DataLowLevel object with an extra attribute data, that is actually a list of DataWithAxes
objects:

>>> from pymodaq.utils.data import DataToExport, DataRaw
>>> dwa0D = DataRaw('dwa0D', data=[np.array([1]), np.array([2]) , np.array([3])])
>>> dwa1D = DataRaw('dwa1D', data=[np.array([1, 2 , 3])])
>>> dte = DataToExport(name='a_lot_of_different_data', data=[dwa0D, dwa1D])
>>> dte
DataToExport: a_lot_of_different_data <len:2>

It has a length of 2 because contains 2 DataWithAxes objects (dwa). One can then easily get the data from it :

>>> dte[0]
<DataRaw, dwa0D, (|1)>

or get dwa from their dimensionality, their name, the number of axes they have …

>>> dte.get_data_from_dim('Data1D').data[0]
<DataRaw, dwa1D, (|3)>
>>> dte.get_names()
['dwa0D', 'dwa1D']
>>> dte.get_data_from_name('dwa0D')
<DataRaw, dwa0D, (|1)>

Dwa can also be appended or removed to/from a DataToExport.

For more details see Union of Data

 3.6.3. Saving and loading data

3.6.3. Saving and loading data

Datas saved using PyMoDAQ, either the DAQ_Scan or the DAQ_Viewer modules or others, use a binary format
known as hdf5. This format was originally developed to save big volume of datas from large instruments.
Its structure is hierarchical (a bit as folder trees) and one can add metadata to all entries in the tree.
For instance, the data type, shape but also some more complex info such as all the settings related to a
module or an instrument plugin. This gives a unique file containing both data and metadata.

Python wrappers around the HDF5 library (hdf5 backends) are available, such as h5py or pytables
(default one used by PyMoDAQ). For an even easier use, PyMoDAQ also has a dedicated object
allowing a transparent use of any hdf5 backend: Hdf5 backends. It also has an object used
for saving data: Low Level saving and browsing data: H5Browser.

These low level objects allow to interact with PyMoDAQ’s data and hdf5 file but because displaying and loading
correctly data need a specific layout and metadata in the hdf5 file, higher level objects should be systematically
used to save and load data. They insure that any data loaded from the hdf5 file will have a correct type:
DataWithAxes or DataToExport and that these data objects will be saved with the appropriate layout
and metadata to insure their reconstruction when loading. These objects are defined in the
pymodaq.utils.h5modules.data_saving module. Their specificity is described below but for a more detailed
description, see High Level saving/loading.

All these high level saving objects have under the hood a H5Saver object dealing with the actual saving. User
interface related to saving in PyMoDAQ all use the H5Saver ParameterTree and settings associated with to control
what/where/how to save data, see H5Saver.

3.6.3.1. DataSaver/DataLoader

Saving and loading data objects is a symmetrical action, therefore PyMoDAQ defines objects to do both. These objects
all derive from a base class allowing the manipulation of the node (DataManagement object), then the child class should define a data type and
will be responsible for saving and loading such data. Data type means here one of the three main type of
PyMoDAQ’s data system: Axis, DataWithAxes or DataToExport. These child objects are respectively:
AxisSaverLoader, DataSaverLoader and DataToExportSaver.

They all take as initial parameter a h5saver object (used to initialize a hdf5 file, see Low Level saving),
then define specific methods to save their data type. Examples:

3.6.3.1.1. AxisSaverLoader

First I create a hdf5 file using the H5Saver (here H5SaverLowLevel because I’m not in a Qt event loop)

>>> import numpy as np
>>> from pathlib import Path
>>> from pymodaq.utils.data import Axis
>>> from pymodaq.utils.h5modules.saving import H5SaverLowLevel
>>> h5saver = H5SaverLowLevel()
>>> h5saver.init_file(Path('atemporaryfile.h5'))

Then I create the Axis object and its saver/loader

>>> from pymodaq.utils.h5modules.data_saving import AxisSaverLoader
>>> axis = Axis('myaxis', units='seconds', data=np.array([3,7,11,15]), index=0)
>>> axis_saver = AxisSaverLoader(h5saver)

I save the Axis object in the /RawData node (always created using H5Saver)

>>> axis_saver.add_axis('/RawData', axis)
/RawData/Axis00 (CARRAY) 'myaxis'
 shape := (4,)
 dtype := float64

I can check the content of the file:

>>> for node in h5saver.walk_nodes('/'):
>>> print(node)
/ (GROUP) 'PyMoDAQ file'
/RawData (GROUP) 'Data from PyMoDAQ modules'
/RawData/Logger (VLARRAY) ''
/RawData/Axis00 (CARRAY) 'myaxis'

And load back from it, an Axis object identical to the initial one (but not the same one)

>>> loaded_axis = axis_saver.load_axis('/RawData/Axis00')
>>> loaded_axis
Axis: <label: myaxis> - <units: seconds> - <index: 0>
>>> loaded_axis == axis
True
>>> loaded_axis is axis
False

3.6.3.1.2. DataSaverLoader

The DataSaverLoader object will behave similarly with DataWithAxes objects, introducing the methods:

	add_data

	load_data

with a slight asymmetry between the two if one want to load background subtracted data previously saved using the
specialized BkgSaver. This guy is identical to the DataSaverLoader except it considers the DataWithAxes
to be saved as background data type.

Here I create my data and background object:

>>> from pymodaq.utils.data import DataWithAxes, DataSource, DataDim, DataDistribution
>>> data = DataWithAxes('mydata', source=DataSource['raw'], dim=DataDim['Data2D'], \
distribution=DataDistribution['uniform'], data=[np.array([[1,2,3], [4,5,6]])],\
axes=[Axis('vaxis', index=0, data=np.array([-1, 1])),
Axis('haxis', index=1, data=np.array([10, 11, 12]))])
>>> bkg = data.deepcopy()
>>> data
<DataWithAxes, mydata, (|2, 3)>
>>> bkg
<DataWithAxes, mydata, (|2, 3)>

I add a detector node in the h5file:

>>> h5saver.add_det_group('/RawData', 'Example')
/RawData/Detector000 (GROUP) 'Example'
 children := []

and save in this node the data:

>>> from pymodaq.utils.h5modules.data_saving import DataSaverLoader
>>> datasaver = DataSaverLoader(h5saver)
>>> datasaver.add_data('/RawData/Detector000', data)

and check the file content:

>>> for node in h5saver.walk_nodes('/'):
>>> print(node)
/ (GROUP) 'PyMoDAQ file'
/RawData (GROUP) 'Data from PyMoDAQ modules'
/Axis00 (CARRAY) 'myaxis'
/RawData/Logger (VLARRAY) ''
/RawData/Detector000 (GROUP) 'Example'
/RawData/Detector000/Data00 (CARRAY) 'mydata'
/RawData/Detector000/Axis00 (CARRAY) 'vaxis'
/RawData/Detector000/Axis01 (CARRAY) 'haxis'

It saved automatically the Axis objects associated with the data

>>> loaded_data = datasaver.load_data('/RawData/Detector000/Data00')
>>> loaded_data
<DataWithAxes, mydata, (|2, 3)>
>>> loaded_data == data
True
>>> loaded_data is data
False

Now about the background:

>>> from pymodaq.utils.h5modules.data_saving import BkgSaver
>>> bkgsaver = BkgSaver(h5saver)
>>> bkgsaver.add_data('/RawData/Detector000', data, save_axes=False)

no need to save the axes as they are shared between data and its background

>>> for node in h5saver.walk_nodes('/RawData/Detector000'):
>>> print(node)
/RawData/Detector000 (GROUP) 'Example'
/RawData/Detector000/Data00 (CARRAY) 'mydata'
/RawData/Detector000/Axis00 (CARRAY) 'vaxis'
/RawData/Detector000/Axis01 (CARRAY) 'haxis'
/RawData/Detector000/Bkg00 (CARRAY) 'mydata'

I now have a Bkg data type and can load data with or without bkg included:

>>> loaded_data_bkg = datasaver.load_data('/RawData/Detector000/Data00', with_bkg=True)
>>> loaded_data_bkg
<DataWithAxes, mydata, (|2, 3)>
>>> loaded_data_bkg == loaded_data
False
>>> loaded_data_bkg.data[0]
array([[0, 0, 0],
 [0, 0, 0]])
>>> loaded_data.data[0]
array([[1, 2, 3],
 [4, 5, 6]])

3.6.3.1.3. DataToExportSaver

Finally the same apply for DataToExport containing multiple DataWithAxes. Its associated
DataToExportSaver will save its data into different channel nodes themselves filtered by dimension.
The only difference here, is that it won’t be able to load the data back to a dte

Let’s say I create a DataToExport containing 0D, 1D and 2D DataWithAxes (see the tests file):

>>> dte = DataToExport(name='mybigdata', data=[data2D, data0D, data1D, data0Dbis])
>>> from pymodaq.utils.h5modules.data_saving import DataToExportSaver
>>> dte_saver = DataToExportSaver(h5saver)

>>> h5saver.add_det_group('/RawData', 'Example dte')
/RawData/Detector001 (GROUP) 'Example dte'
 children := []

>>> dte_saver.add_data('/RawData/Detector001', dte)

>>> for node in h5saver.walk_nodes('/RawData/Detector001'):
>>> print(node)
/RawData/Detector001 (GROUP) 'Example dte'
/RawData/Detector001/Data0D (GROUP) ''
/RawData/Detector001/Data1D (GROUP) ''
/RawData/Detector001/Data2D (GROUP) ''
/RawData/Detector001/Data0D/CH00 (GROUP) 'mydata0D'
/RawData/Detector001/Data0D/CH01 (GROUP) 'mydata0Dbis'
/RawData/Detector001/Data1D/CH00 (GROUP) 'mydata1D'
/RawData/Detector001/Data2D/CH00 (GROUP) 'mydata2D'
/RawData/Detector001/Data2D/CH00/Data00 (CARRAY) 'mydata2D'
/RawData/Detector001/Data2D/CH00/Data01 (CARRAY) 'mydata2D'
/RawData/Detector001/Data2D/CH00/Axis00 (CARRAY) 'myaxis0'
/RawData/Detector001/Data2D/CH00/Axis01 (CARRAY) 'myaxis1'
/RawData/Detector001/Data1D/CH00/Data00 (CARRAY) 'mydata1D'
/RawData/Detector001/Data1D/CH00/Data01 (CARRAY) 'mydata1D'
/RawData/Detector001/Data1D/CH00/Axis00 (CARRAY) 'myaxis0'
/RawData/Detector001/Data0D/CH00/Data00 (CARRAY) 'mydata0D'
/RawData/Detector001/Data0D/CH00/Data01 (CARRAY) 'mydata0D'
/RawData/Detector001/Data0D/CH01/Data00 (CARRAY) 'mydata0Dbis'
/RawData/Detector001/Data0D/CH01/Data01 (CARRAY) 'mydata0Dbis'

Here a bunch of nodes has been created to store all the data present in the dte object.

3.6.3.1.4. DataLoader

If one want to load several nodes at ones or include the navigation axes saved at the root of the nodes, one should
use the DataLoader that has methods to load one DataWithAxes (including eventual navigation axes) or a bunch of it
into a DataToExport:

	load_data -> DataWithAxes

	load_all -> DataToExport

3.6.3.1.5. Special DataSaver

Some more dedicated objects are derived from the objects above. They allow to add Extended arrays
(arrays that will be populated after creation, for instance for a scan) and Enlargeable arrays (whose final length
is not known at the moment of creation, for instance when logging or continuously saving)
see Specific data class saver/loader.

3.6.3.2. Module Savers

Data saved from the various PyMoDAQ’s modules should follow a particular layout. For instance grouped in a Detector
node for data from the DAQ_Viewer modules or a Scan node for data from the DAQ_Scan module. This node also has metadata such as the settings of the DAQ_Viewer
at the time when the data have been saved. Special layouts and special saver objects are available for each module
able to save data: DAQ Viewer, DAQ Move, DAQ Scan and DAQ Logger.
See Module savers for the related objects.

All of these objects inherit from the ModuleSaver base class that implements common methods for all savers. Specific
saver, such as the DetectorSaver then defines a GroupType:

class GroupType(BaseEnum):
 detector = 0
 actuator = 1
 data = 2
 ch = 3
 scan = 4
 external_h5 = 5
 data_dim = 6
 data_logger = 7

This correspond to a particular type of group node in the h5 file. For what we are discussing the relevant group
types are detector, actuator, scan and data_logger. For the DetectorSaver the group type is therefore:
detector. Once instanced these objects can be attributed with a given
H5Saver instance. for instance, when saving snapshots from the DAQ_Viewer, this code is called:

path = 'a/custom/path/for/a/hdf5/file.h5'

h5saver = H5Saver(save_type='detector')
h5saver.init_file(update_h5=True, custom_naming=False, addhoc_file_path=path)

self.module_and_data_saver = module_saving.DetectorSaver(self)
self.module_and_data_saver.h5saver = h5saver

Then self.module_and_data_saver will automatically create a dedicated group node in the h5 file.
Then it can call specific methods to add properly formatted data in the hdf5 file:

detector_node = self.module_and_data_saver.get_set_node(where)
self.module_and_data_saver.add_data(detector_node, data, **kwargs)

where data is a DataToExport object (containing possibly multiple DataWithAxes objects). The content of such a file
can be displayed using the H5Browser as shown on figure Fig. 3.55

[image: detector_saver_content]

Fig. 3.55 HDF5 file content containing a single DataWithAxes (with two channels) saved using the DetectorSaver object

One clearly see the layout with the Detector000 group node (with the setting metadata displayed on the right in a
ParameterTree), the grouping of data by dimensionality, both channels having the same Axis grouped in the
CH00 group node. Both channels are plotted on the right panel in a Viewer1D object.

If multiple DataWithAxes where contained in the DataToExport they would be stored within CH00 and CH01
group nodes as shown in Fig. 3.56 together with their axes and even here
with their background

[image: detector_saver_content]

Fig. 3.56 HDF5 file content containing two DataWithAxes (with one channel each) saved using the DetectorSaver object.
They are stored within CH00 and CH01 group nodes each with their axes and even here with their background.

The code used to add the background is:

self.module_and_data_saver.add_bkg(detector_node, self._bkg)

where self._bkg is a DataToExport similar to the one we saved but containing background data.

 3.6.4. Plotting Data

3.6.4. Plotting Data

Data in PyMoDAQ are featured with a lot of metadata, allowing their
proper description and enabling seamlessly saving/loading to hdf5 files.
But what about representation? Analysis? Exploration?

With Python you usually do this by writing a script and manipulate and
plot your data using your favorite backend (matplotlib, plotly, qt,
tkinter, …) However because PyMoDAQ is highly graphical you won’t need
that. PyMoDAQ is featured with various data viewers allowing you to plot
any kind of data. You’ll see below some nice examples of how to plot
your PyMoDAQ’s data using the builtin data viewers.

Note

The content of this chapter is available as a notebook [https://github.com/PyMoDAQ/notebooks/tree/main/notebooks].

To execute this notebook properly, you’ll need PyMoDAQ >=
4.0.2 (if not released yet, you can get it from github)

3.6.4.1. Plotting scalars: Viewer0D

Scalars or Data0D data are the simplest form of data. However, just
displaying numbers is somewhat lacking (in particular when one want to
compare data evolution over time, or parameter change…). This is why it
is important to keep track of the history of the scalar values. The
Viewer0D, see below, has such an history as well as tools to keep
track of the maximal reached value.

%gui qt
import numpy as np

from pymodaq.utils.plotting.data_viewers.viewer0D import Viewer0D
from pymodaq.utils.data import DataRaw

dwa = DataRaw('my_scalar', data=[np.array([10.6]), np.array([-4.6])],
 labels=['scalar1', 'scalar2'])
viewer0D = Viewer0D()

viewer0D.show_data(dwa)

[image: Showing scalars]

Fig. 3.57 Showing scalars in a Viewer0D

Well not much can be seen except for the numbers printed on the right
(shown by clicking on the dedicated button [image: image_123]). But what if I call
several times the show_data method to display evolving signal?

Note

We recall that a DataRaw is a particular case of a more
generic DataWithAxes (dwa in short) having its source set to raw

for ind in range(100):
 dwa = DataRaw('my_scalar', data=[np.sin([ind / 100 * 2*np.pi]),
 np.sin([ind / 100 * 2*np.pi + np.pi/4])],
 labels=['mysinus', 'my_dephased_sinus'])
 viewer0D.show_data(dwa)

[image: ../../_images/viewer0D_sinus.png]

Fig. 3.58 Showing an history of scalars, together with their min and max values
(dashed lines)

You immediately see the usefulness of such an history, allowing for
instance to optimize signals when tweaking a parameter especially if you
use the dashed lines, triggered by [image: Min/Max dashed lines], showing the
values of the min and max reached values.

3.6.4.2. Plotting vectors/waveforms: Viewer1D

When increasing complexity, one get one dimensional data. It has one
more important metadata, its axis. Properly defining the data object
will translate into rich plots:

from pymodaq.utils import math_utils as mutils
from pymodaq.utils.data import Axis

axis = Axis('my axis', units='my units', data=np.linspace(-10000, 10000, 100))

dwa1D = DataRaw('my_1D_data', data=[mutils.gauss1D(axis.get_data(), 3300, 2500),
 mutils.gauss1D(axis.get_data(), -4000, 1500) * 0.5],
 labels=['a gaussian', 'another gaussian'],
 axes=[axis],
 errors=[0.1* np.random.random_sample((axis.size,)) for _ in range(2)])
dwa.plot('qt')

Note

One can directly call the method plot on a data object,
PyMoDAQ will determine which data viewer to use.

[image: Showing Data1D]

Fig. 3.59 Showing Data1D

You can see the legends correspond to the data labels, while the axis
shows both the label and the units in scientific notation (notice the k
before ‘my units’ standing for kilo).

As for the buttons in the toolbar (you can try them from the notebook):

	[image: Showing Data1D]: opens the ROI (region of interest) manager, to
load, save and define ROI to apply to the data. This will create
cropped Data0D from the application of an operation on the
cropped data such as mean, sum, std… See figure below, showing
the mean value on the bottom panel. ROI can be applied to one of the
trace or to both as reflected by the legends

	[image: crosshair1D]: activate the crosshair (yellow vertical line) that can be
grabed and translated. The data at the crosshair position is printed
on the right of the toolbar.

	[image: aspect1D]: fix the horizontal/vertical aspect ratio (usefull for xy
plot see below)

	[image: dot]: as shown on the figure below, one can switch between solid
line or only dots.

	[image: xy]: when data contains two waveforms, using this button will
display them in XY mode.

	[image: overlay]: when activated, an overlay of the current data will be
depicted with a dash line.

	[image: sort]: if the axis data is not monotonous, data will be
represented as a scrambled solid line, using this button will reorder
the data by ascending values of its axis. See below and figure xx

	[image: errors]: when activated, will display errors (error bars) in the form of a area around the curve

	[image: roiselect]: extra ROI that can be used independantly of the ROI manager

[image: Showing Data1D as dots and with an activated ROI and crosshair]

Fig. 3.60 Showing Data1D as dots and with an activated ROI and crosshair

If Uncertainty/error bars are defined in the data object, the Viewer1D can easily plot them:

[image: Showing Data1D with errors]

Fig. 3.61 Showing Data1D with error bars as an area around the curves.

If the axis data is not monotonous, data will be represented as a
scrambled solid line, for instance:

axis_shuffled_array = axis.get_data()
np.random.shuffle(axis_shuffled_array)
axis_shuffled = Axis('my axis', units='my units', data=axis_shuffled_array)

dwa = DataRaw('my_1D_data', data=[mutils.gauss1D(axis_shuffled.get_data(), 3300, 2500),
 mutils.gauss1D(axis_shuffled.get_data(), -4000, 1500) * 0.5],
 labels=['a gaussian', 'another gaussian'],
 axes=[axis_shuffled])
dwa.plot('qt')

[image: Showing Data1D Spread]

Fig. 3.62 Showing Data1D Spread. The scrambled lines (left) still represents Gaussians, it is just that
the random ordering scrambled the lines. If one remove the lines by
clicking the dot only button, the Gaussians reappear (middle). They
reappear also after pressing the sort button (right).

3.6.4.3. Plotting 2D data

2D data can be either an image (pixels on a regular grid) or a
collection of scalars with XY coordinates. PyMoDAQ introduce therefore
the notion of “uniform” data for the former and “spread” data for the
later. They can however be transparently plotted on the same
Viewer2D data viewer. One will first show both cases before
discussing the Viewer2D toolbar.

3.6.4.3.1. Uniform data

Let’s generate data displaying 2D Gaussian distributions:

generating uniform 2D data
NX = 100
NY = 50
x_axis = Axis('xaxis', 'xunits', data=np.linspace(-20, 20, NX), index=1)
y_axis = Axis('yaxis', 'yunits', data=np.linspace(20, 40, NY), index=0)

data_arrays_2D = [mutils.gauss2D(x_axis.get_data(), -5, 10, y_axis.get_data(), 25, 2) +
 mutils.gauss2D(x_axis.get_data(), -5, 5, y_axis.get_data(), 35, 2) * 0.01,
 mutils.gauss2D(x_axis.get_data(), 5, 5, y_axis.get_data(), 30, 8)]
data2D = DataRaw('data2DUniform', data=data_arrays_2D, axes=[x_axis, y_axis],
 labels=['red gaussian', 'green gaussian'])
data2D.plot('qt')

[image: Showing Data2D]

Fig. 3.63 Showing uniform Data2D

The bottom and left axes correspond to the image pixels while the right
and top ones correspond to the real physical axes defined in the data
object. When several arrays are included into the data object, they will
be displayed as RGB layers. Data visibility can be set using the
red/green (blue) buttons. If only one array is used, the color will be
white.

3.6.4.3.2. Spread Data

Spread 2D data are typically what you get when doing a Spread or
Tabular 2D scan, see Scanner. By the way,
Spread or Tabular 1D scan would typically give the scrambled
plot on figure Fig. 3.62. Let’s generate and plot such 2D data

generating Npts of spread 2D data
N = 100
x_axis_array = np.random.randint(-20, 50, size=N)
y_axis_array = np.random.randint(20, 40, size=N)

x_axis = Axis('xaxis', 'xunits', data=x_axis_array, index=0, spread_order=0)
y_axis = Axis('yaxis', 'yunits', data=y_axis_array, index=0, spread_order=1)

data_list = []
for ind in range(N):
 data_list.append(mutils.gauss2D(x_axis.get_data()[ind], 10, 15,
 y_axis.get_data()[ind], 30, 5))
data_array = np.squeeze(np.array(data_list))

data2D_spread = DataRaw('data2DSpread', data=[data_array],
 axes=[x_axis, y_axis],
 distribution='spread',
 nav_indexes=(0,))
data2D_spread.plot('qt')

[image: Showing Data2D Spread]

Fig. 3.64 Showing Data2D Spread. Each point in the spread collection is a vertex in the mesh while the
color of the triangle is given by the mean of the three vertex.

If we go back to the construction of the data object, you may have
noticed the introduction of a nav_indexes parameter and a
distribution parameter. The latter is usually and by default equal
to uniform but here we have to specify that the data will be a
collection of spread points.

By construction, spread data have
navigation axes, the coordinates of the points (note that the scalar
points in our example could also be Data1D or Data2D points,
we’ll see that with the ViewerND) and specifying the distribution to
spread allows PyMoDAQ to handle this properly compared to the
uniform case.

But then, the parameter nav_indexes is used to
specify which dimension of the data array will be considered navigation,
the rest beeing signal. However in our collection, the shape of the data
is only (100,) so nav_indexes is (0,). But still, we do
have two axes: the X and Y coordinates of our points… To handle this,
the Axis object has to include a new parameter, the spread_order
specifying which axis corresponds to which coordinate but both refering
to the same navigation dimension of the data.

3.6.4.3.3. Toolbar

As for the buttons in the toolbar (you can try them from the notebook):

	[image: Viewer2D]: Show/Hide the corresponding data

	[image: autoscale]: Autoscale on the color scale (between 0 and max or between
-max and max)

	[image: histogram]: display the histogram panel, allowing manual control of the
colors and color saturation. See figure below.

	[image: roi2D]: Open the ROI manager allowing to load, save and define
rectangular of elliptical regions of interest. Each of these ROI will
produce Data1D data (lineouts by vertical and horizontal
application of a mathematical function: mean, sum… along horizontal
or vertical axis of the ROI) and Data0D by application of the
same mathematical function along both axes of the ROI.

	[image: isocurve]: shows an isocurve specified by the position of a green line
on the histogram

	[image: aspect2D]: set the aspect ratio to one

	[image: crosshair2D]: activate the crosshair (see figure below)

	[image: roi_select2D]: extra rectangular ROI that can be used independently of the
ROI manager

	[image: orientation]: flip or rotate the image

	[image: legend]: show/hide the legend (see figure below)

[image: viewer2D_saturation]

Fig. 3.65 Viewer2D with toolbar buttons activated and image saturation from the histogram.

On figure Fig. 3.65, the histogram has been activated and we rescaled
the red colorbar to saturate the red plot and make the tiny Gaussian that was hidden to
appear. We also activated the crosshair that induced the plotting of Data1D
(taken for both channel along the crosshair lines) and
Data0D (at the crosshair position and plotted on the bottom right).

3.6.4.4. Plotting all other data

All data that doesn’t fit the explanations above should be plotted using
the ViewerND. This viewer is a combination of several Viewer0D,
Viewer1D and Viewer2D allowing to plot almost any kind of data.
The figure below shows the basic look of the ViewerND. It consists
in a Navigation panel and a Signal panel, dealing with the notion of
signal/navigation, see DataND.

from pymodaq.utils.plotting.data_viewers.viewerND import ViewerND
viewerND = ViewerND()

[image: Showing ViewerND]

Fig. 3.66 An empty ViewerND

Not much yet to say about it, but let’s load some complex data and plot
it with this viewer. For the first example, we’ll get tomographic data
(3D) from the human brain. We’ll get that from the Statistical
Parametric Mapping software website hosted
here [http://www.fil.ion.ucl.ac.uk/spm].

import tempfile
from pathlib import Path
import zipfile
from urllib.request import urlretrieve
import nibabel

Create a temporary directory
with tempfile.TemporaryDirectory() as directory_name:
 directory = Path(directory_name)
 # Define URL
 url = 'http://www.fil.ion.ucl.ac.uk/spm/download/data/attention/attention.zip'

 # Retrieve the data, it takes some time
 fn, info = urlretrieve(url, directory.joinpath('attention.zip'))

 # Extract the contents into the temporary directory we created earlier
 zipfile.ZipFile(fn).extractall(path=directory)

 # Read the image
 struct = nibabel.load(directory.joinpath('attention/structural/nsM00587_0002.hdr'))

 # Get a plain NumPy array, without all the metadata
 array_3D = struct.get_fdata()

dwa3D = DataRaw('my brain', data=array_3D, nav_indexes=(2,))
dwa3D.create_missing_axes()

viewerND.show_data(dwa3D) # or just do dwa3D.plot('qt')

[image: Showing brain 3D data on a ViewerND]

Fig. 3.67 Showing brain 3D data on a ViewerND

Here you now see the image of the brain (signal part) at a certain
height (12.17, navigation part) within the skull. The signal data is
taken at the height corresponding to the crosshair vertical line within
the navigation panel. Moving it laterally will display a different brain
z-cut. The navigation 1D plot is calculated from the white ROI on the
signal panel, applying the mathematical function to it (here mean see
on top of the plot) and displaying this for all z-cut on the navigation
panel. Therefore, moving this ROI will change the printed navigation
plot. Another widget (on the left) displays information on the data: its
shape and navigation/signal dimensions. From this, one can also change
which axes are navigation (here this is axis 2 as specified when the
data object has been constructed). In the notebook, you can change this,
selecting one, two or even the three indexes and see how it’s impacting
on the ViewerND.

Some buttons in the toolbar can be used to better control the data
exploration:

	[image: Indexes selection]: opens a side window to control navigation axes

	[image: image1]: select which mathematical operator to apply to the signal
ROI in order to plot meaningfull navigation data

	[image: image2]: if activated, another signal plot will be generated
depicting not the data indexed at the position of the crosshair but
integrated over all navigation axes

Signal data dimension cannot exeed 2, meaning you can only plot signal
that are Data0D, Data1D or Data2D which make sense as only
this kind of data are produced by usual detectors. On the navigation
side however, on can have as many navigation axes as needed. Below
you’ll see some possibilities.

3.6.4.4.1. Uniform Data

Le’ts first create a 4D Data object, we’ll then see various
representations as a function of its navigation indexes

x = mutils.linspace_step(-10, 10, 0.2)
y = mutils.linspace_step(-30, 30, 1)
t = mutils.linspace_step(-100, 100, 2)
z = mutils.linspace_step(0, 50, 0.5)

data = np.zeros((len(y), len(x), len(t), len(z)))
amp = np.ones((len(y), len(x), len(t), len(z)))
for indx in range(len(x)):
 for indy in range(len(y)):
 data[indy, indx, :, :] = amp[indy, indx] * (
 mutils.gauss2D(z, 0 + indx * 1, 20,
 t, 0 + 2 * indy, 30)
 + np.random.rand(len(t), len(z)) / 5)

dwa = DataRaw('NDdata', data=data, dim='DataND', nav_indexes=(0, 1),
 axes=[Axis(data=y, index=0, label='y_axis', units='yunits'),
 Axis(data=x, index=1, label='x_axis', units='xunits'),
 Axis(data=t, index=2, label='t_axis', units='tunits'),
 Axis(data=z, index=3, label='z_axis', units='zunits')])

dwa.plot('qt')

[image: Showing 4D uniform data on a ViewerND]

Fig. 3.68 Showing 4D uniform data on a ViewerND with two navigation axes

We use here (but it’s done automatically from the metadata) two Viewer2D to plot both navigation and signal data. If
we increase the number of navigation axes, it is no more possible to use
the same approach.

dwa.nav_indexes = (0, 1, 2)
dwa.plot('qt')

[image: Showing 4D uniform data on a ViewerND]

Fig. 3.69 Showing 4D uniform data on a ViewerND with three navigation axes

In that case where there are three (it could be any number >2) navigation axes. Each axis
is plotted into a dedicated viewer together with a vertical yellow line
allowing to index (and slice) data at this position, updating accordingly
the depicted signal data

3.6.4.4.2. Spread Data

For Spread data, things are different because all navigation axes
have the same length (they are the ND-coordinates of the signal data),
they can therefore be plotted into the same Viewer1D:

N = 100

x = np.sin(np.linspace(0, 4 * np.pi, N))
y = np.sin(np.linspace(0, 4 * np.pi, N) + np.pi/6)
z = np.sin(np.linspace(0, 4 * np.pi, N) + np.pi/3)

Nsig = 200
axis = Axis('signal axis', 'signal units', data=np.linspace(-10, 10, Nsig), index=1)
data = np.zeros((N, Nsig))
for ind in range(N):
 data[ind,:] = mutils.gauss1D(axis.get_data(), 5 * np.sqrt(x[ind]**2 + y[ind]**2 + z[ind]**2) -5 , 2) + 0.2 * np.random.rand(Nsig)

dwa = DataRaw('NDdata', data=data, distribution='spread', dim='DataND', nav_indexes=(0,),
 axes=[Axis(data=x, index=0, label='x_axis', units='xunits', spread_order=0),
 Axis(data=y, index=0, label='y_axis', units='yunits', spread_order=0),
 Axis(data=z, index=0, label='z_axis', units='zunits', spread_order=0),
 axis])

dwa.plot('qt')

[image: Showing 4D spread data on a ViewerND]

Fig. 3.70 Showing 4D spread data on a ViewerND

In that case, the navigation panel is showing on the same Viewer1D
all navigation spread axes (coordinates), while the signal panel shows
the signal data at the index corresponding to the yellow line.

3.6.4.5. Plotting multiple data object: ViewerDispatcher

In PyMoDAQ, mixed data are often generated, for instance when using ROI
on 2D data, lineouts (Data1D) will be generated as well as
Data0D. A dedicated object exists to handle them: the
DataToExport or dte in short. Well if such an object exists, a
dedicated plotter should also exist, let’s see:

from pymodaq.utils.data import DataToExport

dte = DataToExport('MyDte', data=[dwa1D, dwa3D])
dte.plot('qt')

[image: Showing DataToExport on a ViewerDispatcher]

Fig. 3.71 Showing DataToExport on a ViewerDispatcher

Such an object is a ViewerDispatcher:

from pymodaq.utils.plotting.data_viewers.viewer import ViewerDispatcher

It allows to generate on the fly Docks containing a data
viewers adapted to the particular dwa is contains. Such a dispatcher is
used by the DAQ_Viewer and the DAQ_Scan to display your data!

 3.7. Useful Modules

3.7. Useful Modules

3.7.1. Introduction

Utility modules are used within each main modules of PyMoDAQ but can also be used as building
blocks for custom application. In that sense, all Plotting Data and even DAQ Viewer and
DAQ Move can be used as building blocks to control actuators and display datas in a
custom application.

3.7.2. Module Manager

The module manager is an object used to deal with:

	Selection of actuators and detectors by a user (and internal facilities to manipulate them, see the API when it will be written…)

	Synchronize acquisition from selected detectors

	Synchronize moves from selected actuators

	Probe as lists all the datas that will be exported by the selected detectors (see Fig. 3.72)

	Test Actuators positioning. Clicking on test_actuator will let you enter positions for all selected actuators that
will be displayed when reached

[image: module_manager_fig]

Fig. 3.72 The Module Manager user interface with selectable detectors and actuators, with probed data feature and actuators testing.

3.7.2.1. Scan Selector

Scans can be specified manually using the Scanner Settings (explained above). However, in the case of a scan using 2
DAQ_Move modules, it could be more convenient to select an area using a rectangular ROI within a 2D viewer. Various
such viewers can be used. For instance, the viewer of a camera (if one think of a camera in a microscope to select an
area to cartography) or even the DAQ_Scan 2D viewer. Sometimes it could also be interesting to do linear sections within
a 2D phase space (let’s say defined by the ranges of 2 DAQ_Moves). This defines complex tabular type scan within a 2D area,
difficult to set manually. Fig. 5.6 displays such sections within the DAQ_Scan viewer where a previous
2D scan has been recorded. The user just have to choose the correct selection mode in the
scanner settings, see Fig. 3.73, and select on which 2D viewer to display the ROI (From Module option).

[image: scan_selector]

Fig. 3.73 In the scanner settings, the selection entry gives the choice between Manual selection of from PolyLines
(in the case of 1D scans) or From ROI in the case of 2D scans.

3.7.2.2. Module Manager

This module is made so that selecting actuators and detectors for a given action is made easy. On top of it, there are
features to test communication and retrieve infos on exported datas (mandatory fro the adaptive scan mode) or positioning.
Internally, it also features a clean
way to synchronize detectors and actuators that should be set together within a single action (such as a scan step).

[image: list_modules]

Fig. 3.74 User interface of the module manager listing detectors and actuators that can be selected for a given action.

3.7.3. H5Saver

This module is a help to save data in a hierachical hdf5 binary file through the pytables package. Using the H5Saver
object will make sure you can explore your datas with the H5Browser. The object can be used to: punctually save one set
of data such as with the DAQ_Viewer (see daq_viewer_saving_single), save multiple acquisition such as with the DAQ_Scan
(see Saving: Dataset and scans) or save on the fly with enlargeable arrays such as the Continuous Saving mode of the DAQ_Viewer.

[image: list_modules]

Fig. 3.75 User interface of the H5Saver module

On the possible saving options, you’ll find (see Fig. 3.75):

	Save type:

	Save 2D and above: True by default, allow to save data with high dimensionality (taking a lot of memory space)

	Save raw data only: True by default, will only save data not processed from the Viewer’s ROIs.

	backend display which backend is being used: pytables or h5py

	Show file content is a button that will open the H5Browser interface to explore data in the current h5 file

	Base path: where will be saved all the data

	Base name: indicates the base name from which the actual filename will derive

	Current scan indicate the increment of the scans (valid for DAQ_Scan extension only)

	h5file: readonly, complete path of the saved file

	Do Save: Initialize the file and logging can start. A new file is created if clicked again, valid for the continuous
saving mode of the DAQ_Viewer

	New file is a button that will create a new file for subsequent saving

	Saving dynamic is a list of number types that could be used for saving. Default is float 64 bits, but if your data
are 16 bits integers, there is no use to use float, so select int16 or uint16

	Compression options: data can be compressed before saving, using one of the proposed library and the given value of compression [0-9], see pytables documentation.

3.7.4. Preset manager

The Preset manager is an object that helps to generate, modify and save preset configurations of DashBoard.
A preset is a set of actuators and detectors represented in a tree like structure, see Fig. 3.76.

[image: preset_fig]

Fig. 3.76 An example of a preset creation named preset_adaptive containing 3 DAQ_Move modules and 3 detector
modules and just about to select a fourth detector from the list of all available detector plugins.

Each added module load on the fly its settings so that one can set them to our need, for instance COM
port selection, channel activation, exposure time… Every time a preset is created, it is then loadable.
The init? boolean specifies if the Dashboard should try to initialize the hardware while loading the module in the
dashboard.

3.7.5. Overshoot manager

The Overshoot manager is used to configure safety actions (for instance the absolute positioning of one or more
actuators, such as a beam block to stop a laser beam) when a detected value (from a running detector module) gets
out of range with respect to some predefined bounds, see Fig. 3.77. It is configurable in the framework of the Dashboard module,
when actuators and detectors have been activated. A file containing its configuration will be saved (with a name derived
from the preset configuration name and will automatically be loaded with its preset if existing on disk)

[image: overshoot_fig]

Fig. 3.77 An example of an overshoot creation named overshoot_default (and corresponding xml file)
containing one listening detector and 2 actuators to be activated.

3.7.6. ROI manager

The ROI manager is used to save and load in one click all ROIs or Lineouts defined in the current detector’s viewers,
see Fig. 3.78.
The file name will be derived from the preset configuration file, so that at start up, it will automatically be loaded,
and ROIs and Lineouts will be restored.

[image: roi_manager_fig]

Fig. 3.78 An example of ROI manager modification named from the preset preset_adaptive (and corresponding xml file)
containing all ROIs and lineouts defined on the detectors’s viewers.

3.7.7. DAQ_Measurement

In construction

3.7.8. Navigator

See Navigator

3.7.9. Remote Manager

In construction

3.7.10. ChronoTimer

Fig. User Interface of the Chrono/Timer UI shows a user interface to be used for timing things. Not really
part of PyMoDAQ but well could be useful (Used it to time a roller event in my lab ;-))

[image: ../_images/chrono_timer.png]

Fig. 3.79 User Interface of the Chrono/Timer UI

 3.8. TCP/IP communication

3.8. TCP/IP communication

This section is for people who want an answer to: I have a detector or an actuator controlled on a distant computer and
cannot have it on the main computer, do you have a solution?

The answer is of course : YES

For this, you have two options:

	install PyMoDAQ to control your hardware on the distant computer

	Use a software on the distant computer that can use TCP/IP communication following the rules given below

3.8.1. With PyMoDAQ

From version 1.6.0, each actuator (DAQ_Move) or detector (DAQ_Viewer) module can be connected to their counterpart on a
distant computer. For both modules, a TCPServer plugin is available and can be initialized. It will serve as a bridge
between the main computer, running for instance a DAQ_Scan module, and the distant one running a usual DAQ_Move or DAQ_Viewer
module, see Fig. 3.80. Every parameter of the distant module will be exported on its server counterpart. Any modification
of these parameters, either on the server or on the local module, will be updated on either the local module or the server module.

[image: tcpip]

Fig. 3.80 Typical configuration with modules on distant computers communicating over a TCP/IP connection

3.8.2. On another software

The TCP_server plugin can also be used as a bridge between PyMoDAQ and another custom software (installed locally or
on a distant computer) able to initialize a TCP client and understand PyMoDAQ’s TCP/IP communications. For instance, at
CEMES, we’ve build such a bridge between Digital Micrograph running (eventually) on a distant computer and controlling
a specific Gatan camera on an electron microscope. The communication framework used by PyMoDAQ is as follow:

3.8.3. PyMoDAQ TCP/IP Communication protocol

3.8.3.1. Serializing objects

When dealing with TCP/IP one should first transforms object into bytes string (the message) and implement a mechanism
to inform the client (or the server) on the length of the message. For each message (whatever the underlying object),
the first 4 bytes are coding an integer whose value will be the length of the following message. Using this simple
rule allow to send very complex objects.

To make sure there is a robust way to handle this in PyMoDAQ, two objects have been
created, see: ref:tcp_ip_serializer, respectively the Serializer and
DeSerializer objects to convert a python
object to bytes and from bytes to an object.

They both implements specific methods applicable to a given object but also a generic one:

>>> from pymodaq.utils.tcp_ip.serializer import Serializer, DeSerializer
>>> string = 'Hello'
>>> ser = Serializer(string)
>>> print(ser.string_serialization(string))
b'\x00\x00\x00\x05Hello'

In this example, the serializer first send 4 bytes encoding the length of the Hello string: x00x00x00x05
which is the binary representation of the integer 5. Then the binary string is appended: b’Hello.

Similar methods exists for numbers, arrays, list, Axis,
DataWithAxes…

The serialization can also be simplified using the to_bytes()
method:

>>> Serializer(['Hello', 'World']).to_bytes()
b'\x00\x00\x00\x02\x00\x00\x00\x06string\x00\x00\x00\x05Hello\x00\x00\x00\x06string\x00\x00\x00\x05World'

Here the list_serialization() method has been used under the hood.

To recreate back the initial object, one should use the DeSerializer object:

>>> DeSerializer(b'\x00\x00\x00\x05Hello').string_deserialization()
Hello
>>> DeSerializer(b'\x00\x00\x00\x03<f8\x00\x00\x00\x08fffffF_@').scalar_deserialization()
125.1

As you see you have to know in advance which method to apply first. Therefore there is a recipe for each type of
objects.

3.8.3.2. Making sure messages are complete:

Message send on a tcp/ip connection can sometimes be send as chunks, it is therefore important to know what will be the
length of the message to be sent or to be received. PyMoDAQ use the following methods to make sure the message is
entirely send or entirely received:

def check_received_length(sock,length):
 l=0
 data_bytes=b''
 while l<length:
 if l<length-4096:
 data_bytes_tmp=sock.recv(4096)
 else:
 data_bytes_tmp=sock.recv(length-l)
 l+=len(data_bytes_tmp)
 data_bytes+=data_bytes_tmp
 #print(data_bytes)
 return data_bytes

def check_sended(socket, data_bytes):
 sended = 0
 while sended < len(data_bytes):
 sended += socket.send(data_bytes[sended:])

3.8.3.3. Sending and receiving commands (or message):

Serializing and letting know the length of the message is not enough to recreate the initial object. One should add
first a command/info on what to expect from the tcp/ip pipe. Depending on the value of this message the application
know what deserialization to apply.

The PyMoDAQ client/server control modules are using specific commands as strings that should be either:

	
	Client receiving messages:
	
	For all modules: Info, Infos, Info_xml, set_info

	For a detector: Send Data 0D, Send Data 1D, Send Data 2D

	For an actuator: move_abs, move_home, move_rel, check_position, stop_motion

	
	Client sending messages:
	
	For all modules: Quit, Done, Info, Infos, Info_xml

	For a detector: x_axis, y_axis

	For an actuator: position_is, move_done

The principles of communication within PyMoDAQ are summarized on figure Fig. 3.81 and as follow:

To be send, the string is converted to bytes. The length of this converted string is then computed and also
converted to bytes. The converted length is first send through the socket connection and then the converted
command is also sent.

For the message to be properly received, the client listen on the socket. The first bytes to arrive represent the
length of the message (number of bytes).

For the detail of the python utility functions used to convert, send and receive data see TCP/IP related methods.

[image: tcp_ip_communication]

Fig. 3.81 Diagram principle of PyMoDAQ message communication through a TCP/IP socket.

3.8.3.4. Sending and receiving Datas:

Sending or receiving datas is very similar to messages except that datas have a type (integer, float…) and have also a
dimensionality: 0D, 1D, … Moreover, the datas exported from plugins and viewers are almost always numpy arrays within
a list. One should therefore take all this into consideration. Below is an example of the recipe for
serializing/deserializing DataWithAxes objects:

def dwa_serialization(self, dwa: DataWithAxes) -> bytes:
 """ Convert a DataWithAxes into a bytes string

 Parameters

 dwa: DataWithAxes

 Returns

 bytes: the total bytes message to serialize the DataWithAxes

 Notes

 The bytes sequence is constructed as:

 * serialize the string type: 'DataWithAxes'
 * serialize the timestamp: float
 * serialize the name
 * serialize the source enum as a string
 * serialize the dim enum as a string
 * serialize the distribution enum as a string
 * serialize the list of numpy arrays
 * serialize the list of labels
 * serialize the origin
 * serialize the nav_index tuple as a list of int
 * serialize the list of axis
 """

and obviously the deserialization process is symmetric:

def dwa_deserialization(self) -> DataWithAxes:
 """Convert bytes into a DataWithAxes object

 Convert the first bytes into a DataWithAxes reading first information about the underlying data

 Returns

 DataWithAxes: the decoded DataWithAxes
 """
 class_name = self.string_deserialization()
 if class_name not in DwaType.names():
 raise TypeError(f'Attempting to deserialize a DataWithAxes flavor but got the bytes for a {class_name}')
 timestamp = self.scalar_deserialization()
 dwa = getattr(data_mod, class_name)(self.string_deserialization(),
 source=self.string_deserialization(),
 dim=self.string_deserialization(),
 distribution=self.string_deserialization(),
 data=self.list_deserialization(),
 labels=self.list_deserialization(),
 origin=self.string_deserialization(),
 nav_indexes=tuple(self.list_deserialization()),
 axes=self.list_deserialization(),
)

And because control modules send signals with DataToExport objects, there is also a recipe for these.

3.8.3.5. Custom client: how to?

	The TCP/Client should first try to connect to the server (using TCP server PyMoDAQ plugin), once the connection is
accepted, it should send an identification, the client type (GRABBER or ACTUATOR command)

	(optional) Then it can send some information about its configuration as an xml string following the
pymodaq.utils.parameter.ioxml.parameter_to_xml_string() method.

	Then the client enters a loop waiting for input from the server and is ready to read commands on the socket

	
	Receiving commands
	
	For a detector: Send Data 0D, Send Data 1D, Send Data 2D

	For an actuator: move_abs, move_home, move_rel, check_position, stop_motion

	Processing internally the command

	
	Giving a reply
	
	
	For a detector:
	
	Send the command Done

	Send the data as a DataToExport object

	
	For an actuator:
	
	
	Send a reply depending on the one it received:
	
	move_done for move_abs, move_home, move_rel commands

	position_is for check_position command

	Send the position as a DataActuator object

Pretty easy, isn’t it?

Well, if it isn’t you can have a look in the example folder where a Labview based TCP client has been
programed. It emulates all the rules stated above, and if you are a Labview user, you’re lucky ;-) but should really
think on moving on to python with PyMoDAQ…

 4. Developer’s Guide

4. Developer’s Guide

Contents:

	4.1. Contributing
	4.1.1. How to contribute

	4.1.2. Branch structure and release cycle

	4.1.3. Where to contribute
	4.1.3.1. Factory Patterns (to be completed)

	4.1.4. Contributors
	4.1.4.1. Main modules

	4.1.4.2. Plugins

	4.1.4.3. Extensions

	4.1.4.4. Documentation

	4.1.4.5. Testing

	4.2. Plugins
	4.2.1. Plugins package configuration file

	4.2.2. Instrument Plugins
	4.2.2.1. Installation

	4.2.2.2. Contributions

	4.2.2.3. Naming convention

	4.2.2.4. Hardware Settings

	4.2.2.5. Emission of data

	4.2.2.6. Hardware needed files

	4.2.2.7. Actuator plugin having multiple axis

	4.2.2.8. Modifying the UI from the instrument plugin class

	4.2.3. Extension Plugins

	4.3. Custom App

	4.4. Managers and Mixin Objects
	4.4.1. Parameter Manager

	4.4.2. Action Manager

	4.4.3. Modules Manager

	4.4.4. ROI Manager

 4.1. Contributing

4.1. Contributing

4.1.1. How to contribute

If you’re willing to help, there are several ways to do it:

	Use PyMoDAQ and report bug or issues using github issue tracker

	Talk about PyMoDAQ to your colleagues

	Cite PyMoDAQ in your papers

	Add your instruments in plugins (see Instrument Plugins)

	Work on new features, on solving bugs or issues

For the last point, here are some pointers:

you should fork and clone the up-to-date GitHub repo: https://github.com/PyMoDAQ
using git command line or GitHub Desktop. Then create a dedicated branch name from the change you want to work on
(using git).

Finally I advise to create a dedicated conda environment for this and install PyMoDAQ’s package as a developer:

	conda create -n dev_env

	conda activate dev_env

	cd to the location of the folder where you downloaded or cloned the repository.

	install the package as a developer using the command pip install -e ..

Then any change on the code will be seen by python interpreter so that you can see and test your modifications. Think about
writing tests that will make sure your code is sound and that modification elsewhere doesn’t change the expected behavior.

When ready, you can create a pull request from your code into the proper branch, as discussed in the next section.

4.1.2. Branch structure and release cycle

There are several branches of the PyMoDAQ repository, directly linked to the release cycle of PyMoDAQ, which we
define here. PyMoDAQ versioning follows usual practice, as described in this link [https://en.wikipedia.org/wiki/Software_versioning]:

[image: ../_images/Semver.jpg]

Starting from January 2024, the following structure was agreed upon by the contributors. At any given time,
there is a stable version of PyMoDAQ - at the time of writing it is 4.1.0 - which is not to be modified except for
bugfixes, and a development version (currently, 4.2.0), onto which new features may be added.

The release cycle is illustrated in this figure:

[image: ../_images/release_cycle_pymodaq3.png]

This cycle makes use of several types of branches:

Code flow branches:

	the stable branch, eg: ‘4.1.x’ This is the branch representing the stable version of PyMoDAQ. No change should be
made on this branch except bugfixes and hotfixes (see below). This is the branch from which the official releases are
created, for instance version 4.1.0, 4.1.1, 4.1.2, etc.

	the development branch, eg: ‘4.2.x_dev Note that the branch name differs from the stable branch by one increment
on the minor revision number (2 instead of 1), and the ‘_dev’ suffix is added for clarity.
This is the development branch. It is ahead of the main branch, in the sense that it contains more
recent commits than the main branch. It is thus the future state of the code. This is where the last developments
of the code of PyMoDAQ are pushed. When the developers are happy with the state of this branch, typically when they
finished to develop a new functionality and they tested it, this will lead to a new release of PyMoDAQ (4.1.x -> 4.2.0 in our example).
In practice, the branch will simply be renamed from 4.2.x_dev to 4.2.x, and a new branch 4.3.x_dev will be created
to continue the cycle.

Temporary branches:

	Feature, eg: ‘feature/new_colors’: Any additional feature should be done on a feature branch. They are created based
on the current development branch. When the feature is complete, a Pull Request must be open to integrate the changes into
the development branch.

	Bugfix, eg: ‘bugfix/remove_annoying_message’: These branches are meant to correct small issues. It can be created based
on either the stable or development branch, depending on where the bug is located. Regardless, any bugfix must then be applied to
all branches, if applicable (see note below).

	Hotfix, eg: ‘hotfix/fix_huge_bug’: This is similar to a bugfix, but for more important bugs. More precisely, hotfixes
are important enough that when applied, they will trigger an immediate new release (e.g. 4.1.1 -> 4.1.2) that incorporate the fix.
At the contrary bugfixes can wait for a future release.

Note

Applying fixes across several branches

Let’s consider the case where a bug is found on the stable branch. We create a new branch to fix it, open a pull request
into the stable branch, and wait for it to be accepted. However, it is likely that the buggy code is also part of the
development version, requiring another pull request on that branch! Thus, but when a bug is found, one should always
remember to check if it is present on several branches.

4.1.3. Where to contribute

There are easy places where to contribute and some more obscure places… After a few years of code rewriting/enhancing,
several places are available for easily adding functionalities. These places are implementing one form or another of the
Factory Pattern [https://realpython.com/factory-method-python/]. For other places, you’ll have to read the API documentation :-)

4.1.3.1. Factory Patterns (to be completed)

4.1.3.1.1. Data Exporting

New Exporting data format from the H5Browser is made easy see pymodaq/utils/h5modules/exporters

4.1.3.1.2. Math functions in ROI

4.1.3.1.3. Scanning modes

4.1.4. Contributors

Here is a list of the main contributors:

4.1.4.1. Main modules

4.1.4.1.1. Functionalities

	Sébastien Weber, Research Engineer at CEMES/CNRS

	David Bresteau, Research Engineer at Attolab facility, CEA Saclay

	Nicolas Tappy, Engineer at Attolight (https://attolight.com/)

4.1.4.1.2. Cleaning

	Sébastien Weber, Research Engineer at CEMES/CNRS

	David Trémouilles, Researcher at LAAS/CNRS

4.1.4.2. Plugins

	Sébastien Weber, Research Engineer at CEMES/CNRS

	Sophie Meuret, Researcher at CEMES/CNRS

	David Bresteau, Research Engineer at Attolab facility, CEA Saclay

	and many others…

4.1.4.3. Extensions

	Sébastien Weber, Research Engineer at CEMES/CNRS

	Romain Geneaux, Researcher at CEA Saclay contributed to the PyMoDAQ-Femto extension

4.1.4.4. Documentation

	Sébastien Weber, Research Engineer at CEMES/CNRS

	Matthieu Cabos helped with this documentation

	David Bresteau wrote the documentation of the PID extension and the tutorial: Story of an instrument plugin development

4.1.4.5. Testing

	Sébastien Weber, Research Engineer at CEMES/CNRS

	Pierre Jannot wrote tests with a total of 5000 lines of code tested during his internship at CEMES in 2021

Note

If you’re not in the list and contributed somehow, sorry for that and let us know at sebastien.weber@cemes.fr

 4.2. Plugins

4.2. Plugins

A plugin is a python package whose name is of the type: pymodaq_plugins_apluginname containing functionalities
to be added to PyMoDAQ

Note

A plugin may contains added functionalities such as:

	Classes to add a given instrument: allows a given instrument to be added programmatically
in a Control Modules graphical interface

	Instrument drivers located in a hardware folder: contains scripts/classes to ease communication
with the instrument. Could be third party packages such as Pymeasure

	PID models located in a models folder: scripts and classes defining the behaviour of a given PID loop
including several actuators or detectors,
see The PID Model

	Extensions located in a extensions folder: scripts and classes allowing to build extensions on top of
the DashBoard

Entry points python mechanism is used to let know PyMoDAQ of installed Instrument, PID models or extensions plugins

Contents:

	4.2.1. Plugins package configuration file

	4.2.2. Instrument Plugins
	4.2.2.1. Installation

	4.2.2.2. Contributions

	4.2.2.3. Naming convention

	4.2.2.4. Hardware Settings

	4.2.2.5. Emission of data

	4.2.2.6. Hardware needed files

	4.2.2.7. Actuator plugin having multiple axis

	4.2.2.8. Modifying the UI from the instrument plugin class

	4.2.3. Extension Plugins

 4.2.1. Plugins package configuration file

4.2.1. Plugins package configuration file

See Plugins configuration for default values.

 4.2.2. Instrument Plugins

4.2.2. Instrument Plugins

Any new hardware has to be included in PyMoDAQ within a plugin. A PyMoDAQ’s plugin is a python package
containing several added functionalities such as instruments objects. A instrument object is a class inheriting from either
a DAQ_Move_Base or a DAQ_Viewer_Base class`and implementing mandatory methods for easy and quick inclusion of the instrument
within the PyMoDAQ control modules.

Plugins are articulated given their type: Moves or Viewers and for the latter their main dimensionality: 0D, 1D or 2D.
It is recommended to start from the template repository [https://github.com/PyMoDAQ/pymodaq_plugins_template] that includes templates for all kind of instruments and also
the generic structure to build and publish a given plugin.

You will find below some information on the how to but comparison with existing plugins packages will be beneficial.

Note

You’ll find in this documentation a detailed tutorial on Story of an instrument plugin development.

4.2.2.1. Installation

The main and official list of plugins is located in the pymodaq_plugin_manager [https://github.com/PyMoDAQ/pymodaq_plugin_manager] repository on github. This constitutes a
list of (contributed) python package that can be installed using the Plugin Manager (or directly using pip).
Other unofficial plugins may also be installed if they follow PyMoDAQ’s plugin specifications but you are invited
to let know other users of the plugins you develop in order to contribute to PyMoDAQ’s development.

PyMoDAQ is looking at startup for all installed packages that it can consider as its plugins. This includes by default
the pymodaq_plugins_mock package of mock instruments installed on the site_packages location in your python distribution.

4.2.2.2. Contributions

If you wish to develop a plugin specific to a new hardware or feature not present on the github repo (and I strongly encourage you
to do so!!), you will have to follow the rules as below.

Two cases are possible: either you want to add a new hardware from a manufacturer for which
a repository already exists 1) (thorlabs, PI, Andor…) or not 2)

	You have to fork the existing repo

	you will use the pymodaq_plugins_template [https://github.com/PyMoDAQ/pymodaq_plugins_template] on github to create a new repo (see also the How to create a new plugin/package for PyMoDAQ?
tutorial)

Once you’ve done that, you can clone the package locally and install it in developer using pip install -e . from
the command line where you cd within the cloned package.
This command will install the package but any change you apply on the local folder will be applied on the package.
Then just add a new python file in the correct location.

Once you’re ready with a working plugin, you can then:

	Publish your repo on pypi (just by doing a release on github will trigger the creation
of a pypi repository

	do a pull request on the initial repository to merge your new implementations.

Note

Starting with PyMoDAQ version 4.1.0 onwards, old github actions for publication and suite testing should be updated in
the plugin packages. You can just use the one from the template repository

All the packages published on pypi using the template and the naming convention will be available
in the plugin manager.

A very detailed tutorial has been published in this documentation: Story of an instrument plugin development
and you can in the mean time look at this video [https://youtu.be/9O6pqz89UT8]

4.2.2.3. Naming convention

For an instrument plugin to be properly recognised by PyMoDAQ, the location and name of the underlying script must
follow some rules and syntax. The plugin template package [https://github.com/PyMoDAQ/pymodaq_plugins_template] could be copied locally as a starting point:

	The plugin package will be named pymodaq_plugins_xxxx (name: xxxx)

	An actuator plugin (name: xxxx) will be a script whose name is daq_move_Xxxx (notice first X letter is capital)

	The main instrument class within the script will be named DAQ_Move_Xxxx (notice the capital letters here as well and sorry
if it is troublesome)

	A detector plugin of dimensionality N (N=0, 1, 2 or N) (name: xxxx) will be a script whose name is daq_NDviewer_Xxxx
(notice first X letter is capital, and replace N by 0, 1, 2 or leave it for higher dimensionality)

	The main instrument class within the script will be named DAQ_NDViewer_Xxxx (notice the capital letters here as well)

4.2.2.4. Hardware Settings

An important feature similar for all modules is the layout as a tree structure of all the hardware parameters.
These settings will appear on the UI as a tree of parameters with a title and different types, see Fig. 4.3.
On the module side, they will be instantiated as a list of dictionaries and later exist in the object self.settings.
This object inherits from the Parameter object defined in pyqtgraph [https://pyqtgraph.readthedocs.io/en/latest/api_reference/parametertree/parameter.html].

[image: Settings example]

Fig. 4.3 Typical hardware settings represented as a tree structure (here from the daq_2Dviewer_AndorCCD plugin)

Here is an example of such a list of dictionaries corresponding to Fig. 4.3:

[{'title': 'Dll library:', 'name': 'andor_lib', 'type': 'browsepath', 'value': libpath},
 {'title': 'Camera Settings:', 'name': 'camera_settings', 'type': 'group', 'expanded': True, 'children': [
 {'title': 'Camera SN:', 'name': 'camera_serialnumber', 'type': 'int', 'value': 0, 'readonly': True},
 {'title': 'Camera Model:', 'name': 'camera_model', 'type': 'str', 'value': '', 'readonly': True},
 {'title': 'Readout Modes:', 'name': 'readout', 'type': 'list', 'values': ['FullVertBinning','Imaging'], 'value': 'FullVertBinning'},
 {'title': 'Readout Settings:', 'name': 'readout_settings', 'type': 'group', 'children':[
 {'title': 'single Track Settings:', 'name': 'st_settings', 'type': 'group', 'visible': False, 'children':[
 {'title': 'Center pixel:', 'name': 'st_center', 'type': 'int', 'value': 1 , 'default':1, 'min':1},
 {'title': 'Height:', 'name': 'st_height', 'type': 'int', 'value': 1 , 'default':1, 'min':1},
]},]}]}]

The list of available types of parameters (defined in pymodaq.utils.parameter.pymodaq_ptypes.py) is:

	group : “camera settings” on Fig. 4.3 is of type group

	int : settable integer (SpinBox_Custom object)

	float : settable float (SpinBox_Custom object)

	str : a QLineEdit object (see Qt5 documentation)

	list : “Readout Modes” Fig. 4.3 is a combo box

	bool : checkable boolean

	bool_push : a checkable boolean in the form of a QPushButton

	led : non checkable boolean in the form of a green (True) of red (False) led

	led_push : checkable boolean in the form of a green (True) of red (False) led

	date_time : a QDateTime object (see Qt5 documentation)

	date : a QDate object (see Qt5 documentation)

	time : a QTime object (see Qt5 documentation)

	slide : a combination of a slide and spinbox for floating point values (linear of log scale)

	itemselect : an object to easily select one or more items among a few

	browsepath: a text area and a pushbutton to select a given path or file

	text : a text area (for comments for instance)

Important: the name key in the dictionnaries must not contain any space, please use underscore if necessary!

Note

For a live example of these Parameters and their widget, type in parameter_example in your shell or check the
example folder

Once the module is initialized, any modification on the UI hardware settings will be send to the plugin through
the commit_settings method of the plugin class and illustrated below (still from the daq_2Dviewer_AndorCCD plugin).
The param method argument is of the type Parameter (from pyqtgraph):

def commit_settings(self,param):
 """
 | Activate parameters changes on the hardware from parameter's name.
 """
 try:
 if param.name()=='set_point':
 self.controller.SetTemperature(param.value())

 elif param.name() == 'readout' or param.name() in custom_parameter_tree.iter_children(self.settings.child('camera_settings', 'readout_settings')):
 self.update_read_mode()

 elif param.name()=='exposure':
 self.controller.SetExposureTime(self.settings.child('camera_settings','exposure').value()/1000) #temp should be in s
 (err, timings) = self.controller.GetAcquisitionTimings()
 self.settings.child('camera_settings','exposure').setValue(timings['exposure']*1000)
 elif param.name() == 'grating':
 index_grating = self.grating_list.index(param.value())
 self.get_set_grating(index_grating)
 self.emit_status(ThreadCommand('show_splash', ["Setting wavelength"]))
 err = self.controller.SetWavelengthSR(0, self.settings.child('spectro_settings','spectro_wl').value())
 self.emit_status(ThreadCommand('close_splash'))

4.2.2.5. Emission of data

When data are ready (see Data ready? to know about that), the plugin has to notify the viewer module in order
to display data and eventually save them. For this PyMoDAQ use two types of signals (see pyqtsignal documentation
for details):

	dte_signal_temp

	dte_signal

where dte stands for DataToExport, see DataToExport.

Note

So far (07/07/2023) instrument plugins would use signals below to emit a list of DataFromPlugins objects

	data_grabed_signal_temp (old style, will be deprecated)

	data_grabed_signal (old style, will be deprecated)

It will be deprecated in versions > 4.1, as the object to use and emit are now DataToExport objects

They both emit the same type of signal but will trigger different behaviour from the viewer module. The first is to be
used to send temporary data to update the plotting but without triggering anything else (so that the DAQ_Scan still awaits
for data completion before moving on). It is also used in the initialisation of the plugin in order to preset the type
and number of data viewers displayed by the viewer module. The second signal is to be used once data are fully ready to
be send back to the user interface
and further processed by DAQ_Scan or DAQ_Viewer instances. The code below is an example of emission of data:

from pymodaq.utils.data import Axis, DataFromPlugins, DataToExport
x_axis = Axis(label='Wavelength', units= "nm", data = vector_X)
y_axis = Axis(data=vector_Y)
self.dte_signal.emit(DataToExport('mydata', data=[
 DataFromPlugins(name='Camera',data=[data2D_0, data2D_1,...],
 dim='Data2D', x_axis=x_axis,y_axis=y_axis),
 DataFromPlugins(name='Spectrum',data=[data1D_0, data1D_1,...],
 dim='Data1D', x_axis=x_axis, labels=['label0', 'label1', ...]),
 DataFromPlugins(name='Current',data=[data0D_0, data0D_1,...],
 dim='Data0D'),
 DataFromPlugins(name='Datacube',data=[dataND_0, dataND_1,...],
 dim='DataND', nav_indexes=(0,2),
 axes=[Axis(data=.., label='Xaxis', units= "µm", index=0)]))

Such an emitted signal would trigger the initialization of 4 data viewers in the viewer module. One for each
DataFromPlugins in the data attribute (which is a list of DataFromPlugins). The type of data viewer will be
determined by the dim key value while its name will be set to the name parameter value, for more details on
data objects, see What is PyMoDAQ’s Data?

Note

New in version 4.1.0

Deprecated in version 4.2.0, but still working

The behaviour of the DAQ_Viewer can be even more tailored using two extra boolean attributes in the DataWithAxes objects.

	save: will tell the DAQ_Viewer whether it should save the corresponding dwa (short for DataWithAwes)

	plot: will tell the DAQ_Viewer whether it should plot the corresponding dwa

New in version 4.2.0

the save and plot extra-attributes have been replaced by:

	do_save: will tell the DAQ_Viewer whether it should save the corresponding dwa (short for DataWithAwes)

	do_plot: will tell the DAQ_Viewer whether it should plot the corresponding dwa

DataFromPlugins objects have these two extra attributes by default with values set to True

4.2.2.5.1. Data ready?

One difficulty with these viewer plugins is to determine when data is ready to be read from the controller and then
to be send to the user interface for plotting and saving. There are a few solutions:

	synchronous: The simplest one. When the grab command has been send to the controller (let’s say to its
grab_sync method), the grab_sync method will hold and freeze the plugin until the data are ready.
The Mock plugin work like this.

	asynchronous: There are 2 ways of doing asynchronous waiting. The first is to poll the controller state to check if data are
ready within a loop. This polling could be done with a while loop but if nothing more is done then the plugin will still be
freezed, except if one process periodically the Qt queue event using QtWidgets.QApplication.processEvents() method. The
polling can also be done with a timer event, firing periodically a check of the data state (ready or not). Finally, the
nicest/hardest solution is to use callbacks (if the controller provides one) and link it to a emit_data method.

4.2.2.5.2. Synchronous example:

The code below illustrates the poll method using a loop:

def poll_data(self):
 """
 Poll the current data state
 """
 sleep_ms=50
 ind=0
 data_ready = False
 while not self.controller.is_ready():
 QThread.msleep(sleep_ms)

 ind+=1

 if ind*sleep_ms>=self.settings.child(('timeout')).value():

 self.emit_status(ThreadCommand('raise_timeout'))
 break

 QtWidgets.QApplication.processEvents()
 self.emit_data()

4.2.2.5.3. Asynchronous example:

The code below is derived from daq_Andor_SDK2 (in andor hardware folder) and shows how to create a thread waiting for data ready and triggering the emission of data

class DAQ_AndorSDK2(DAQ_Viewer_base):

 callback_signal = QtCore.Signal() #used to talk with the callback object
 ...

 def ini_camera(self):
 ...
 callback = AndorCallback(self.controller.WaitForAcquisition) # the callback is linked to the controller WaitForAcquisition method
 self.callback_thread = QtCore.QThread() #creation of a Qt5 thread
 callback.moveToThread(self.callback_thread) #callback object will live within this thread
 callback.data_sig.connect(self.emit_data) # when the wait for acquisition returns (with data taken), emit_data will be fired

 self.callback_signal.connect(callback.wait_for_acquisition) #
 self.callback_thread.callback = callback
 self.callback_thread.start()

 def grab(self,Naverage=1,**kwargs):
 ...
 self.callback_signal.emit() #trigger the wait_for_acquisition method

def emit_data(self):
 """
 Function used to emit data obtained by callback.
 """
 ...
 self.dte_signal.emit(
 DataToExport('mydata',
 data=[DataFromPlugins('Camera',
 data=[np.squeeze(self.data.reshape((sizey, sizex)).astype(np.float))])])

class AndorCallback(QtCore.QObject):

 data_sig=QtCore.Signal()
 def __init__(self,wait_fn):
 super(AndorCallback, self).__init__()
 self.wait_fn = wait_fn

 def wait_for_acquisition(self):
 err = self.wait_fn()

 if err != 'DRV_NO_NEW_DATA': #will be returned if the main thread called CancelWait
 self.data_sig.emit()

Documentation from Andor SDK concerning the WaitForAcquisition method of the dll:

unsigned int WINAPI WaitForAcquisition(void)

WaitForAcquisition can be called after an acquisition is started using StartAcquisition to put the calling thread to sleep until an Acquisition Event occurs.

It will use less processor resources than continuously polling with the GetStatus function. If you wish to restart the calling thread without waiting for an Acquisition event, call the function CancelWait.

4.2.2.5.4. Hardware averaging

By default, if averaging of data is needed the Viewer module will take care of it software wise. However, if the hardware
controller provides an efficient method to do it (that will save time) then you should set the class field
hardware_averaging to True.

class DAQ_NDViewer_Template(DAQ_Viewer_base):
"""
 Template to be used in order to write your own viewer modules
"""
 hardware_averaging = True #will use the accumulate acquisition mode if averaging
 #is True else averaging is done software wise

4.2.2.5.5. Live Mode

By default, the live Grab mode is done software wise in the core code of the DAQ_Viewer. However, if
one want to send data as fast as possible, the live mode is possible within a plugin.

For this, the plugin class attribute, live_mode_available, should be set to True.

class DAQ_2DViewer_MockCamera(DAQ_Viewer_base):

 live_mode_available = True

The method grab_data will then receive a named boolean parameter (in kwargs) called live that tells if one should
grab or snap data. The MockCamera plugin illustrates this feature:

def grab_data(self, Naverage=1, **kwargs):
 """Start a grab from the detector

 Parameters

 Naverage: int
 Number of hardware averaging (if hardware averaging is possible, self.hardware_averaging should be set to
 True in class preamble and you should code this implementation)
 kwargs: dict
 others optionals arguments
 """
 if 'live' in kwargs:
 if kwargs['live']:
 self.live = True
 # self.live = False # don't want to use that for the moment

 if self.live:
 while self.live:
 data = self.average_data(Naverage)
 QThread.msleep(kwargs.get('wait_time', 100))
 self.dte_signal.emit(data)
 QtWidgets.QApplication.processEvents()

4.2.2.6. Hardware needed files

If you are using/referring to custom python wrappers/dlls… within your plugin and need a place where to copy them
in PyMoDAQ, then use the \hardware folder of your plugin package. For instance, the daq_2Dviewer_AndorCCD plugin need various files stored
in the andor folder (on github repository). I would therefore copy it as \pymodaq_plugins_andor\hardware\andor
and call whatever module I need within (meaning there is a __init__.py file in the andor folder) as:

#import controller wrapper
from pymodaq_plugins.hardware.andor import daq_AndorSDK2 #this import the module DAQ_AndorSDK2 containing classes, methods...
#and then use it as you see fit in your module

4.2.2.7. Actuator plugin having multiple axis

See also: Multiaxes controller

When an actuator’s controller can drive multiple axis (like a XY translation stage for instance), the plugin instrument
class should defines two class attributes:

	is_multiaxis should be set to True. This will trigger the display of the multiaxis section on the UI

	axes_names should be a list or dict describing the different actuator such a controller can drive

class DAQ_Move_MockNamedAxes(DAQ_Move_base):
 is_multiaxes = True
 _axis_names = ['Xaxis', 'Yaxis', 'Zaxis']
 # or:
 _axis_names = {'Xaxis': 0, 'Yaxis': 1, 'Zaxis': 2}

would produce such display on the UI (Fig. Fig. 4.4):

[image: Settings example]

Fig. 4.4 Typical multiaxis settings represented as a combo box

Both the list or the dictionary will produce the same output on the UI but their use will depend of the controller and
underlying methods of its driver to act on a particular axis. In the drivers derived from C code,
methods will have an argument describing a particular axis as an integer. It is however not possible to pass
integers directly to the combobox of the UI who holds strings. To deal with that pyqtgraph, and therefore pymodaq,
uses a dictionary mapping the names of the axis (to be printed in the UI) to objects (here integers) to be
used with the drivers’s method.

A set of methods/properties have been introduced to quickly manipulate those and get either the current
axis name of associated value.

Case of a list of strings:

>>> self.axis_name
'Yaxis'
>>> self.axis_names
['Xaxis', 'Yaxis', 'Zaxis']
>>> self.axis_value
'Yaxis'

Case of a dictionary of strings/integers:

>>> self.axis_name
'Yaxis'
>>> self.axei_names
{'Xaxis': 0, 'Yaxis': 1, 'Zaxis': 2}
>>> self.axis_value
1

4.2.2.8. Modifying the UI from the instrument plugin class

The user interface control module and the instrument plugin class are not in the same thread, moreover, the plugin
class is not aware of the UI object (DAQ_Move or DAQ_Viewer). Therefore, you’ll find below ways to interact with
the UI from the plugin class.

The most generic way (valid for both control modules) is to use the emit_status method, defined in the parent class
of the instrument plugin class. Such a method takes one argument, a ThreadCommand and will send this object
to the thread_status method of the UI main class.

Note

A ThreadCommand is an object taking two arguments a string (the command) and a named attribute called attribute
that can be any type. This ThreadCommand is used everywhere
in PyMoDAQ to communicate between threads.

Control modules share some commands,
see thread_status

	Update_status: call the update_status method with status attribute as a string

	close: close the current thread and delete corresponding attribute on cascade.

	update_main_settings: update the main settings in the UI settings tree

	update_settings: update the actuator’s settings in the UI settings tree

	raise_timeout: call the raise_timeout method

	show_splash: show the splash screen displaying info from the argument attributes of the command

	close_splash: close the splash screen

4.2.2.8.1. Splash Screen and info

You can therefore show info about initialization in a splash screen using (taken from the Mock 0DViewer plugin):

self.emit_status(ThreadCommand('show_splash', 'Starting initialization'))
QtCore.QThread.msleep(500)
self.ini_detector_init(old_controller=controller,
 new_controller='Mock controller')
self.emit_status(ThreadCommand('show_splash', 'generating Mock Data'))
QtCore.QThread.msleep(500)
self.set_Mock_data()
self.emit_status(ThreadCommand('update_main_settings', [['wait_time'],
 self.settings.child('wait_time').value(), 'value']))
self.emit_status(ThreadCommand('show_splash', 'Displaying initial data'))
QtCore.QThread.msleep(500)
initialize viewers with the future type of data
self.dte_signal_temp.emit(DataToExport('Mock0D', data=[DataFromPlugins(name='Mock1', data=[np.array([0])],
 dim='Data0D',
 labels=['Mock1', 'label2'])]))
self.emit_status(ThreadCommand('close_splash'))

4.2.2.8.2. Modifying the UI settings

if you want to modify the settings tree of the UI (the Main Settings part as the other one, you can do so within the
plugin directly), you can do so using:

self.emit_status(ThreadCommand('update_main_settings', [['wait_time'], 10, 'value']))

The attribute of the ThreadCommand is a bit complex here [['wait_time'], 10, 'value']. It is a list of three
variables:

	a list of string defining a path in the main_settings tree hierarchy

	an object (here an integer)

	a string specifying the type of modification, either:

	value: the object should therefore be the new value of the modified parameter

	limits: the object should be a sequence listing the limits of the parameter (depends on the type of parameter)

	options: the object is a dictionary defining the options to modify

	childAdded: the object is a dictionary generated using SaveState of a given Parameter

4.2.2.8.3. DAQ_Move specific commands

Specifics commands for the DAQ_Move are listed in:
thread_status and explained a bit below

	ini_stage: obtains info from the initialization

	get_actuator_value: update the UI current value

	move_done: update the UI current value and emits the move_done signal

	outofbounds: emits the bounds_signal signal with a True argument

	set_allowed_values: used to change the behaviour of the spinbox controlling absolute values, see
set_abs_spinbox_properties

	stop: stop the motion

You can directly modify the printed current actuator’s value using the emit_value(12.4) method which is a shortcut
of emit_status(ThreadCommand('get_actuator_value', 12.4)). In that case the printed value would show 12.4.

You can also modify some SpinBox of the UI (the ones used to specify the absolute values) using the set_allowed_values
command. In that case the attribute argument of the ThreadCommand should be a dictionary, see
set_abs_spinbox_properties.

4.2.2.8.4. DAQ_Viewer specific commands

Specifics commands for the DAQ_Viewer are listed in:
thread_status and explained a bit below

	ini_detector: update the status with “detector initialized” value and init state if attribute not null.

	grab : emit grab_status(True)

	grab_stopped: emit grab_status(False)

	init_lcd: display a LCD panel

	lcd: display on the LCD panel, the content of the attribute

	stop: stop the grab

The interesting bit is the possibility to display a
LCD widget to display some numerical values (could be
0D Data also emitted using the dte_signal but could also be any values). You should first init the LCD screen
using the command: init_lcd with an attribute being a dictionary with keys either:

	digits: an integer specifying the number of digits to display

	Nvals: the number of numerical values to be displayed

	labels: the name/label of each value

For instance, in the 0D Mock viewer plugin:

if not self.lcd_init:
 self.emit_status(ThreadCommand('init_lcd', dict(labels=['dat0', 'data1'], Nvals=2, digits=6)))
 QtWidgets.QApplication.processEvents()
 self.lcd_init = True
self.emit_status(ThreadCommand('lcd', data_tot))

Where the lcd is first initialized, then data are sent using the lcd command taking as attribute a list of 0D
numpy arrays

 4.2.3. Extension Plugins

4.2.3. Extension Plugins

PyMoDAQ’s plugins allows to add functionnalities to PyMoDAQ from external packages. You should be well aware of the
instrument type plugins and somehow of the PID models plugins. Here we are highlighting how to built dashboard
extensions such as the DAQ Scan.

For your package to be considered as a PyMoDAQ’s dashboard extension, you should make sure of a few things:

	The entrypoint in the setup file should be correctly configured, see Fig. 4.5

	The presence of an extensions module at the root of the package

	each module within the extensions module will define an extension. It should contains three attributes:

	EXTENSION_NAME: a string used to display the extension name in the dashboard extension menu

	CLASS_NAME: a string giving the name of the extension class

	a class deriving from the CustomApp base class (see Custom App)

The pymodaq_plugins_template contains already all this, so make sure to start from there when you wish to build an
extension.

[image: dashboard]

Fig. 4.5 The correct configuration of your package.

The class itself defining the extension derives from the CustomApp base class. As such, it’s __init__ method
takes two attributes, a DoackArea instance and a DashBoard instance (the one from which the extension will be
loaded and that contains all the actuators/detectors needed for your extension). The DashBoard will smoothly
initialize your class when launching it from the menu. Below you’ll find a sample of an extension module with an
extension class called MyExtension (from the pymodaq_plugins_template package)

EXTENSION_NAME = 'MY_EXTENSION_NAME'
CLASS_NAME = 'MyExtension'

class MyExtension(gutils.CustomApp):
 # list of dicts enabling the settings tree on the user interface
 params = [
 {'title': 'Main settings:', 'name': 'main_settings', 'type': 'group', 'children': [
 {'title': 'Save base path:', 'name': 'base_path', 'type': 'browsepath',
 'value': config['data_saving']['h5file']['save_path']},
 {'title': 'File name:', 'name': 'target_filename', 'type': 'str', 'value': "", 'readonly': True},
 {'title': 'Date:', 'name': 'date', 'type': 'date', 'value': QtCore.QDate.currentDate()},
 {'title': 'Do something, such as showing data:', 'name': 'do_something', 'type': 'bool', 'value': False},
 {'title': 'Something done:', 'name': 'something_done', 'type': 'led', 'value': False, 'readonly': True},
 {'title': 'Infos:', 'name': 'info', 'type': 'text', 'value': ""},
 {'title': 'push:', 'name': 'push', 'type': 'bool_push', 'value': False}
]},
 {'title': 'Other settings:', 'name': 'other_settings', 'type': 'group', 'children': [
 {'title': 'List of stuffs:', 'name': 'list_stuff', 'type': 'list', 'value': 'first',
 'limits': ['first', 'second', 'third'], 'tip': 'choose a stuff from the list'},
 {'title': 'List of integers:', 'name': 'list_int', 'type': 'list', 'value': 0,
 'limits': [0, 256, 512], 'tip': 'choose a stuff from this int list'},
 {'title': 'one integer:', 'name': 'an_integer', 'type': 'int', 'value': 500, },
 {'title': 'one float:', 'name': 'a_float', 'type': 'float', 'value': 2.7, },
]},
]

 def __init__(self, dockarea, dashboard):
 super().__init__(dockarea, dashboard)
 self.setup_ui()

 4.3. Custom App

4.3. Custom App

PyMoDAQ’s set of modules is a very efficient way to build a completely custom application (related to data acquisition
or actuators displacement) without having to do it from scratch. Fig. 4.6 is an example of such an
interface build using only PyMoDAQ’s building blocks. The corresponding script template is within the example folder.

[image: dashboard]

Fig. 4.6 A custom application build using PyMoDAQ’s modules.

Note

A generic base class CustomApp located in pymodaq.utils.gui_utils can be used to
build very quickly standalone Application or Dashboard extensions. The DAQ_Logger extension
has been built using it as well as some examples in the example folder.

Below you’ll find the skeleton of a CustomApp subclassing the base class and methods you
have to override with your App/Extension specifics:

class CustomAppExample(gutils.CustomApp):

 # list of dicts enabling a settings tree on the user interface
 params = [
 {'title': 'Main settings:', 'name': 'main_settings', 'type': 'group', 'children': [
 {'title': 'Save base path:', 'name': 'base_path', 'type': 'browsepath',
 'value': config['data_saving']['h5file']['save_path']},
 {'title': 'File name:', 'name': 'target_filename', 'type': 'str', 'value': "", 'readonly': True},
 {'title': 'Date:', 'name': 'date', 'type': 'date', 'value': QDate.currentDate()},
 {'title': 'Do something, such as showing data:', 'name': 'do_something', 'type': 'bool', 'value': False},
]},
]

 def __init__(self, dockarea, dashboard=None):
 super().__init__(dockarea)
 # init the App specific attributes
 self.raw_data = []

 def setup_actions(self):
 '''
 subclass method from ActionManager
 '''
 logger.debug('setting actions')
 self.add_action('quit', 'Quit', 'close2', "Quit program", toolbar=self.toolbar)
 self.add_action('grab', 'Grab', 'camera', "Grab from camera", checkable=True, toolbar=self.toolbar)
 logger.debug('actions set')

 def setup_docks(self):
 '''
 subclass method from CustomApp
 '''
 logger.debug('setting docks')
 self.dock_settings = gutils.Dock('Settings', size=(350, 350))
 self.dockarea.addDock(self.dock_settings, 'left')
 self.dock_settings.addWidget(self.settings_tree, 10)
 logger.debug('docks are set')

 def connect_things(self):
 '''
 subclass method from CustomApp
 '''
 logger.debug('connecting things')
 self.actions['quit'].connect(self.quit_function)
 self.actions['grab'].connect(self.detector.grab)
 logger.debug('connecting done')

 def setup_menu(self):
 '''
 subclass method from CustomApp
 '''
 logger.debug('settings menu')
 file_menu = self.mainwindow.menuBar().addMenu('File')
 self.affect_to('quit', file_menu)
 file_menu.addSeparator()
 logger.debug('menu set')

 def value_changed(self, param):
 logger.debug(f'calling value_changed with param {param.name()}')
 if param.name() == 'do_something':
 if param.value():
 self.settings.child('main_settings', 'something_done').setValue(True)
 else:
 self.settings.child('main_settings', 'something_done').setValue(False)

 logger.debug(f'Value change applied')

"""
All other methods required by your Application class
"""

In a few lines of codes, you’ll get an application running. For the available Parameter available
for your settings_tree, see Settings.

 4.4. Managers and Mixin Objects

4.4. Managers and Mixin Objects

4.4.1. Parameter Manager

4.4.2. Action Manager

4.4.3. Modules Manager

4.4.4. ROI Manager

 5. Tutorials

5. Tutorials

Contents:

	5.1. Git/GitHub
	5.1.1. Create an account & raise an issue on GitHub
	5.1.1.1. What is GitHub?

	5.1.1.2. Create an account

	5.1.1.3. Troubleshoot PyMoDAQ: raise an issue

	5.1.2. Basics of Git and GitHub
	5.1.2.1. Why Git?

	5.1.2.2. Installation & configuration for Windows

	5.1.2.3. Installation & configuration for Ubuntu

	5.1.2.4. Local use of Git

	5.1.2.5. Remote use of Git: GitHub

	5.1.2.6. Git in practice: integration within PyCharm

	5.1.2.7. Conclusion

	5.1.3. Authenticate to GitHub with an SSH key
	5.1.3.1. Prerequisite

	5.1.3.2. What is SSH?

	5.1.3.3. How to make a secure connection with SSH?

	5.1.3.4. Concluding remarks

	5.2. How to modify existing PyMoDAQ’s code?
	5.2.1. Prerequisite

	5.2.2. The PyMoDAQ repositories

	5.2.3. PyMoDAQ branches

	5.2.4. How to propose a modification of the code of PyMoDAQ?
	5.2.4.1. (1) Fork the upstream repository

	5.2.4.2. (2) Clone our new remote repository locally

	5.2.4.3. (3) Do modifications and push

	5.2.4.4. (4) Pull request (PR) to the upstream repository

	5.3. How to create a new plugin/package for PyMoDAQ?
	5.3.1. Prerequisite

	5.3.2. The PyMoDAQ’s plugin template repository

	5.3.3. Configuring a new plugin repository

	5.3.4. Publishing on Pypi

	5.4. Story of an instrument plugin development
	5.4.1. The controller manual

	5.4.2. The installer

	5.4.3. The blue route: use the manufacturer GUI

	5.4.4. A shortcut through an existing green route? Readily available PyMoDAQ instrument plugins

	5.4.5. The gold route: control your device with a Python script
	5.4.5.1. What is a DLL?

	5.4.5.2. What is a Python wrapper?

	5.4.5.3. PIPython wrapper

	5.4.5.4. External open-source libraries

	5.4.5.5. Back to PIPython wrapper

	5.4.5.6. I’ve found nothing to control my device with Python! :(

	5.4.6. The green route: control your device with PyMoDAQ
	5.4.6.1. What is GitHub?

	5.4.6.2. Prepare your remote repository

	5.4.6.3. Prepare your local repository

	5.4.6.4. Install your package in edition mode

	5.4.6.5. Open the package with an adapted IDE

	5.4.6.6. Debug of the original plugin

	5.4.6.7. Write the class for our new instrument

	5.4.6.8. Commit our changes with Git

	5.4.6.9. Push our changes to our remote repository

	5.4.6.10. Pull request to the upstream repository

	5.4.7. Conclusion

	5.5. How to contribute to PyMoDAQ’s documentation?
	5.5.1. The documentation of PyMoDAQ
	5.5.1.1. Documentation of the source code: docstrings

	5.5.1.2. Tests

	5.5.1.3. Website

	5.5.2. Sphinx

	5.5.3. Preparation

	5.5.4. Build the website locally

	5.5.5. Add a new tutorial

	5.5.6. reStructuredText (RST) language
	5.5.6.1. Page structure

	5.5.6.2. List

	5.5.6.3. External link (URL)

	5.5.6.4. Integrate an image

	5.5.6.5. Cross-referencing

	5.5.6.6. Glossary terms

	5.5.7. Submit our documentation to the upstream repository

	5.6. Updating your instrument plugin for PyMoDAQ 4
	5.6.1. What’s new in PyMoDAQ 4

	5.6.2. What should be modified
	5.6.2.1. Imports

	5.6.2.2. Data emission

	5.6.2.3. Requirements

	5.7. Tutorial On Data Manipulation and analysis
	5.7.1. Loading Data

	5.7.2. Plotting data

	5.7.3. Data Analysis
	5.7.3.1. Slicing the data

	5.7.3.2. Fitting the Data

	5.7.4. Summary

 5.1. Git/GitHub

5.1. Git/GitHub

Contents:

	5.1.1. Create an account & raise an issue on GitHub
	5.1.1.1. What is GitHub?

	5.1.1.2. Create an account

	5.1.1.3. Troubleshoot PyMoDAQ: raise an issue

	5.1.2. Basics of Git and GitHub
	5.1.2.1. Why Git?
	5.1.2.1.1. How do I organize my code development efficiently? (local use)

	5.1.2.1.2. How do I work with my colleagues on the same code? (remote use)

	5.1.2.1.3. How does it do that?

	5.1.2.2. Installation & configuration for Windows
	5.1.2.2.1. Installation

	5.1.2.2.2. Configuration

	5.1.2.3. Installation & configuration for Ubuntu
	5.1.2.3.1. Installation

	5.1.2.3.2. Configuration

	5.1.2.4. Local use of Git
	5.1.2.4.1. Before we start…

	5.1.2.4.2. The init command: start a new project

	5.1.2.4.3. The status command

	5.1.2.4.4. The add command

	5.1.2.4.5. The commit command

	5.1.2.4.6. The log command

	5.1.2.4.7. The diff command

	5.1.2.4.8. The revert command

	5.1.2.4.9. Work with branches

	5.1.2.4.10. Local development workflow

	5.1.2.5. Remote use of Git: GitHub
	5.1.2.5.1. Create an account

	5.1.2.5.2. Create a remote repository

	5.1.2.5.3. Authentication to GitHub with an SSH key

	5.1.2.5.4. Push our local repository to GitHub

	5.1.2.5.5. The clone command

	5.1.2.6. Git in practice: integration within PyCharm
	5.1.2.6.1. Link our GitHub account to PyCharm

	5.1.2.6.2. Clone a project

	5.1.2.6.3. Configure our Python environment

	5.1.2.6.4. Create a new branch

	5.1.2.6.5. Diff, commit and push

	5.1.2.6.6. Add a file

	5.1.2.6.7. Log

	5.1.2.7. Conclusion

	5.1.3. Authenticate to GitHub with an SSH key
	5.1.3.1. Prerequisite

	5.1.3.2. What is SSH?

	5.1.3.3. How to make a secure connection with SSH?
	5.1.3.3.1. Generate our SSH key pair

	5.1.3.3.2. Add our private key to the ssh-agent

	5.1.3.3.3. Add our public key to our GitHub account

	5.1.3.4. Concluding remarks

 5.1.1. Create an account & raise an issue on GitHub

	Author email

	david.bresteau@cea.fr

	First edition

	december 2023

	Difficulty

	Easy

[image: ../_images/github_logo.png]

5.1.1. Create an account & raise an issue on GitHub

We present here how to create a free account on GitHub so that as a user of PyMoDAQ, we will know where to ask for help
to the PyMoDAQ community or report a bug.

This tutorial does not require any knowledge of Python or GitHub.

5.1.1.1. What is GitHub?

GitHub [https://github.com/] is a free cloud service that allows anyone to host an open-source project on distant servers. PyMoDAQ is
hosted on GitHub. As a PyMoDAQ user, we should know about it, even if we are not interested in the code. Indeed GitHub
does not only host code, but it also proposes several features around it that allow to ease the communication within the
community around the program (users or maintainers). So if we face a problem with PyMoDAQ, that is where we should
ask for help!

5.1.1.2. Create an account

Creating an account on GitHub is necessary if we want to open a discussion or raise an issue. This is free of charge and
does not commit us to anything. Let’s go to the GitHub website [https://github.com/]. On the top right of the page, let’s click on Sign
up and follow the guide.

[image: ../_images/github_sign_up.png]

5.1.1.3. Troubleshoot PyMoDAQ: raise an issue

Now that we have our own account on GitHub and are logged in. Let’s go to the PyMoDAQ GitHub account [https://github.com/PyMoDAQ/PyMoDAQ].

Here we have access to all the code of PyMoDAQ, and all the history of its development. But what we are looking for now
is the place where to ask for help in case we are in trouble. For this we should click on the Issues tab.

[image: ../_images/pmd_repository_issue_V3.png]

[image: ../_images/pmd_repository_open_issue.png]

Anytime we face a problem or a bug in the program we can raise an issue. Describe as precisely as possible our problem.
A discussion will be opened with the maintainers who will try to help us. This is the most efficient way to troubleshoot
PyMoDAQ because the history of the issues is conserved, which could be helpful to solve future problems. This
contributes to the documentation of the code. We don’t need to know the code to raise an issue, and it is really
helpful to improve the stability of the program, so we should not hesitate to do so!

Thanks to such functionalities, the PyMoDAQ GitHub account is the meeting point of the community around PyMoDAQ.

 5.1.2. Basics of Git and GitHub

	Author email

	david.bresteau@cea.fr

	Last update

	january 2024

	Difficulty

	Easy

[image: ../_images/git_logo.png]

5.1.2. Basics of Git and GitHub

We introduce Git and GitHub in Pymodaq documentation because we believe that every experimental physicist should know
about those wonderful tools that have been made by developers. They will help us code and share our code efficiently,
not only within the framework of Pymodaq or even Python. Moreover, since Pymodaq is an open source project, its
development is based on those tools. They have to be mastered if we want to contribute to the project or develop our
own extension. Even as a simple user, we will learn where to ask for help when we are in difficulty, because Pymodaq’s
community is organized around those tools.

5.1.2.1. Why Git?

Git answers mainly two important questions:

5.1.2.1.1. How do I organize my code development efficiently? (local use)

	It allows you to come back to every version of your code.

	It forces you to document every step of the development of your code.

	You can try any modification of your code safely.

	It is an indispensable tool if you work on a bigger project than a few scripts.

5.1.2.1.2. How do I work with my colleagues on the same code? (remote use)

	Git tackles the general problem of several people working on the same project: it can be scientists working on a paper
, some members of a parliament working on a law, some developers working on a program…

	It is a powerful tool that allows multiple developers to work on the same project without conflicting each other.

	It allows everyone that download an open-source project to have the complete history of its development.

	Coupled with a cloud-based version control service like GitHub, it allows to easily share your project with everyone,
and have contributors, like PyMoDAQ!

5.1.2.1.3. How does it do that?

A program is nothing more than a set of files placed in the right subfolders.

Git is a version control software: it follows the development of a program (i.e. its different versions) by keeping
track of every modifications of files in a folder.

5.1.2.2. Installation & configuration for Windows

5.1.2.2.1. Installation

[image: ../_images/git_scm.svg]
Fig. 5.8 Download the installer from the official website.

Download the installer from the official website [https://git-scm.com/]. Run the installer. From all the windows that will appear, let
the default option, except for the following ones.

Uncheck “Windows Explorer integration”.

[image: ../_images/git_install_window.png]

For the default editor, do not let Vim if you don’t know about it, for example you can choose Notepad++.

[image: ../_images/git_editor_selection.png]

Use the following option for the name of the default branch.

[image: ../_images/git_install_init_configuration.png]

If you develop from Windows, it is better that you let Git manage the line endings.

[image: ../_images/git_install_line_ending.png]

Use the second option here.

[image: ../_images/git_install_path.png]

Open the Git Bash terminal (Windows Applications > Git > Git Bash or Search for “Git Bash”) that has been installed with
the Git installer.

[image: ../_images/git_bash.png]

We can now check that it is actually installed on our system.

[image: ../_images/git_version.png]

5.1.2.2.2. Configuration

Just after the installation, you should configure Git so that he knows your email and name. This configuration is
global in the sense that it does not depend on the project (the repository) you are working on. Use the following
commands replacing with your own email and a name of your choice:

$ git config --global user.email "david.bresteau@cea.fr"

$ git config --global user.name "David Bresteau"

Good, we are now ready to use Git!

5.1.2.3. Installation & configuration for Ubuntu

5.1.2.3.1. Installation

In a terminal

$ sudo apt install git

5.1.2.3.2. Configuration

Just after the installation, you should configure Git so that he knows your email and name. This configuration is
global in the sense that it does not depend on the project (the repository) you are working on. Use the following
commands replacing with your own email and a name of your choice:

$ git config --global user.email "david.bresteau@cea.fr"

$ git config --global user.name "David Bresteau"

Good, we are now ready to use Git!

5.1.2.4. Local use of Git

We will start by using Git just on our local machine.

5.1.2.4.1. Before we start…

What kind of files I CAN track with Git?

Opened file formats that use text language: any “normal” language like C++, Python, Latex, markdown…

What kind of files I CANNOT track with Git?

	Closed file format like Word, pdf, Labview…

	Images, drawings…

5.1.2.4.2. The init command: start a new project

We start a project by creating a folder in our home directory, with the mkdir Bash command (for “make directory”)

Note

The home directory corresponds to the directory that is reserved to the connected user. On Windows, it corresponds
to the path C:\Users\<username>. Here the user is called dbrestea, you should replace it by your own username.
When we open Git Bash, or any terminal in general, we are placed at our home directory in the file system, it can
be represented by the ~ symbol (in orange in the above screenshots).

$ mkdir MyLocalRepository

And cd (for “change directory”) into this folder

$ cd MyLocalRepository

It should look like this now:

[image: ../_images/bash_mkdir.png]

Now, we tell Git to track this folder with the init Git command

$ git init

Any folder that is tracked by Git contains a .git subfolder and called a repository.

We now create a new my_first_amazing_file.txt file in this folder and write Hello world! inside

[image: ../_images/my_first_amazing_file.png]

5.1.2.4.3. The status command

You should never hesitate to run this command, it gives you the current status of the project.

$ git status

It should look like this:

[image: ../_images/git_status.png]

Here Git says that he noticed that we created a new file, but he placed it under the Untracked files and colored it in
red.

The red means that Git does not know what to do with this file, he is waiting for an order from us.

We have to tell him explicitly to track this file. To do so, we will just follow what he advised us, and use the add
command.

5.1.2.4.4. The add command

To put a file under the supervision of Git (to track the file), we use the add command. This has to be done only the
first time we add a file into the folder.

$ git add my_first_amazing_file.txt

Then we do again the status command to see what have changed.

It should look like this:

[image: ../_images/git_add.png]

Now the filename turned green, which means that the file is tracked by Git and ready to be commited.

5.1.2.4.5. The commit command

A commit is a fundamental notion of Git.

A commit is a snapshot of the folder status at a point in time.

It is our responsability to decide when to do a commit.

A commit should be done at every little change we do on our program, after we tested that the result is as we
expected. For example, we should do a commit each time we add a new functionality to our program that is working
properly.

For now, we just have one sentence in the file: “Hello world!”, but that’s a start. Let us do our initial commit with
the following command

$ git commit -am "Initial commit of my amazing project. Add my first amazing file and say Hello world!"

It should look like this:

[image: ../_images/git_commit.png]

After the -am options (which means that we add the files (here we add the file in the commit and
not in the tracking system of Git), and we type the
message
of our commit just after the command), we put a message to describe what we have done between parenthesis.

If we now look at the status of our project

[image: ../_images/git_status_2.png]

Everything is clean. We just did our first commit! :)

5.1.2.4.6. The log command

The log command will give us the complete history of the commits since the beginning of the project.

$ git log

It should look like this:

[image: ../_images/git_log.png]

We can see that for each commit we have:

	An id that has been attributed to the commit, which is the big number in orange.

	The name and email address of the author.

	The date and time of the commit.

	The message that the author has written.

In the following we will use the –oneline option to get the useful information in a more compact way.

$ git log --oneline

It should look like this:

[image: ../_images/git_log_oneline.png]

5.1.2.4.7. The diff command

The diff command is here to tell us what have changed since our last commit.

Let us now put some interesting content in our file. We will found this in the textart.me [https://textart.me/#animalsandbirds] website. Let’s choose an
animal and copy paste it into our file. (Textart is the art of drawing something with some keyboard characters. It
would be equivalent to just add a sentence in the file).

[image: ../_images/git_textart.png]

Let’s go for the monkey, he is fun!

[image: ../_images/git_add_monkey_in_file.png]

Let’s not forget to save the file.

What happen if we ask for a difference from Git, with the diff command?

$ git diff

It should look like this:

[image: ../_images/git_diff.png]

In green appears what we have added, in red appears what we have removed.

The diff command allows us to check what we have modified. Since we are happy with our last modification, we will
commit our changes.

$ git commit -am "The funny monkey has been added."

Let us check what the log says now.

[image: ../_images/git_log_after_monkey.png]

We now have two commits in our history.

5.1.2.4.8. The revert command

The revert command is here if we want to come back to a previous state of
our folder.

Let’s say that we are not happy with the monkey anymore. We would like to come back to the original state of the file
just before we added the monkey. Since we did the things properly, by commiting at every important point, this is a
child play.

We use the revert command and the commit number that we want to cancel. The commit number is found by using the
log –oneline command. In our case it is 6045fb4.

[image: ../_images/git_revert.png]

This command will open Notepad++ (because we configured this editor in the installation section), just close it or
modify the first text line if you want another commit message.

[image: ../_images/git_revert_notepad.png]

Let’s now see the history

[image: ../_images/git_log_after_revert.png]

We can see that the revert operation has been written in the history, just as a usual commit.

Let see how it looks like inside our amazing file (it may be needed to close/reopen the file).

[image: ../_images/git_monkey_dissapear.png]

The monkey actually disappeared! :O

5.1.2.4.9. Work with branches

Within a given project, we can define several branches. Each branch will define different evolutions of the project.
Git allows you to easily switch between those different branches, and to work in parallel on different versions of the
same project. It is a central concept of a version control system.

Up to now, we worked on the default branch, which is by convention named main. This branch should be the most
reliable, the most stable. A good practice is to never work directly on the main branch. We actually
did not follow this rule up to now for simplicity. In order to keep the main branch stable, each time we want to
modify our project, we should create a new branch to isolate our future changes, that may lead to break the
consistency of the code.

Here is a representation of what is the current status of our project.

[image: ../_images/git_branch_initial.svg]
Fig. 5.9 We are on the main branch and we did 3 commits. The most recent commit of the branch is also called HEAD.

We will create a new branch, that we will call develop, with the following command

$ git branch develop

Then, we will switch to this branch, which means that from now on we will work on the develop branch.

$ git switch develop

It should look like this:

[image: ../_images/git_branch.png]

Notice that the name of the branch we are working on in displayed by Git Bash under brackets in light blue.

Within this branch, we will be very safe to try any modification of the code we like, because it will be completely
isolated from the main one.

Let say that we now modify our file by adding some new animals (a bird and a mosquito), and commiting at each time. Here
is a representation of the new status of our project.

[image: ../_images/git_branch_merge.svg]
If we are happy with those two last commits, and we want to include them in the main branch, we will merge the
develop branch into the main one, using the following procedure.

We first have to go back to the main branch. For that, we use

$ git switch main

Then, we tell Git to merge the develop branch into the current one, which is main

$ git merge develop

And we can now delete (with the -d option) the develop branch which is now useless.

$ git branch -d develop

We end up with a main branch that inherited from the last commits of the former develop one (RIP).

[image: ../_images/git_branch_final.svg]
This procedure looks overkill at first sight on such a simple example, but we strongly recommend that you try to stick
with it at the very beginning of your practice with Git. It will make you more familiar with the concept of branch and
force you to code with a precise purpose in mind before doing any modification. Finally, the concept of branch will
become much more powerful when dealing with the remote use of Git.

5.1.2.4.10. Local development workflow

To conclude, the local development workflow is as follow:

	Start from a clean repository.

	Create a new branch develop to isolate the development of my new feature from the stable version of the code in
main. Never work directly on the main branch!

	Do modifications in the files.

	Test that the result is as expected.

	Do a commit.

	Repeat the 3 previous steps as much as necessary. Try to decompose as much as possible any modification into very
small ones.

	Once the new feature is fully operational and tested, merge the develop branch into the main one.

Doing a commit is like saving your progression in a video game. It is a checkpoint where you will always be able to come
back to, whatever you do after.

Once you will be more familiar with Git, you will feel very safe to test any crazy modification of your code!

[image: ../_images/github_logo1.png]

5.1.2.5. Remote use of Git: GitHub

GitHub [https://github.com/] is a free cloud service that allows anyone to have Git repositories on distant servers. Such services
allow their users to easily share their source code. They are an essential actors for the open-source development. You
can find on GitHub such projects as the Linux kernel [https://github.com/torvalds/linux], the software that runs Wikipedia [https://github.com/wikimedia/mediawiki]… and last but not
least: PyMoDAQ [https://github.com/pymodaq/pymodaq]!

Other solutions exist such as GitLab [https://about.gitlab.com/fr-fr/].

5.1.2.5.1. Create an account

First, we will need to create a personal account on GitHub. Please refer to the following tutorial to do so:

Create an account & raise an issue on GitHub

5.1.2.5.2. Create a remote repository

Once our profile is created, we go to the top right of the screen and click on the icon representing our profile.

[image: ../_images/github_new_repository.png]

Let’s create a remote repository.

[image: ../_images/github_new_repository_2.png]

[image: ../_images/github_new_repository_3.png]

Let’s call it monkey_repository and click on Create repository.

Note

Note that we can create a public or a private repository. If we want the other users of GitHub
to have access to the
code that we will put in this repository, we will make it public. Otherwise we will make it private.

Let’s stop here for a bit of vocabulary:

	Our local repository is the local folder that we created and configured to be followed by Git. Here it is our
MyLocalRepository folder, that is stored on our local machine.

	We call remote repository the one that we just created. Its name is monkey_repository and its Git address is
https://github.com/Fakegithubaccountt/monkey_repository.git.

	When we will talk about pushing, we will mean that we upload the state of our local repository to the remote
repository.

	When we will talk about cloning, we will mean that we downloaded the state of the remote repository to a local
repository.

All this is summed up in the following schematic.

[image: ../_images/git_local_remote_repositories.png]

5.1.2.5.3. Authentication to GitHub with an SSH key

To get authorized by GitHub to interact with our remote repository, we will need to authenticate to it.
Hopefully, it will not let anyone push what he wants on this repository!
We have to prove him that we own the repository.
The authentication is a bit more complicated than using a password, we will use the SSH protocol. No worries,
everything is explained step by step in the following tutorial:

Authenticate to GitHub with an SSH key

5.1.2.5.4. Push our local repository to GitHub

We started this tutorial from a local folder, and then created a remote repository on our GitHub account.
For now the latter is empty.
What we will do now is to push the content of our local repository to our remote repository.

Note

Note that it is not obvious that we will always work this way. Most of the time, we will start by cloning a remote
repository to our local machine.

With the following command, we tell Git that our local repository (the folder where we are executing the command) from
now on will be
connected to the remote repository that we just created on GitHub. The latter is called origin by default.
Be careful to be at the root of our local repository to execute the following command:

$ git remote add origin <the Git address of our remote repository>

Note

The Git address of a repository follows the naming convention
https://github.com/GitHub_username/repository_name.git

With the next command, we will check that everything is as expected. We call for information about the remote
repository.

$ git remote -v

It should look like this:

[image: ../_images/git_remote.png]

This is all good. The first line, ending with fetch, means that when we will ask to update our local repository (with
a pull command, we will see that latter), it will call the origin repository. The second line, ending with push,
means that when we will ask to update the remote repository with the work we have done locally, it will go to origin.

Let us try to push our repository!

$ git push -u origin main

Note

Notice that when we push, we push a specific branch, which is main here.

It should look like this:

[image: ../_images/git_push.png]

Our file is online!

[image: ../_images/github_file_online.png]

But it is not like we just store a file on a server, we also have access to all the history of the commits.

[image: ../_images/github_get_commits.png]

Here they are.

[image: ../_images/github_commit_history.png]

Let’s click on the second commit The funny monkey has been added.

[image: ../_images/github_see_monkey_commit.png]

Here he is!

We see that the GitHub website provides an equivalent to what we see in the terminal. The advantage is that now we can
access it from any computer connected to internet!

Finally, the development workflow is as follow:

	Do modifications in the file on our local repository.

	Test that the result is as expected.

	Do a commit.

	We can repeat the previous steps several times.

	At the end of the day, we push all our commits to our remote repository.

Now, our remote repository should always be our reference, and not our local version anymore!

The lastest version of our code must be stored on the server, not locally. Once our push is done, we can safely
delete our local folder. We will be able to get our code back at the latest version at any time from any computer,
thanks to the clone command.

If you have further questions about the management of remote repositories, you can refer to this documentation:

Managing remote repositories (github.com) [https://docs.github.com/en/get-started/getting-started-with-git/managing-remote-repositories?platform=windows]

5.1.2.5.5. The clone command

Ok so let’s do it, let’s delete our local folder MyLocalRepository. We will convince ourself that we can easily find
it back.

Since our work is now stored on a GitHub server, it is not a problem even if our computer goes up in smoke. We can
get it back with the clone command.

First, copy the Git adress of the repository

[image: ../_images/git-clone.png]

Then, at our home location, we execute the command

$ git clone <the Git address of our remote repository>

[image: ../_images/git_clone.png]

[image: ../_images/git_clone_from_remote.png]

We found our work back!

Note

Notice that by default, the clone command will create a folder with the same name as the remote repository,
but this is not mandatory. If you want another name for your local repository you can use
$ git clone <repository url> <your folder name>.

Notice that when we clone a repository, we do not need anymore the init command.
We do not need either to configure the address of the remote repository, Git already
knows where to took it from.

We can follow this procedure for any public repository on GitHub, which allows us to download
basically all the open-source codes in the world!

5.1.2.6. Git in practice: integration within PyCharm

We now master the basics of using Git with the command line (CLI), and it is like this that we get the best control
of Git.
But we should know that there are several
graphical user interfaces (GUI) that can ease the use of Git in the daily life, such as GitHub Desktop [https://docs.github.com/en/desktop/installing-and-authenticating-to-github-desktop/installing-github-desktop]
if we are working with Windows.

However, we will rather recommand to use the direct integration within your favorite Python IDE, because it does not
require to download another software, and because it is cross platform. We will present the practical use of Git with
PyCharm [https://www.jetbrains.com/pycharm/]. The Community Edition is free of charge and has all the functionalities that we need.

5.1.2.6.1. Link our GitHub account to PyCharm

As a first step, we should autorize PyCharm to connect to our GitHub account. We recommand to use a token.
This way we
will not have to enter a password each time PyCharm needs to connect to GitHub. The procedure is described in the
following documentations:

PyCharm & GitHub (jetbrains.com) [https://www.jetbrains.com/help/pycharm/github.html#9c1dc6ec]

PyCharm Integration with GitHub (medium.com) [https://medium.com/@akshay.sinha/pycharm-integration-with-github-876510c6ca1f]

Note

It seems like SSH connection is only for the Professional version of PyCharm, which is charged.

5.1.2.6.2. Clone a project

We first clone the monkey_repository from our GitHub account. Go to Git > Clone…, select the remote repository and
a local folder where the files will be saved (it does not matter where we decide to save locally the repository).

[image: ../_images/pycharm_clone1.png]

5.1.2.6.3. Configure our Python environment

Once the remote repository has been cloned, we have to configure our environment. Go to File > Settings… and select
an existing Conda environment (here it is called pmd4).

[image: ../_images/pycharm_configure_environment.png]

Note

Documentation about setting up a new Python environment can be found here:
PyMoDAQ installation.

5.1.2.6.4. Create a new branch

Here are the main important places on the PyCharm interface to manage Git.

[image: ../_images/pycharm_git_interface.png]

We will follow our best practices and create a new local branch before modifying the files in the repository. To do so
we click on the Git branch button (see screenshot above) and create a new branch that we call
develop.

5.1.2.6.5. Diff, commit and push

Let’s now add a bird in the file.

Then go to Git > Commit… It will open a window that allows us to easily see the files
that have been modified. If we right click on my_new_file.md and select Show diff, we will see the difference
between the two versions of the file, just as with the command line, but with a more evolved interface.

[image: ../_images/pycharm_git_commit.png]

If we are happy with that, we can close this window and Commit & Push our changes with the corresponding button.

5.1.2.6.6. Add a file

Adding a file is also very easy since you just have to Paste it in the right folder within the Project panel of
PyCharm: right click on the corresponding folder and select Paste or New file if you start from an empty one.

It will automatically ask us if we want Git to track the new file.

5.1.2.6.7. Log

If we open the Git bottom panel we can have information about the local and remote branches, and the history of the
commits.

[image: ../_images/pycharm_git_log.png]

5.1.2.7. Conclusion

We now master the basics of the worldwide standard for code development! Following those guidelines, we will code more
efficiently. Git is appropriate for any (descent) language (not Word or Labview!).
It is an indispensable tool if we want to share our code with colleagues and not reinvent the wheel.
Git is one of the reasons why we will make better acquisition programs with PyMoDAQ than with Labview ;)

If you want to go further and learn how to contribute to any external open-source code, we invite you to pursue with the
tutorial

How to contribute to PyMoDAQ’s code?

Finally, here are a few external ressources:

The YouTube channel of Grafikart (in French) [https://www.youtube.com/watch?v=rP3T0Ee6pLU&list=PLjwdMgw5TTLXuY5i7RW0QqGdW0NZntqiP&index=2]

The course of OpenClassroom (in English) [https://openclassrooms.com/en/courses/7476131-manage-your-code-project-with-git-and-github]

The Pro Git book (in English) [https://git-scm.com/book/en/v2]. Exhaustive and painful. You will probably not need it!

If you have any remarks regarding this tutorial, please do not hesitate to raise an issue
or write an email to the author.

 5.1.3. Authenticate to GitHub with an SSH key

	Author email

	david.bresteau@cea.fr

	Last update

	december 2023

	Difficulty

	Intermediate

[image: ../_images/github_logo.png]

5.1.3. Authenticate to GitHub with an SSH key

In general, when we need to authenticate to a website, we will provide a password. Since quite recently, it is not
possible to make our local Git connect to GitHub with a password. It is now mandatory to connect with the SSH protocol
for security reasons. We thus have to follow this quite obscure procedure (it is not so bad!). After overcoming this
little difficulty, the reward will be that we will not have to enter any password anymore to interact with GitHub!

5.1.3.1. Prerequisite

To follow this tutorial, you should already have a GitHub account and Git installed on your local machine. If it is not
the case, please start with the following tutorials:

Create an account & raise an issue on GitHub

Basics of Git and GitHub

5.1.3.2. What is SSH?

SSH, for Secure SHell, is a protocol that permits to connect to distant servers safely. Underlying it uses public-key
cryptography to implement a secure connection between our local machine (the client) and GitHub (the server). Each of
the two parts will have a public and a private key. Those keys are basically big numbers stored in files.

If you want to know more about SSH, you can read this documentation: About SSH (GitHub) [https://docs.github.com/en/authentication/connecting-to-github-with-ssh/about-ssh]

5.1.3.3. How to make a secure connection with SSH?

Let’s take a big breath, we do not need to know what is happening in details! We will just follow blindly the procedure
that is proposed by GitHub. Basically there are 3 steps:

	We have to generate our private and public SSH keys (our SSH key pair). Our private key will be kept on our local
machine.

	We then have to add our private key to the ssh-agent. Whatever the ssh-agent is… let say it means that we tell
SSH to take this new private key into account and manage it.

	Finally, we will have to add our public key to our GitHub account.

Let’s go!

5.1.3.3.1. Generate our SSH key pair

Let’s open a Git Bash terminal.

Note

If you are working with Windows, Git Bash should be installed on your machine. If it is not the case, follow the
procedure that is described in the tutorial Basics of Git and GitHub.
If you are working with Ubuntu, just use a standard terminal.

Copy-paste the following command that will generate our key pair. We should replace the email address by the one that is
linked to our GitHub account.

$ ssh-keygen -t ed25519 -C "your_email@example.com"

Press Enter to every question that is prompted.

We now have several files that are stored in a .ssh folder that have been created at our home (C:\Users\dbrestea). If
you do not see the .ssh directory maybe you need a Ctrl + H to show the hidden folders.

[image: ../_images/ssh_keygen_in_ssh.png]

The id_ed25519.pub file contains our public key. The id_ed25519 file contains our private key. We
should never reveal the content of the latter, it must stay only on our local machine.

5.1.3.3.2. Add our private key to the ssh-agent

Now that we have our key pair, we must tell SSH to manage this key, using the following command

$ ssh-add ~/.ssh/id_ed25519

5.1.3.3.3. Add our public key to our GitHub account

We will now copy the content of our public key with the following command, which is equivalent to opening the file and
copying its content to the clipboard

$ clip < ~/.ssh/id_ed25519.pub

Note

Notice that we use the public key here by taking the file with the .pub extension.

We now have to paste it in our GitHub settings.

[image: ../_images/github_account_settings.png]

[image: ../_images/github_add_ssh_public_key.png]

And paste the key in the form

[image: ../_images/github_add_ssh_public_key_form.png]

Finally, press the Add SSH key button. We are done ;)

This section has been inspired by those documentations:

Generating a new SSH key and adding it to the ssh-agent (GitHub) [https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent?platform=windows]

Adding a new SSH key to your GitHub account (GitHub) [https://docs.github.com/en/authentication/connecting-to-github-with-ssh/adding-a-new-ssh-key-to-your-github-account]

5.1.3.4. Concluding remarks

We are now ready to easily and safely interact with our remote repositories on GitHub!

Note that this procedure must be done again each time you want to interact with your GitHub repositories with a
different machine.

If you have any remarks regarding this tutorial please do not hesitate to raise an issue
or write an email to the author.

 5.2. How to modify existing PyMoDAQ’s code?

5.2. How to modify existing PyMoDAQ’s code?

	Author email

	david.bresteau@cea.fr romain.geneaux@cea.fr

	Last update

	january 2024

	Difficulty

	Intermediate

[image: ../_images/github_logo.png]

In this tutorial, we will learn how to propose a modification of the code of PyMoDAQ. By doing so, you will learn how to
contribute to any open-source project!

5.2.1. Prerequisite

We will suppose that you have followed the tutorial

Basics of Git and GitHub

In the latter, we presented how to deal with the interaction of a local repository with a remote repository.
Up to now we just worked on our own. In the following we will learn how to contribute to an external project like
PyMoDAQ!

5.2.2. The PyMoDAQ repositories

Let’s now go to the PyMoDAQ GitHub account [https://github.com/PyMoDAQ].

[image: ../_images/pmd_github_account.png]

There are a lot of repositories, most of them correspond to Python packages. Briefly, there is:

	The PyMoDAQ repository [https://github.com/PyMoDAQ/PyMoDAQ]: this is the core of the code, you cannot run PyMoDAQ without it.

	The plugins’ repositories: those repositories follow the naming convention pymodaq_plugins_<name>. Most of the time,
<name> corresponds to the name of an instrument supplier, like Thorlabs. Those are optional pieces of code. They
will be useful depending on the instruments the final user wants to control.

5.2.3. PyMoDAQ branches

Let’s go to the PyMoDAQ repository [https://github.com/PyMoDAQ/PyMoDAQ].

Note

Be careful not to confuse the PyMoDAQ GitHub account and the repository.

[image: ../_images/pmd_branches.png]

There are several branches of the PyMoDAQ repository. Branches are used to prepare future releases, to develop new
features or to patch bugs, without risking modifying the stable version of the code. The full branch structure is described
at length in the Developer’s guide. For our purposes here, let us just mention the two
most important branches:

	the stable branch. It is the present state of the code. When you install PyMoDAQ with pip, it
is this version of the code that is downloaded.

	The development branch. It is ahead of the main branch, in the sense that it contains more
recent commits than the main branch. It is thus the future state of the code. This is where the last developments
of the code of PyMoDAQ are pushed. When the developers are happy with the state of this branch, typically when they
finished to develop a new functionality and they tested it, they will merge the develop branch into the main branch,
which will lead to a new release of PyMoDAQ.

5.2.4. How to propose a modification of the code of PyMoDAQ?

Compared to the situation in the Basics of Git and GitHub tutorial, where we had to deal with
our local repository and our remote repository, we now have
to deal with an external repository on which we have no right. This external repository, which in our example is the
PyMoDAQ one, is called the upstream repository. The workflow is represented the schematic below and we will
detail each step in the following.

[image: ../_images/git_full_repositories.png]

5.2.4.1. (1) Fork the upstream repository

Note

In the screenshots below, the stable and development branches are called main and pymodaq-dev. This naming scheme
is now deprecated. Branch names now correspond to the current PyMoDAQ versions. For instance, if the current stable
version is 5.6.2, the stable branch will be called 5.6.x and the development branch will be called 5.7.x_dev.

While we are connected to our GitHub account, let’s go to the PyMoDAQ repository and select the pymodaq-dev branch.
Then we click on the Fork button.

[image: ../_images/fork_pmd.png]

This will create a copy of the PyMoDAQ repository on our personal account, it then become our remote repository and we
have every right on it.

[image: ../_images/fork_pmd_on_quantumm.png]

Every modification of the code of PyMoDAQ should first go to the pymodaq-dev branch, and not on the main branch.
The proper way to propose our contribution is that we create a branch from the pymodaq-dev branch, so that it will
ease
the integration of our commits and isolate our work from other contributions.

We create a branch monkey-branch from the pymodaq-dev branch.

[image: ../_images/create_branch.png]

5.2.4.2. (2) Clone our new remote repository locally

We will now clone our remote repository locally.

Open PyCharm. Go to Git > Clone… and select the PyMoDAQ repository, which correspond to our recent fork.

[image: ../_images/pycharm_clone.png]

Note

Here we put the local repository inside a PyCharmProject folder and called it PyMoDAQ, but you can change those
names if you wish.

We configure PyCharm so that we have the good Python interpreter and we choose the monkey_branch of our remote
repository.

[image: ../_images/pycharm_configuration.png]

5.2.4.3. (3) Do modifications and push

We now have the PyMoDAQ code on our local machine. We will put the monkey into the README.rst file at the root of the
PyMoDAQ package. This file is the one that is displayed at the home page of a GitHub repository.

We can now go to Git > Commit…, right click on the file and Show Diff.

[image: ../_images/pycharm_add_monkey_in_readme.png]

If we are happy with our modifications,
let’s add a commit message and click Commit and Push.

[image: ../_images/pycharm_push.png]

This is the result on our remote repository.

[image: ../_images/monkey_in_remote_repository.png]

We will now propose this modification, so that the monkey would appear at the front page of the PyMoDAQ repository!

5.2.4.4. (4) Pull request (PR) to the upstream repository

We can be very proud of our modification, but of course, this will not be implemented directly, we will need the
agreement of the owner of the PyMoDAQ repository.

Opening a pull request is proposing a modification of the code to the owner of the upstream repository.

This can
be done through the GitHub website, at the location of our repository. Either click to Compare & pull request or to
the Pull requests tab and New pull request.

[image: ../_images/pull_request_the_monkey.png]

Be careful to properly select the branch of our repository and the branch of the upstream repository, and then Send.

[image: ../_images/github_pull_request.png]

That’s it! We now have to wait for the answer of the owner of the upstream repository. Let’s hope he will appreciate
our work!
We can see the status of our PR on the PyMoDAQ repository home page, by clicking on the Pull requests tab.
There a discussion will be opened with the owner of the repository.

[image: ../_images/pmd_pr_tab.png]

Note that opening a PR does not prevent us from working on our remote repository anymore, while waiting for the answer
of the owner of the upstream repository.
If we continue to commit some changes to the branch that we used for our PR (the monkey_branch here), the PR will
be automatically updated, and the new commits will be considered as part of the PR.
If we want to pursue the work but not put the following commits in the PR, we can start a new branch from the
monkey_branch.

 5.3. How to create a new plugin/package for PyMoDAQ?

5.3. How to create a new plugin/package for PyMoDAQ?

	Author email

	sebastien.weber@cemes.fr

	Last update

	january 2024

	Difficulty

	Intermediate

In this tutorial, we will learn how to create a brand new plugin either for adding instruments, models or
extensions!

5.3.1. Prerequisite

We will suppose that you have followed these tutorials:

	Basics of Git and GitHub

	How to modify existing PyMoDAQ’s code?

In the latter, we presented how to interact with existing repositories but what if:

	you have an instrument from a manufacturer that doesn’t have yet its package!

	you want to build a brand new extension to the DashBoard!

No worries, you don’t have to start from scratch, but from a fairly complete template package!

5.3.2. The PyMoDAQ’s plugin template repository

Among all the PyMoDAQ related github repository, there is one that is not a real one. This is the
pymodaq_plugins_template [https://github.com/PyMoDAQ/pymodaq_plugins_template] (see Fig. 5.10)

[image: ../_images/template_repo.png]

Fig. 5.10 The Template repository to create new plugin packages!

You see that on this repository home page, a new green button Use this template appeared (red box on figure).
By clicking on it, you’ll be prompted to create a new repository. In the next page, you’ll be prompted to enter
a owner and a name for the repo, see Fig. 5.11:

[image: ../_images/create_new_repo.png]

Fig. 5.11 The creation page of the new plugin repository

In there, you can choose as a owner either yourself or the PyMoDAQ organisation if you’re already part of it. If not
but you are willing, just send an email to the mailing list asking for it and you’ll be added and set as the
manager of your future new plugin package. The name of the plugin as to follow the rule:
pymodaq_plugins_<my_repo_name> where you have to replace <my_repo_name> by the name of the manufacturer if you’re
planning to add instruments or a clear name for your application/extension… Make it Public because we want to share
our work within the PyMoDAQ community!

That’s it, your new github repo compatible with PyMoDAQ is created. You now have to properly configure it!

5.3.3. Configuring a new plugin repository

For a correct configuration (for your plugin be installable and recognised by PyMoDAQ), you’ll have to modify a few
files and folders. Fig. 5.12 highlight the package initial structure. You’ll have to:

	rename with the new package name the two directories in highlighted red

	fill in the appropriate information in plugin_info.toml and README.rst files, highlighted in green

	rename the python instrument file, highlighted in purple with the dedicated instrument name (see
Story of an instrument plugin development for details on instrument, python file and class name convention).

	add appropriate default settings in the config_template.toml file (do not rename it) in the resources folder,

	remove the unused instrument example files of the template repository in the daq_move_plugins and
daq_viewer_plugins subfolders.

	Modify and configure the automatic publication of your package on the Pypi server (see Publishing on Pypi)

[image: ../_images/template_repo_structure.png]

Fig. 5.12 The template package initial structure

5.3.4. Publishing on Pypi

In the Python ecosystem, we often install packages using the pip application. But what happens when we execute
pip install mypackage? Well pip is actually looking on a web server for the existence of such a package, then
download it and install it. This server is the Pypi Python Package Index [https://pypi.org/]

Developers who wish to share their package with others can therefore upload their package there as it is so easy to
install it using pip. To do that you will need to create an account on Pypi:

[image: ../_images/pypi_account.png]

Fig. 5.13 Creation of an account on Pypi

Note

Until recently (late 2023) only a user name and password were needed to create the account and upload packages. Now
the account creation requires double identification (can use an authentication app on your mobile or a token). The
configuration of the Github action for automatic publication requires also modifications… See below.

You have to configure an API token with your pypi account. This token will allow you to create new package on your
account, see API Token [https://pypi.org/help/#apitoken] for more in depth explanation. This pypi package initial
creation and later on subsequent versions upload may be directly triggered from Github using one of the configured
Actions. An action will trigger some process execution on a distant server using the most recent code on your
repository. The actions can be triggered on certain events. For instance, everytime a commit is made, an action is
triggered that will run the tests suite and let developers know of possible issues. Another action is triggered when
a release is created on github. This action will build the new version of the package (the released one) and upload
the new version of the code on pypi. However your github account (at least the one that is the owner of the repository)
should configure what Github call Secrets. Originally they were the pypi user name and password. Now they should be the
__token__ string as username and the API token generated on your pypi account as the password. The yaml file
corresponding to this action is called python-publish.yml stored in the .github folder at the root of your package.
The content looks like this:

name: Upload Python Package

on:
 release:
 types: [created]

jobs:
 deploy:

 runs-on: ubuntu-latest

 steps:
 - uses: actions/checkout@v2
 - name: Set up Python
 uses: actions/setup-python@v2
 with:
 python-version: '3.11'
 - name: Install dependencies
 run: |
 python -m pip install --upgrade pip
 pip install setuptools wheel twine toml "pymodaq>=4.1.0" pyqt5

 - name: create local pymodaq folder and setting permissions
 run: |
 sudo mkdir /etc/.pymodaq
 sudo chmod uo+rw /etc/.pymodaq

 - name: Build and publish
 env:
 TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
 TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
 run: |
 python setup.py sdist bdist_wheel
 twine upload dist/*

were different jobs, steps and actions (run) are defined, like:

	execute all this on a ubuntu virtual machine (could be windows, macOS…)

	Set up Python: configure the virtual machine to use python 3.11

	Install dependencies: all the python packages necessary to build our package

	create local pymodaq folder and setting permissions: make sure pymodaq can work

	Build and publish: the actual thing we are interested in, building the application from the setup.py file
and uploading it on pypi using the twine application

For this last step, some environment variable have been created from github secrets. Those are the __token__ string
and the API token. We therefore have to create those secrets on github. For this, you’ll go in the settings tab (see
Fig. 5.14) to create secrets either on the organization level or repository level (see PyMoDAQ example
on the organisation level, Fig. 5.15).

[image: ../_images/github_settings.png]

Fig. 5.14 Settings button on github

[image: ../_images/github_secrets.png]

Fig. 5.15 Secrets creation on Github

That’s it you should have a fully configured PyMoDAQ’s plugin
package!! You now just need to code your actual instrument or extension, for this look at Story of an instrument plugin development

Note

Starting with PyMoDAQ version 4.1.0 onwards, old github actions for publication and suite testing should be updated in
the plugin packages. So if you are a package maintainer, please do so using the files from the template repository.

 5.4. Story of an instrument plugin development

5.4. Story of an instrument plugin development

In this tutorial, we will explain step by step the way to develop an instrument plugin. It is a specific type of plugin, that will allow you to control your device through PyMoDAQ.

As PyMoDAQ is not a library for professional developers, we consider that you reader do not know anything about how the development of an open source project works. We will take the time to start from scratch, and allow us to expand the scope of this documentation out of PyMoDAQ itself, to introduce Python environment, Git, external python libraries…

Rather than looking for a general and exhaustive documentation, we will illustrate the development flow with a precise example. We will go step by step through the development of the PI E-870 controller instrument plugin: from the reception of the device up to controlling it with PyMoDAQ. This one is chosen to be quite simple and standard. This controller can be used for example to control PiezoMike actuators, as illustrated below.

[image: ../_images/PI_E870%26PiezoMike.png]

Fig. 5.16 The PI E-870 controller and PiezoMike actuators mounted on an optical mount.

The benefit of writing an instrument plugin is twofold:

	Firstly, you will learn a lot about coding, and coding the good way! Using the most efficient tools that are used by professional developpers. We will introduce how to use Python editors, linters, code-versioning, testing, publication, bug reporting, how to integrate open-source external libraries in your code… so that in the end you have a good understanding of how to develop a code in a collaborative way.

	Secondly, writing an instrument plugin is a great opportunity to dig into the understanding of your hardware: what are the physical principles that make my instrument working? How to fully benefit of all its functionalities? What are the different communication layers between my device and my Python script?

Writing an instrument plugin is very instructive, and perfectly matches a student project.

5.4.1. The controller manual

Let’s not be too impatient and take the time to read the controller manual [https://github.com/quantumm/pymodaq_plugins_physik_instrumente/blob/E-870/docs/E870/PI_E870_controller_user_manual.pdf], in the introduction we can read

“the E-870 is intended for open-loop operation of PIShift piezo inertia drives.” (page 3)

Ok but what is this PIShift thing? It is quite easy to find those videos that make you understand in a few tens of seconds the operating principle of the actuator:

PIShift drive principle [https://www.youtube.com/watch?v=mAiQsfmpYbI]

PiezoMike linear actuator [https://www.youtube.com/watch?v=oVRv9fcx6AI]

Nice! :)

What is open-loop operation? It means the system has no reading of the actuator position, as opposed to a close-loop operation. The open-loop operation is simpler and cheaper, because it does not require any encoder or limit switch, but it means that you will have no absolute reference of your axis, and less precision. This is an important choice when you buy an actuator, and it depends on your application. This will have big impact on our instrument plugin development.

“The E-870 supports one PIShift channel. The piezo voltage of the PIShift channel can be transferred to one of
two (E-870.2G) or four (E-870.4G) demultiplexer channels, depending on the model. Up to two or four PIShift
drives can be controlled serially in this manner.” (page 19)

Here we learn that in this controller, there is actually only one channel followed by a demultiplexer that will distribute the amplified current to the addressed axis. This means that only one axis can be moved at a time, the drives can only be controlled serially. This also depends on your hardware, and is an important information for the instrument plugin development.

5.4.2. The installer

It is important to notice that PyMoDAQ itself does not necessarily provide all the software needed to control your device. Most of the time, you have to install drivers, which are pieces of software, specific to each device, that are indispensable to establish the communication between your device and the operating system. Those are necessarily provided by the manufacturer. The ones you will install can depend on your operating system, and also on the way your establish the communication between them. Most of the time, you will install the USB driver for example, but this is probably useless if you communicate through Ethernet.

Let’s now run the installer provided in the CD that comes with the controller. The filename is PI_E-870.CD_Setup.exe. It is an executable file, which means that it hosts a program.

[image: ../_images/PI_installer.svg]
Fig. 5.17 The GUI of the installer.

On the capture on the right, you can see what it will install on your local computer, in particular:

	Documentation.

	A graphical user interface (GUI) to control the instrument, called the PI E870Control.

	Labview drivers: we will NOT need that! ;)

	A DLL library: PI GCS DLL. We will talk about that below.

	Some programming examples to illustrate how to communicate with the instrument depending on the programming language you use.

	USB drivers.

Whatever the way you want to communicate with your device, you will need the drivers. Thus, again, you need to install them before using PyMoDAQ.

Once those are installed, plug the controller with a USB cable, and go to the Device settings of Windows. An icon should appear like in the following figure. It is the first thing to check when you are not sure about the communication with your device. If this icon does not appear or there is a warning sign, change the cable or reinstall the drivers, no need to go further. You can also get some information about the driver.

[image: ../_images/peripherique_imprimante.svg]
Fig. 5.18 The Device settings window on Windows.

In the following, we will follow different routes, as illustrated in the following figure to progressively achieve the complete control of our actuator with PyMoDAQ. In the following we will name them after the color on the figure.

[image: ../_images/software_layers_V2.png]

Fig. 5.19 The different routes (blue, gold, green) to establish the communication between the computer and the controller.

5.4.3. The blue route: use the manufacturer GUI

The simplest way to control your device is to use the GUI software that is provided by the manufacturer. It is usefull while you are under development, but will be useless once you have developped your plugin. PyMoDAQ will replace it, and even provide much broader functionalities. While a specific manufacturer GUI talks to only one specific device, PyMoDAQ provides to you a common framework to talk to many different instruments, synchronize them, save the acquisitions, and many more!

In the main tab, we found the buttons to send relative move orders, change the number of steps, change the controlled axis (in this example we can control 4 axis). Check all that works properly.

The second tab goes to a lower level. It allows us to directly send commands from the PI GCS library. We will see that below.

[image: ../_images/E870_GUI.svg]
Fig. 5.20 Captures of the GUI provided by PI. Left: Interface to move the actuators and change the axis. Right: Interface to send GCS commands (see below).

Whenever you want to control a device with PyMoDAQ for the first time, even if you do not develop a plugin, you should first check that the manufacturer software is able to control your device. It is a prerequisite before using PyMoDAQ. By doing so we already checked a lot of things:

	The drivers are correctly installed.

	The communication with the controller is OK.

	The actuators are moving properly.

We are now ready for the serious part!

5.4.4. A shortcut through an existing green route? Readily available PyMoDAQ instrument plugins

Before dedicating hours of work to develop your own solution, we should check what has already been done. If we are lucky, some good fellow would already have developped the instrument plugin for our controller!

Here is the list of readily available plugins [https://github.com/CEMES-CNRS/pymodaq_plugin_manager/blob/main/doc/PluginList.md].

Each plugin is a Python package, and also a Git repository (we will talk about that later).

By convention, an instrument plugin can be used to control several devices, but only if they are from the same manufacturer. Those several hardwares can be actuators or detectors of different dimensionalities. The naming convention for an instrument plugin is

pymodaq-plugins-<manufacturer name>

Note

Notice the “s” at the end of “plugins”.

Note

Any kind of plugin should follow the naming convention pymodaq-plugins-<something more specific>, but an instrument plugin is a specific kind of plugin. For (an advanced) example, imagine that we create a beam pointing stabilization plugin, and that this system uses devices from different companies. We could have an actuator class that controls a SmarAct optical mount, a detector class that control a Thorlabs camera, and a PID model specifically designed for our needs. In that case we could use the name pymodaq-plugins-beam-stabilization.

All the plugins that are listed there can directly be installed with the plugin manager.

Some of those - let say the official ones - are hosted by the PyMoDAQ organization on GitHub [https://github.com/PyMoDAQ], but they can also be hosted by other organizations. For example, the repository pymodaq-plugins-greateyes [https://pypi.org/project/pymodaq-plugins-greateyes] is hosted by the ATTOLab organization, but you can directly install it with the plugin manager.

[image: plugin greateyes]

Fig. 5.21 The PyPI page of the greateyes plugin. If you click on Homepage you will find the Git repository page.

Remember that the already developed plugins will give you a lot of working examples, probably the way you will develop your own plugin will be very similar to one that already exist.

It sounds like we are very lucky… the PI plugin already exists!

[image: plugin pi in list]

Fig. 5.22 There is already a PI plugin in the list of available plugins.

Let’s try it!

Firstly, we have to install PyMoDAQ in a dedicated Python environment, that we will call pmd_dev in this tutorial.

Now that PyMoDAQ is installed and you have activated your environment (the lign of your terminal should start with (pmd_dev)), we will try to install the PI instrument plugin with the plugin manager. In your terminal, execute the following command

(pmd_dev) >plugin_manager

This will pop-up a window like this, select the plugin we are interested in and click Install

[image: plugin manager]
Fig. 5.23 Interface of the plugin manager.

Now let’s launch a DAQ_Move

(pmd_dev) >daq_move

[image: ../_images/daq_move.svg]
Fig. 5.24 DAQ Move interface.

	The list of available actuator contains the PI one, that sounds good!

	Let select the USB connection type.

	The list of available devices contains our controller with his serial number! That sounds really good because it means that the program can see the controller!

	Let’s launch the initialization! Damn. The LED stays red! Something went wrong…

In a perfect world this should work, since we followed the proper way. But PyMoDAQ is a project under development, and some bugs may appear. Let’s not be discouraged! Actually we should be happy to have found this bug, otherwise we would not have the opportunity to explain how to face it.

What do we do now?

First, let’s try to get more information about this bug. PyMoDAQ automatically feeds a log file, let’s see what it has to tell us. You can find it on your computer at the location

<OS username>/.pymodaq/log/pymodaq.log

or you can open it through the Dashboard menu :

File > Show log file

It looks like this

[image: ../_images/pi_existing_plugin_error.svg]
Fig. 5.25 The log file of PyMoDAQ after trying to initialize the plugin.

This log file contains a lot of information that is written during the execution of PyMoDAQ. It is sorted in chronological order. If you find a bug, the first thing to do is thus to go at the end of this file.

In the above capture, we see that the first line indicates the moment we clicked on the Initialization button of the interface.

In the following we see that an error appeared: Unknown command (2). The least we can say is that it is not crystal clear to deduce the error from this!

At this point, we will not escape from digging into the code. If you do not feel like it, there is a last but very important thing that you can do, which is to report the bug. Try to detail as much as possible every step of your problem, and copy paste the part of the log file that is important. Even if you do not provide any solution, this reporting will be a usefull step to make PyMoDAQ better.

You dispose of several ways to do so.

	Leave a message in the PyMoDAQ mailing list pymodaq@services.cnrs.fr.

	Leave a message to the developper of the plugin.

	Raise an issue on the GitHub repository associated to the plugin (you need to create an account, which is free). This last option is the most efficient because it targets precisely the code that raises a problem. Plus it will stay archived and visible to anyone that would face the same problem in the future.

[image: ../_images/github_raise_issue.svg]
Fig. 5.26 How to raise an issue on a GitHub repository.

Now we have gone as far as possible we could go without digging into the code, but if you are keen on it, let’s continue on the gold route (Fig. 5.19)!

5.4.5. The gold route: control your device with a Python script

We are now ready to tackle the core of this tutorial, and learn how to write a Python code to move our actuator. Let’s first introduce some important concepts.

5.4.5.1. What is a DLL?

As you may have noticed, the installer saved locally a file called PI_GCS2_DLL.dll.

The .dll file is a library that contains functions that are written in C++. It is an API [https://en.wikipedia.org/wiki/API] between the controller and a computer application like PyMoDAQ or the PI GUI. It is made so that the person that intends to communicate with the controller is forced to do it the proper way (defined by the manufacturer’s developers). You cannot see the content of this file, but it is always provided with a documentation.

If you want to know more about DLLs, have a look at the Microsoft documentation [https://learn.microsoft.com/en-us/troubleshoot/windows-client/deployment/dynamic-link-library].

Note

We suppose in this documentation that you use a Windows operating system, because it is the vast majority of the cases, but PyMoDAQ is also compatible with Linux operating systems. If you wish to control a device with a Linux system, you have to be careful during your purchase that your manufacturer provides Linux drivers, which is unfortunately not always the case. The equivalent of the .dll format for a Linux operating system is a .so file. PI provide such file, which is great! The development of Linux-compatible plugins will be the topic of another tutorial.

The whole thing of the gold route is to find how to talk to the DLL through Python.

In our example, PI developped a DLL library that is common to a lot of its controllers, called the GCS 2.0 library (it is the 2.0 version that is adapted to our controller). The associated documentation [https://github.com/quantumm/pymodaq_plugins_physik_instrumente/blob/E-870/docs/E870/PI_GCS_2_0_DLL_SM151E220.pdf] is quite impressive at first sight: 100+ (harsh!) pages.

This documentation is supposed to be exhaustive about all the functions that are provided by the library to communicate with a lot of controllers from PI. Fortunately, we will only need very few of them. The challenge here is to pick up the good information there. This is probably the most difficult part of an instrument plugin development. This is mostly due to the fact that there is no standardization of the way the library is written. Thus the route we will follow here will probably not be exactly the same for another device. Here we also depend a lot on the quality of the work of the developers of the library. If the documentation is shitty, that could be a nightmare.

Note

Our example deals with a C++ DLL, but there are other ways to communicate with a device: ASCII commands, .NET libraries (using pythonnet [https://pypi.org/project/pythonnet/])…

5.4.5.2. What is a Python wrapper?

As we have said in the previous section, the DLL is written in C++. We thus have a problem because we talk the Python! A Python wrapper is a library that defines Python functions to call the DLL.

5.4.5.3. PIPython wrapper

Now that we introduced the concepts of DLL and Python wrapper, let’s continue with the same philosophy. We want to be efficient. We want to go straight to the point and code as little as possible. We are probably not the first ones to want to control our PI actuator with a Python script! Asking a search engine about “physik instrumente python”, we directly end up to the PI Python wrapper called PIPython.

[image: ../_images/pipython_github_page.png]

Fig. 5.27 The PIPython repository on GitHub.

We can now understand a bit better the error given in the PyMoDAQ log earlier. It actually refers to the pipython package. This is because the PI plugin that we tested actually uses this library.

Note

All the Python packages of your environment are stored in the site-packages folder. In our case the complete path is C:\Users\<OS username>\Anaconda3\envs\pmd_dev\Lib\site-packages. Be careful to not end up in the base environment of Anaconda, which is located at C:\Users\<OS username>\Anaconda3\Lib\site-packages.

That’s great news! The PI developpers did a great job, and this will save us a lot of time. Unfortunately, this is not always the case. There are still some less serious suppliers that do not provide an open-source Python wrapper. You should consider this as a serious argument before you buy your lab equipment, as it can save you a lot of time and struggle. Doing so, you will put some pressure on the suppliers to develop Python open-source code, so that we can free our lab instruments!

5.4.5.4. External open-source libraries

In our example, our supplier is serious. Probably the wrapper it developped will do a good job. But let us imagine that it is not the case, and take a bit of time to present a few external libraries.

PyMoDAQ is of course not the only project of its kind. You can find on the internet a lot of non-official resources to help you communicate with your equipment. Some of them are so great and cover so much instruments that you should automatically check if your device is supported. Even if your supplier proposes a solution, it can be inspiring to have a look at them. Let’s present the most important ones.

PyLabLib

PyLabLib [https://pylablib.readthedocs.io/en/latest/index.html] is a very impressive library that interfaces the most common instruments that you will find in a lab:

	Cameras: Andor, Basler, Thorlabs, PCO…

	Stages: Attocube, Newport, SmarAct…

	Sensors: Ophir, Pfeiffer, Leybold…

… but also lasers, scopes, Arduino… to cite a few!

Here is the complete list of supported instruments [https://pylablib.readthedocs.io/en/latest/devices/devices_root.html].

Here is the GitHub repository [https://github.com/AlexShkarin/pyLabLib].

PyLabLib is extremely well documented and the drivers it provides are of extremely good quality: a reference!

[image: ../_images/pylablib_page.png]

Fig. 5.28 The PyLabLib website.

Of particular interest are the camera drivers, that are often the most difficult ones to develop. It also proposes a GUI as a side project to control cameras: cam control [https://pylablib-cam-control.readthedocs.io/en/latest/overview.html].

Instrumental

Instrumental [https://instrumental-lib.readthedocs.io/en/stable/index.html] is also a very good library that you should know about, which covers different instruments.

Here is the list of supported instruments [https://instrumental-lib.readthedocs.io/en/stable/overview.html#drivers].

As you can see with the little script that is given as an example, it is super easy to use.

Instrumental is particularly good to create drivers from DLL written from C where one have the header file, autoprocessing the function signatures…

[image: ../_images/instrumental_page.png]

Fig. 5.29 The Instrumental website.

PyMeasure

PyMeasure [https://pymeasure.readthedocs.io/en/latest/] will be our final example.

You can find here the list of supported instruments [https://pymeasure.readthedocs.io/en/latest/api/instruments/index.html] by the library.

This libray is very efficient for all instruments that communicate through ASCII commands (pyvisa [https://pyvisa.readthedocs.io/en/latest/] basically) and makes drivers very easy to use and develop.

[image: ../_images/pymeasure_website.png]

Fig. 5.30 The PyMeasure website.

Installation of external librairies

The installation of those libraries in our environment cannot be simpler:

(pmd_dev) >pip install <library name>

This list is of course not exhaustive. Those external ressources are precious, they will often provide a good solution to start with!

5.4.5.5. Back to PIPython wrapper

Let’s now go back to our E870 controller, it is time to test the PIPython wrapper!

We will install the package pipython in our pmd_dev environment

(pmd_dev) >pip install pipython

after the installation, we can check that the dependencies of this package have been installed properly using

(pmd_dev) >conda list

which will list all the packages that are installed in our environment

[image: ../_images/conda_list_after_pipython_install.png]

Fig. 5.31 List (partial) of the packages that are installed in our environment after installing pipython. We can check that the packages pyusb, pysocket and pyserial are there, as requested by the documentation.

Here we found the documentation of the wrapper [https://pipython.physikinstrumente.com/index.html].

[image: ../_images/pipython_documentation_communication.png]

Fig. 5.32 Quick Start documentation of PIPython to establish the communication with a controller.

It proposes a very simple script to establish the communication. Let’s try that!

We will use the Spyder [https://www.spyder-ide.org/] IDE to deal with such simple script, which is freely available. If you already installed an Anaconda distribution, it should already be installed.

Let’s open it and create a new file that we call script_pmd_pi_plugin.py and copy-paste the script.

It is important that you configure Spyder properly so that the import statement at the begining of the file will be done in our Python environment, where we installed the PIPython package. For this, click on the settings icon as indicated in the following capture.

[image: ../_images/spyder_pipython_script_popup_white.svg]
Fig. 5.33 Running the PIPython quickstart script in the Spyder IDE.

The following window will appear. Go to the Python interpreter tab and select the Python interpreter (a python.exe file for Windows) which is at the root of your environment (in our case our environment is called pmd_dev. Notice that it is located in the envs subfolder of Anaconda). Do not forget to Apply the changes.

[image: ../_images/spyder_select_interpreter_white.svg]
Fig. 5.34 Configure the good Python interpreter in Spyder.

Let’s now launch the script clicking the Run button. A pop-up window appears. We have to select our controller, which is uniquely identify by its serial number (SN). In our exemple it is the one that is underlined in blue in the capture. It seems like nothing much happens…

[image: ../_images/spyder_connect_gcs_object.svg]
Fig. 5.35 Communication established!

…but actually, we just received an answer from our controller!

The script returns the reference and the serial number of our controller. Plus, we can see in the Variable explorer tab that the pidevice variable is now a Python object that represents the controller. For now nothing happens, but this means that our system is ready to receive orders. This is a big step!

[image: ../_images/jurassic_park.png]

Fig. 5.36 System ready.

Now, we have to understand how to play with this GCSDevice object, and then we will be able to play with our actuators!

First, we will blindly follow the quickstart instructions of PIPython, and try this script

[image: ../_images/unknown_command.svg]
Fig. 5.37 Script suggested by the quickstart instructions of PIPython. In our case it returns and error.

Note

If at some point you lose the connection with your controller, e.g. you cannot see its SN in the list, do not hesitate to reset the Python kernel. It is probably that the communication has not been closed properly during the last execution of the script.

Unfortunately this script is not working, and returns GCSError: Unknown command (2).

RRRRRRRRRRRRrrrrrrrrrrrrr!! Ok… this is again a bit frustrating. Something should be quite not precise in the documentation, so we raised an issue [https://github.com/PI-PhysikInstrumente/PIPython/issues/9] in the GitHub repository to explain our problem.

Anyway, that gives us the opportunity to dig into the DLL library!

The first part of the error message indicates that this error is raised by the GCS library. If we search Unknown command in the DLL manual, we actually found it

[image: ../_images/GCS_error_messages.svg]
Fig. 5.38 GCS documentation page 109.

This is actually the error number 2, that explains the (2) at the end of the error message. Unfortunately, the description of the error does not help us at all. Still, it is categorized as a controller error. Plus, the introduction of the section remind us that the PI GCS is a library that is valid for a lot of controllers that are sold by the company. Then, we should expect that some commands of the library cannot be used with any controller. This is also confirmed elsewhere in the documentation.

[image: ../_images/GCS_controller_dependent_functions.svg]
Fig. 5.39 GCS documentation page 29.

Ok, it is more clear now, our controller is telling us that he does not know the MOV command! But how can we know the commands that are valid for our controller? Here again we will find the answer in the GCS manual (the E870 controller manual is not of great help, but the E872 manual [https://github.com/quantumm/pymodaq_plugins_physik_instrumente/blob/E-870/docs/E872/PI_E-872.401_user_manual.pdf] also gives the list of available commands).

At first, this manual looks very difficult to diggest. But actually most of it is dedicated to precise definition of each of the command, and this will be needed only if we actually use it. One should notice that some are classified as communication functions. They are used to establish the communication with the controller, depending on the communication protocol that is used (RS232, USB, TCPIP…). But this is not our problem right now.

Let’s look at the functions for GCS commands. There is a big table that summarizes all the functions with a short description. We should concentrate on that. Here we understand that actually most of those functions can for sure not be used with our controller. As we have seen earlier in this tutorial, our controller is made for open-loop operation. Thus, we can already eliminate all the functions mentioning “close-loop”, “referencing”, “current position”, “limit”, “home”, “absolute”… but on the contrary all the descriptions mentioning “relative”, “open-loop” should trigger our attention. Notice that some of them start with a q to inform that they are query functions. They correspond to GCS commands that terminate with a question mark. They ask the controller for an information but do not send order. They are thus quite safe, since they will not move a motor for example. Within all those we notice in particular the OSM one, which seems a good candidate to make a relative move

[image: ../_images/GCS_OSM_command.svg]
Fig. 5.40 GCS OSM command short description, page 22.

and the qHLP one, that seems to answer our previous question!

[image: ../_images/GCS_HLP_command.svg]
Fig. 5.41 GCS qHLP command short description, page 24.

Let’s try that! Here is what the controller will answer

[image: ../_images/qHLP_return.svg]
Fig. 5.42 E870 answer to the qHLP command.

That’s great, we now have the complete list of the commands that are supported by our controller. Plus, within it is the OSM one, that we noticed just before!

Let’s now look at the detailed documentation about this command

[image: ../_images/GCS_OSM_command_detailed.svg]
Fig. 5.43 GCS OSM command detailled description.

It seems quite clear that it takes two arguments, the first one seems to refer to the axis we want to move, and the second one, non ambiguously, refers to the number of steps we want to move. So let’s try the following script (if you are actually testing with a PiezoMike actuator be careful that it is free to move!)

[image: ../_images/OSM_script.svg]
Fig. 5.44 Script using the OSM command to move the actuator.

It works! We did it! We managed to move our actuator with a Python script! Yeaaaaaaaaah! :D

Ok let just tests the other axis, we modify the previous script with a 2 as the first parameter of the command

[image: ../_images/OSM_script_channel_2_error.svg]
Fig. 5.45 First test of a script using the OSM command to move the second axis of the controller.

Another error… Erf! That was too easy apparently!

Here, the DLL documentation will not be of great help. It is not clear what is the difference between an axis and a channel. We rather have to remember what we learnt from the controller manual at the begining of this tutorial. The E870 has actually only one channel that is followed by a demultiplexer. So actually, what we have to do, when we want to control another axis, is to change the configuration of the demultiplexer, which is explained in the Demultiplexing section of the manual. Here are described the proper GCS commands to change the axis.

[image: ../_images/demultiplexing.svg]
Fig. 5.46 E870 manual: how to configure the demultiplexer.

Let’s translate that into a Python script

[image: ../_images/demultiplexing_script.svg]
Fig. 5.47 Script to change the controlled axis.

After running again the script with the OSM command, we actually command the second axis! :D

This is the end of the gold route! That was the most difficult part of the tutorial. Because there is no global standard about how to write a DLL library, it is always a bit different depending on the device you want to control. We are in this route very dependent on the quality of the work of the developpers of our supplier, especially on the documentation. Thus, it is always a bit of an investigation throughtout all the documentations and the libraries available on the internet.

All this work has been the opportunity for us to understand in great details the working principles of our device, and to get a complete mastering of all its functionalities. We now master the basics to order anything that is authorized by the GCS library to our controller through Python scripts!

If at some point you are struggling too much in this route, do not hesitate to ask for help. And if you find some bugs, do not hesitate to post an issue. Those are little individual steps that make an open source project works, they are very important!

5.4.5.6. I’ve found nothing to control my device with Python! :(

In the example of this tutorial, our supplier did a good job and provides a good Python wrapper. It was then relatively simple.

If in your case, after a thorough investigation of your supplier website and external libraries you found no ressource, it is time to take your phone and call your supplier. He may have a solution for you. If he refuses to help you, then you will have to write the Python wrapper by your own. It is a piece of work, but doable!

First, you will need the DLL documentation and the .dll file.

Then, one problem you will have to face is that the Python types are different from C, the langage that is used in the DLL. You thus have to make more rigorous type declarations that you would do with Python. Hopefully, the ctypes [https://docs.python.org/3/library/ctypes.html] library is here to help you! The PIPython wrapper itself uses this library (for example see: pipython/pidevice/interfaces/gcsdll.py).

Finally, found examples of codes that are the closest possible to your problem. You can look for examples in other instrument plugins, the wrappers should be in the hardware subfolder of the plugin:

	SmarAct MCS2 wrapper [https://github.com/PyMoDAQ/pymodaq_plugins_smaract/blob/main/src/pymodaq_plugins_smaract/hardware/smaract/smaract_MCS2_wrapper.py]

	Thorlabs TLPM wrapper [https://github.com/PyMoDAQ/pymodaq_plugins_thorlabs/blob/main/src/pymodaq_plugins_thorlabs/hardware/powermeter.py]

5.4.6. The green route: control your device with PyMoDAQ

Now that we know how to control our actuators with Python, it will be quite simple to write our PyMoDAQ plugin, that is what we will learn in this section!

Before doing so, we have to introduce a few tools and prepare a few things that are indispensable to work properly in an open-source project.

5.4.6.1. What is GitHub?

You probably noticed that we refer quite a lot to this website in this tutorial, so what it is exactly?

GitHub is basically a website that provides services to store and develop open-source projects. Very famous open-source projects are stored on GitHub, like the Linux kernel [https://github.com/torvalds/linux] or the software that runs Wikipedia [https://github.com/wikimedia/mediawiki]. PyMoDAQ is also stored on GitHub.

It is based on Git that is currently the most popular version control software. It is made to keep track of every modification that has been made in a folder, and to allow multiple persons to work on the same project. It is a very powerful tool. If you do not know about it, we recommand you to make a few research to understand the basic concepts. In the following, we will present a concrete example about how to use it.

The following preparation will look quite tedious at first sight, but you will understand the beauty of it by the end of the tutorial ;)

5.4.6.2. Prepare your remote repository

First, you should create an account on GitHub (it is free) if you do not have one. Your account basically allows you to have a space where to store your own repositories.

A repository is basically just a folder that contains subfolders and files. But this folder is versioned, thanks to Git. This means that your can precisely follow every change that has been made within this folder since its creation. In other word you have access to every version of the folder since its creation, which means every version of the software in the case of a computer program. And if at some point you make a modification of the code that break everything, you can safely go back to the previous version.

What about our precise case?

We noticed before that there is already a Physik Instrument plugin repository, it is then not necessary to create another one. We would rather like to modify it, and add a new file that would deal with our E870 controller. Let first make a copy of this repository into our account. In the technical jargon of Git, we say that we will make a fork of the repository. The term fork images the fact that we will make a new history of the evolution of the folder. By forking the repository into our account, we will keep track of our modifications of the folder, and the original one can follow another trajectory.

To fork a repository, follow this procedure:

	Log in to your GitHub account

	Go to the original repository (called the upstream repository) (in our case the repository is stored by the PyMoDAQ organisation) and click Fork.

[image: ../_images/pymodaq_pi_repository.svg]
Fig. 5.48 How to fork a repository through GitHub.

GitHub will create a copy of the repository on our account (quantumm here).

[image: ../_images/pi_repository_quantumm_clone.svg]
Fig. 5.49 Our PI remote repository (in our GitHub account). The red boxes indicate how to find the GitHub address of this repository.

This repository stored on our account is called the remote repository.

5.4.6.3. Prepare your local repository

First you should install Git [https://git-scm.com/downloads] on your machine.

Then we will make a local copy of our remote repository, that we will call the local repository. This operation is called cloning. Click the Code icon and then copy in the clipboard the HTTPS address.

In your home folder, create a folder called local_repository and cd into it by executing in your terminal

cd C:\Users\<OS username>\local_repository\

(actually you can do the following in the folder you like).

Then clone the repository with the following command

git clone https://github.com/<GitHub username>/pymodaq_plugins_physik_instrumente.git

this will create a folder at your current location. Go into it

cd pymodaq_plugins_physik_instrumente

Notice that we just downloaded the content of the remote repository.

We will also create a new branch named E-870 with the following command

git checkout -b E-870

Now if you execute the command

git status

the output should start with “On branch E-870”.

[image: ../_images/git_repositories.svg]
Fig. 5.50 Illustration of the operations between the different repositories.

5.4.6.4. Install your package in edition mode

We now enter the Python world and talk about a package rather than a repository, but we are actually still talking about the same folder!

Still in your terminal, check that your Python environment pmd_dev is activated, and stay at the root of the package. Execute the command

(pmd_dev) C:\Users\<OS username>\local_repository\pymodaq_plugins_physik_instrumente>pip install -e .

Understanding this command is not straightforward. In your Python environment, there exists an important folder called site-packages that you should find at the following path

C:\Users\<OS_username>\Anaconda3\envs\dev_pid\Lib\site-packages

[image: ../_images/pmd_dev_site_packages.png]

Fig. 5.51 Content of the site-packages folder of our pmd_dev environment.

The subfolders that you find inside correspond to the Python packages that are installed within this environment. A general rule is that you should never modify manually anything in this folder. Those folders contain the exact versions of each package that is installed in our environment. If we modify them in a dirty way (not versioned), we will very fast loose the control about our modifications. The edition option “-e” of pip is the solution to work in a clean way, it allows to simulate that our package is installed in the environment. This way, during the development period of our plugin, we can safely do any modification in our folder C:\Users\<OS username>\local_repository\pymodaq_plugins_physik_instrumente (refered to by the “.” in the command) and it will behave as if it was in the site-packages. To check that this last command executed properly, you can check that you have a file called pymodaq_plugins_physik_instrumente.egg-link that has been created in the site-packages folder. Note that pip knows with which Python environment to deal with because we have activated pmd_dev.

5.4.6.5. Open the package with an adapted IDE

In this section we will work not only with a simple script, but within a Python project that contains multiple files and that is much more complex than a simple script. For that Spyder is not so well adapted. In this section we will present PyCharm [https://www.jetbrains.com/pycharm/] because it is free and very powerful, but you can probably found an equivalent one.

Once it is opened, go to File > New project. Select the repository folder and the Python interpreter.

[image: ../_images/pycharm_start_project.svg]
Fig. 5.52 Start a project with PyCharm. You have to select the main folder that you will work with, and the Python interpreter corresponding to your environment.

You can for example configure the interface so that it looks like the following figure.

[image: ../_images/pycharm_interface.svg]
Fig. 5.53 PyCharm interface. Left panel: tree structure of the folders that are included in the PyCharm project. Center: edition of the file. Right panel: structure of the file. Here you found the different methods and argument of the Python class that are defined in the file. Bottom: different functionalities that are extremely usefull: a Python console, a terminal, a debugger, integration of Git…

In the left panel, you will find the folder corresponding to our repository, so that you can easily open the files you are interested in. We will also add in the project the PyMoDAQ core folder, so that we can easily call some entry points of PyMoDAQ. To do so, go to File > Open and select the PyMoDAQ folder. Be careful to not get lost in the tree structure, you have to go select the select the folder that is in the good environment. In this case C:\Users\<OS username>\Anaconda3\envs\pmd_dev\Lib\site-packages\pymodaq (in particular, do not mistake with the site-packages of the base Anaconda environment that is located at C:\Users\<OS username>\Anaconda3\Lib\site-packages), click OK and then Attach.

The pymodaq folder should now appear in the left panel, navigate within it, open and Run (see figure) the file pymodaq > daq_move > daq_move_main.py. This is equivalent to execute the daq_move command in a terminal. Thus you should now see the GUI of the DAQ_Move.

5.4.6.6. Debug of the original plugin

As we have noticed before, a lot of things where already working in the original plugin. It is now time to analyse what is happening. For that, we will use the debbuger of our IDE, which is an indispensable to debug PyMoDAQ. You will save a lot of time by mastering this tool! And it is very easy to use.

Let us now open the daq_move_PI.py file. This file defines a class corresponding to the original PI plugin, and you can have a quick look at the methods inside using the Structure panel of PyCharm. Basically, most of the methods of the class are triggered by a button from the user interface, as is illustrated in the following figure.

[image: ../_images/correspondance_methods_GUI.svg]
Fig. 5.54 Each action of the user on the UI triggers a method of the instrument class.

During our first test of the plugin, earlier in this tutorial, we noticed that things went wrong at the moment we click the Initialize button, which correspond to the ini_stage method of the DAQ_Move_PI class. We will place inside this method some breakpoints to analyse what is going on. To do so, you just have to click within the breakpoints column at the lign you are interested in. A red disk will appear, as illustrated by the next capture.

[image: ../_images/pycharm_view_breakpoints_2.svg]
Fig. 5.55 See the breakpoints inside your PyCharm project.

When you run a file in DEBUG mode (bug button instead of play button), it means that PyCharm will execute the file until it finds an activated breakpoint. It will then stop the execution and wait for orders: you can then resume the program up to the next breakpoint, or execute lign by lign, rerun the program from the begining…

When you run the DEBUG mode, notice that a new Debug panel appears at the bottom of the interface. The View breakpoints button will popup a window so that you see where are the breakpoints within all your PyCharm project, that is to say within all the folders that you attached to your project, and that are present in the tree structure of the Project panel. You can also deactivate a breakpoint, in that case it will be notified with a red circle.

[image: ../_images/pycharm_debug_panel.svg]
Fig. 5.56 Execute PyMoDAQ in DEBUG mode.

Let us now run in DEBUG mode the daq_move_main.py file. We select the PI plugin (not the PI E870), the good controller, and initialize. PyCharm stops the execution at the first breakpoint and highlight the corresponding lign in the file. This way we progress step by step up to “sandwitching” the lign that triggers the error with breakpoints. Looking at the value of the corresponding variable, we found again the Unknown command (2) error message that we already had in the PyMoDAQ log file.

[image: ../_images/pycharm_find_bug.svg]
Fig. 5.57 Find the buggy line. The breakpoint lign 163 is never reached. The value of the self.controller.gcscommands.axes variable is Unknown command (2).

Let’s go there to see what happens. We can attach the pipython package to our PyCharm project and look at this axes attribute. In this method we notice the call to the qSAI method, which is NOT supported by our controller! We now have a precise diagnosis of our bug :)

[image: ../_images/pycharm_unknown_command_SAI.svg]
Fig. 5.58 The axes attribute calls the SAI? GCS command that is not supported by the E870 controller.

5.4.6.7. Write the class for our new instrument

Coding a PyMoDAQ plugin actually consists in writting a Python class with specific conventions such that the PyMoDAQ core knows where to find the installed plugins and where to call the correct methods.

The PyMoDAQ plugins template [https://github.com/PyMoDAQ/pymodaq_plugins_template] repository is here to help you follow those conventions and such that you have to do the minimum amount of work. Let see what it looks like!

[image: ../_images/plugin_template_repository.png]

Fig. 5.59 Tree structure of the plugin template repository.

The src directory of the repository is subdivided into three subfolders

	daq_move_plugins which stores all the instruments corresponding to actuators.

	daq_viewer_plugins, which stores all the instruments corresponding to detectors. It is itself divided into subfolders corresponding to the dimensionality of the detector.

	hardware, within which you will find Python wrappers (optional).

Within each of the first two subfolders, you will find a Python file defining a class. In our context we are interested in the one that is defined in the first subfolder.

[image: ../_images/daq_move_template.png]

Fig. 5.60 Definition of the DAQ_Move_Template class.

As you can see the structure of the instrument class is already coded. What we have to do is to follow the comments associated to each line, and insert the scripts we have developped in a previous section (see gold route) in the right method.

There are naming conventions that should be followed:

	We already mentioned that the name of the package should be pymodaq-plugins-<company name>. Do not forget the “s” at “plugins” ;)

	The name of the file should be daq_move_xxx.py and replace xxx by whatever you like (something that makes sense is recommended ;))

	The name of the class here should be DAQ_Move_xxx.

	The name of the methods that are already present in the template should be kept as it is.

Note

Be careful that in the package names, the separator is “-”, whereas in file names, the separator is “_”.

The name of the methods is quite explicit. Moreover, the docstrings are here to help you understand what is expected in each method.

Note

In Python, a method’s name should be lowercase.

Go to the daq_move_plugins folder, you should find some files like daq_move_PI.py, which correspond to the other plugins that are already present in this package.

With a right click, we will create a new file in this folder that we will call daq_move_PI_E870.py. Copy the content of the daq_move_Template.py file and paste it in the newly created file.

Change the name of the class to DAQ_Move_PI_E870.

Run again the daq_move_main.py file.

You should now notice that our new instrument is already available in the list! This is thanks to the naming conventions. However, the initialization will obviously fail, because for now we did not input any logic in our class.

Before we go further, let us configure a bit more PyCharm. We will first fix the maximum number of characters per lign. Each Python project fixes its own convention, so that the code is easier to read. For PyMoDAQ, the convention is 120 characters. Go to File > Settings > Editor > Code Style and configure Hard wrap to 120 characters.

Introduction of the class

We call the introduction of the class the code that is sandwitched between the class keyword and the first method definition. This code will be executed after the user selected the instrument he wants to use through the DAQ_Move UI.

This part of the code from the original plugin was working, so let’s just copy-paste it, and adapt a bit to our case.

[image: ../_images/daq_move_pi_e870_introduction%2Bui.svg]
Fig. 5.61 Introduction of the class of our PI E870 instrument.

First, it is important that we comment the context of this file, this can be done in the docstring attach to the class, PyMoDAQ follows the Numpy style [https://numpydoc.readthedocs.io/en/latest/format.html] for its documentation

Notice that the import of the wrapper is very similar to what we have done in the gold route. However, we do not call anymore the InterfaceSetupDlg() method that was poping up a window. We rather use the EnumerateUSB() method to get the list of the addresses of the plugged controllers, which will then be sent in the parameter panel (in the item named Devices) of the DAQ_Move UI. We now understand precisely the sequence of events that makes the list of controller addresses available just after we have selected our instrument.

Notice that in the class declaration not all the parameters are visible. Most of them are declared in the comon_parameters_fun that declares all the parameters that are common to every plugin. But if at some point you need to add some specific parameter for your instrument, you just have to add an element in this params list, and it will directly be displayed and controllable through the DAQ_Move UI! You should fill in a title, a name, a type of data, a value … You will find this kind of tree everywhere in the PyMoDAQ code. Copy-paste the first lign for exemple and see what happens when you execute the code ;)

To modify the value of such a parameter, you will use something like

self.settings.child('multiaxes', 'axis').setValue(2)

Here we say “in the parameter tree, choose the axis parameter, in the multiaxes group, and attribute him the value 2 “

Note

self.settings is a Parameter object of the pyqtgraph [https://pyqtgraph.readthedocs.io/en/latest/api_reference/parametertree/index.html] library.

Get the value of this parameter will be done with

self.settings['multiaxes', 'axis']

ini_stage method

As mentioned before, the ini_stage method is triggered when the user click the Initialization button. It is here that the communication with the controller is established. If everything works fine, the LED will turn green.

[image: ../_images/daq_move_pi_e870_ini_stage.svg]
Fig. 5.62 ini_stage method of our PI E870 instrument class.

Compared to the initial plugin, we simplified this method by removing the functions that were intended for close-loop operation. Plus we only consider the USB connexion. The result is that our controller initializes correctly now: the LED is green!

[image: ../_images/green_light.png]

Fig. 5.63 Now our controller initializes correctly.

commit_settings method

Another important method is commit_settings. This one contains the logic that will be triggered when the user modifies some value in the parameter tree. Here will be implemented the change of axis of the controller, by changing the configuration of the demultiplexer with the MOD GCS command (see the gold route).

[image: ../_images/daq_move_pi_e870_commit_settings.svg]
Fig. 5.64 commit_settings method of our PI E870 instrument class. Implementation of a change of axis.

move_rel method

Finally, the move_rel method, that implements a relative move of the actuator is quite simple, we just use the OSM command that we found when we studied the DLL with a simple script.

[image: ../_images/daq_move_pi_e870_move_rel.svg]
Fig. 5.65 move_rel method of our PI E870 instrument class. Implementation of a relative move.

We can now test the Rel + / Rel - buttons, a change of axis… it works!

There is still minor methods to implement, but now you master the basics of the instrument plugin development ;)

5.4.6.8. Commit our changes with Git

Now that we have tested our changes, we can be happy with this version of our code. We will now stamp this exact content of the files, so that in the future, we can at any time fall back to this working version. You should see Git as your guarantee that you will never lost anything of your work.

At the location of our local repository, we will now use this Git command

C:\Users\<OS username>\local_repository\pymodaq_plugins_physik_instrumente>git diff

you should get something that looks like this

[image: ../_images/git_diff1.png]

Fig. 5.66 Answer to the git diff command in a terminal. Here are the modifications of the daq_move_PI_E870.py file. In red are the lines that have been deleted, in green the lines that have been added.

This Git command allows us to check precisely the modifications we have done, which is called a diff.

In the language of Git, we stamp a precise state of the repository by doing a commit

C:\Users\<OS username>\local_repository\pymodaq_plugins_physik_instrumente>git commit -am "First working version of the E870 controller plugin."

Within the brackets, we leave a comment to describe the changes we have made.

Then, with the git log command, you can see the history of the evolution of the repository

C:\Users\<OS username>\local_repository\pymodaq_plugins_physik_instrumente>git log

[image: ../_images/git_log.svg]
Fig. 5.67 Answer to the git log command in a terminal.

5.4.6.9. Push our changes to our remote repository

We have now something that is working locally. That is great, but what if at some point, the computer of my experiment suddenly crashes? What if I want to share my solution to a collegue that have the same equipment?

Would not it be nice if I could command my controller on any machine in the world with a few command lines? :O

It is for those kind of reasons that it is so efficient to work with a remote server. It is now time to benefit from our careful preparation! Sending the modifications on our remote repository is done with a simple command

C:\Users\<OS username>\local_repository\pymodaq_plugins_physik_instrumente>git push

In the Git vocabulary, pushing means that you send your work to your remote repository. If we go on our remote server on GitHub, we can notice that our repository has actually been updated!

[image: ../_images/github_remote.svg]
Fig. 5.68 The git push command updated our remote repository.

From now on, anyone who has an internet connexion have access to this precise version of our code.

Note

You may wonder how Git knows where to push? This has been configured when we cloned our remote repository. You can ask what is the current address configured of your remote repository (named origin) with the git remote -v command.

5.4.6.10. Pull request to the upstream repository

But this is not the end! Since we are very proud of our new plugin, why not make all the users of PyMoDAQ benefit from it? Why not propose our modification to the official pymodaq_plugin_physik_instrumente repository?

Again, since we prepared properly, it is now a child play to do that. In the Git vocabulary, we say that we will do a pull request, often abreviated as PR. This can be done through the interface of GitHub. Log in to your account, go to the repository page and click, in the Pull request tab, the Create pull request button.

You have to be careful to select properly the good repositories and the good branches. Remember that in our case we created a E-870 branch.

[image: ../_images/github_pull_request.svg]
Fig. 5.69 The GitHub interface to create a PR.

Leave a message to describe your changes and submit. Our pull request is now visible on the upstream repository [https://github.com/PyMoDAQ/pymodaq_plugins_physik_instrumente/pull/4].

[image: ../_images/github_pull_request_2.png]

Fig. 5.70 Our pull request in the upstream repository.

This opens a space where you can discuss your changes with the owner of the repository. It will be his decision to accept or not the changes that we propose. Let us hope that we will convince him! :) Often these discussions will lead to a significant improvement of the code.

5.4.7. Conclusion

That’s it!

We have tried, with this concrete example, to present the global workflow of an instrument plugin development, and the most common problems you will face. Do not forget that you are not alone: ask for help, it is an other way to meet your collegues!

We have also introduce a software toolbox for Python development in general, that we sum up in the following table. They are all free of charge. Of course this is just a suggestion, you may prefer different solutions. We wanted to present here the main types of software you need to develop efficiently.

	Software function

	Solution presented

	Python environment manager

	Anaconda

	Python package manager

	pip

	Python IDE

	Spyder / PyCharm

	Version control software

	Git

	Repository host

	GitHub

Finally, remember that while purchasing an instrument, it is important to check what your supplier provides as a software solution (Python wrapper, Linux drivers…). This can save you a lot of time!

 5.5. How to contribute to PyMoDAQ’s documentation?

5.5. How to contribute to PyMoDAQ’s documentation?

In this tutorial we will learn how to contribute to PyMoDAQ’s documentation. This is quite an advanced topic so we consider that you know quite well Python and PyMoDAQ ecosystem.

5.5.1. The documentation of PyMoDAQ

There are several levels of documentation of the project that we introduce in the following sections.

5.5.1.1. Documentation of the source code: docstrings

The documentation of the source code is done using comments in the source files that are called docstrings. This documentation is addressed to the developers and is very precise. Typically, it will explain the job of a particular method, give the type of its arguments, what it returns…

[image: ../_images/move_abs_docstring.svg]
Fig. 5.71 Docstring of the move_abs method in the daq_move_Template.py [https://github.com/PyMoDAQ/pymodaq_plugins_template/blob/main/src/pymodaq_plugins_template/daq_move_plugins/daq_move_Template.py] file.

This kind of documentation is standardized. PyMoDAQ follows the Numpy docstrings style [https://numpydoc.readthedocs.io/en/latest/format.html]. Following those conventions permits to generate automatically the Library Reference.

5.5.1.2. Tests

At each modification of the source code of PyMoDAQ, a series of tests is launched automatically. This is done to ensure that the modification proposed does not have an unexpected effect and does not break the rest of the code. This development practice is indispensable to ensure its stability. A big effort has been devoted to testing in the version 4 of PyMoDAQ.

The files defining the tests are located in the /tests [https://github.com/PyMoDAQ/PyMoDAQ/tree/main/tests] directory at the root of the repository.

Most of those tests simulate a user interacting with PyMoDAQ UI, pressing buttons and so on, and verify that everything is working as expected.

Reading those tests (which is not straightforward ;)) allows to get a global picture of what the application is doing.

5.5.1.3. Website

Finally, there is the website that you are reading right now. This documentation is of higher level than the previous ones, easier to read for a human! It is then adapted mostly to an introduction of PyMoDAQ to users.

This tutorial intends to present the workflow to contribute to the improvement of this website.

5.5.2. Sphinx

You may have noticed that most of Python librairies, share a common presentation of their website, this is because they all use Sphinx [https://pypi.org/project/Sphinx/] as a documentation generator.

Sphinx uses reStructuredText [https://en.wikipedia.org/wiki/ReStructuredText], which is the standard lightweight language to write documentation within the Python community.

Using Sphinx saves a lot of time because you just have to care about the content of your documentation, Sphinx will then render it as a beautiful PDF file… or even a website, like the one you are reading right now!

The folder within which there is a conf.py file is the source directory of a Sphinx project. In our case this directory is PyMoDAQ/docs/src [https://github.com/PyMoDAQ/PyMoDAQ/tree/main/docs/src].

Notice that this directory is included in PyMoDAQ repository. Therefore, contributing to the documentation, from the point of view of Git, is exactly the same thing as contributing to the source code: we will modify files in the repository.

Note

The /docs directory of PyMoDAQ is located at the root of the repository, aside with the /src directory. When you install the pymodaq package, what will be copied in the site-packages of your Python environment in the PyMoDAQ/src/pymodaq folder. Therefore, all the folders that are upstream from this one (including /docs) will not be copied in the site-packages. This is what we want, it would be useless to have all this documentation, intended for humans, in the site-packages.

5.5.3. Preparation

Let’s prepare properly our workspace. We consider that you have a GitHub account, that you know the basics about its usage, and that you have already a remote repository (you have forked PyMoDAQ in your GitHub account).

First we need to know on which branch of the upstream repository [https://github.com/PyMoDAQ/PyMoDAQ/] we will work. If we want to contribute to the core of PyMoDAQ, we should send a pull request to the pymodaq-dev branch.

Note

	The important branches of the PyMoDAQ repository are as follow:
	
	main is the last stable version. This branch is maintained by the owner of the repository, and we should not send a pull request directly to it.

	pymodaq-dev is the development branch, which is ahead of the main branch (it contains more commits than the main branch. External contributions should be send on this branch. The owner of the repository will test all the changes that has been suggested in the pymodaq-dev branch before sending them into the main branch.

	pymodaq_v3 concerns the version 3.

Let’s create and activate a new Python environment, that we will call pmd_dev in this tutorial.

Let’s now clone this specific branch on our local machine. We will call our local repository pmd4_write_documentation_tutorial.

git clone --branch pymodaq-dev https://github.com/PyMoDAQ/PyMoDAQ.git pmd4_write_doc_tutorial

and cd into it

cd pmd4_write_doc_tutorial

We have to change the configuration of origin so that our local repository is linked to our remote repository, and not to the upstream repository.

git remote set-url origin https://github.com/<your GitHub name>/PyMoDAQ.git

Note

origin is an alias in Git that should target your remote repository. It specifies where to push your commits.

We can check that it has been taken into account with

git remote -v

We will now create a new branch from pymodaq-dev so that we can isolate our changes. We call it write-doc-tutorial.

git checkout -b write-doc-tutorial

Finally, install our local repository in edition mode in our Python environment

(pmd_dev) >pip install -e .

We can now safely modify our local repository.

5.5.4. Build the website locally

Since the source of the website (in /docs/src) is included in the PyMoDAQ repository, it means that we have everything needed to build it locally!

Some additional packages are necessary to install, in particular sphinx, docutils, numpydoc… Those guys are listed in the requirements.txt file in the /docs directory. Let’s go into it and execute the command

(pmd_dev) >pip install -r requirements.txt

Still in the /docs folder (where you should have a make.bat file) execute

make html (.\make html on windows powershell)

This will run Sphinx that will build the website and put it into the newly created docs/_build folder. Open the /docs/_build/html/index.html file with your favorite navigator. You just build the website locally!

[image: ../_images/local_website.svg]
Fig. 5.72 Local build of the PyMoDAQ website.

5.5.5. Add a new tutorial

Let’s take a practical case, and suppose we want to add a tutorial about “How to contribute to PyMoDAQ’s documentation?” ;)

[image: ../_images/sphinx_source_directory.svg]
Fig. 5.73 Sphinx source directory. It contains index.rst which defines the welcome page of the website and the table of contents. It contains also the conf.py file which defines the configuration of Sphinx. In the subfolders are others .rst file defining other pages. The /image folder is where one can store the images that are included in the pages.

The index.rst file defines the welcome page of the website, add also the table of contents that you see on the left column.

[image: ../_images/index_toctree.svg]
Fig. 5.74 In the index.rst file, the toctree tag defines the first level of the table of contents.

We clearly have to go in the tutorial folder. Here we found the plugin_development.rst file where is written the tutorial “Story of an instrument plugin development”.

Let’s just create a new .rst file named write_documentation.rst. We will copy the introduction of the other file, just replacing the name of the label (first line) and the title.

.. _write_documentation:

How to contribute to PyMoDAQ’s documentation?
===

In the tutorials.rst file, there is another toctree tag which defines the second level of the table of contents within the Tutorials section. We have to say that there is a new entry. Notice that it is here that the label at the first line of the file is important.

Tutorials
=========

.. toctree::
 :maxdepth: 5
 :caption: Contents:

 tutorials/plugin_development
 tutorials/write_documentation

Save this file and compile again with Sphinx in the /docs directory

make html (.\make html on windows powershell)

and refresh the page in the navigator. Our new tutorial is already included in the website, and the table of contents has been updated!

[image: ../_images/title_new_tutorial.svg]
Fig. 5.75 First compilation of our new tutorial.

We just have to fill the rest of the page with what we have to say! We will introduce a bit the RST language in the following section.

5.5.6. reStructuredText (RST) language

Here we give a brief overview of the RST language. Here is the full documentation about RST [https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html].

5.5.6.1. Page structure

Title
=====

Section

Lorem ipsum lorem ipsum.

Subsection
++++++++++

Lorem ipsum lorem ipsum. Lorem ipsum lorem ipsum.

5.5.6.2. List

* First item

 * First item of nested list
 * Second item of nested list

* Second item

5.5.6.3. External link (URL)

`PyMoDAQ repository`__

__ https://github.com/PyMoDAQ/PyMoDAQ

5.5.6.4. Integrate an image

.. _fig_label
.. figure:: /image/write_documentation/my_image.svg
 :width: 600

Caption of the figure.

The images are saved in the /src/image folder and subfolders.

Notice that you can directly integrate SVG images.

Note

Be careful that the extensions of your files should be lowercase. The Windows operating system does not differentiate file extensions .PNG and .png for example (it is not case sensitive). If you build the documentation locally on Windows, it could render it without problem, while when compiled with a Linux system (what will be done on the server) your paths can be broken and your images not found.

5.5.6.5. Cross-referencing

If we want to refer to the image from the previous section:

:numref:`fig_label`

Note

Note that the underscore disappeared.

If we want to refer to another page of the documentation:

:ref:`text to display <label at the begining of the page>`

for example to refer to the installation page, we will use

:ref:`install PyMoDAQ <section_installation>`

5.5.6.6. Glossary terms

You may have notice the Glossary Terms page in the page of contents. This is a kind of dictionary dedicated to PyMoDAQ documentation. There are defined terms that are used frequently in the documentation. Refering to those term is then very simple

:term:`the glossary term`

Browse the already written RST files to get some examples ;)

5.5.7. Submit our documentation to the upstream repository

We are now happy with the content of our page. It is time to submit it for reviewing.

First we have to commit our modifications with Git

git commit -am "Tutorial: How to contribute to PyMoDAQ documentation. Initial commit."

Note

If we also included some new files in the repository, like images, we have to tell Git to take those files under its supervision, which is done with the git add -i command. A simple command line interface will guide you to select the files to add [https://stackoverflow.com/questions/7446640/adding-only-untracked-files].

We then push our changes to our remote repository

git push

Finally, we will open a pull request to the upstream repository from the GitHub interface. Be careful to select the pymodaq-dev branch!

Those steps are explained with more details in the plugin development tutorial.

[image: ../_images/pull_request_write_doc_tutorial.svg]
Fig. 5.76 Pull request to the upstream repository. Be careful to select the pymodaq-dev branch!

Let’s hope we will convince the owner that our tutorial is usefull! Thanks for contributing ;)

 5.6. Updating your instrument plugin for PyMoDAQ 4

5.6. Updating your instrument plugin for PyMoDAQ 4

5.6.1. What’s new in PyMoDAQ 4

The main modification in PyMoDAQ 4 concerning the instrument plugins is related to the hierarchy
of the modules in the source code, see What’s new in PyMoDAQ 4.

5.6.2. What should be modified

5.6.2.1. Imports

Mostly the only things to be modified are imports that should reflect the new package layout. This includes
import in obvious files, for instance imports in the DAQ_Move_template plugin, see Fig. 5.77.

[image: ../_images/import_new.png]

Fig. 5.77 New imports

Some imports are a bit more insidious. Indeed, often there is no specific code in the __init__.py files we see
everywhere in our modules. But in the plugins, there is a bit of initialization code, see for
instance Fig. 5.78 so make sure you changed the imports in all these
__init__.py.

[image: ../_images/hidden_import_new.png]

Fig. 5.78 New imports hidden in the __init__.py files

And that’s it, they should be working now!

Note

If your instrument plugin has been written from a recent version of the template (say early 2023)
then the only __init__.py file to be modified is the one in figure Fig. 5.78 but
otherwise you’ll need to modify most of them…sorry :-(

5.6.2.2. Data emission

But to make things very neat, your detector instrument plugins should
emit no more lists of DataFromPlugins objects but a DataToExport emitted using new signals, see Emission of data.

5.6.2.3. Requirements

And for the final bit, make sure to add a dependency to pymodaq >= 4.0.0 in the
package requirements, see Fig. 5.79. With this, the Plugin Manager will know
your plugin is compatible and will propose it to installation.

[image: ../_images/require.png]

Fig. 5.79 Requirements necessary so that the Plugin Manager know your plugin is compatible with PyMoDAQ 4.

 5.7. Tutorial On Data Manipulation and analysis

5.7. Tutorial On Data Manipulation and analysis

	Author email

	sebastien.weber@cemes.fr

	Last update

	february 2024

	Difficulty

	Intermediate

This tutorial is directly extracted from a jupyter notebook used to illustrate how to get your data back from a
PyMoDAQ h5 file, analyze it and plot interactively these data. You’ll find the notebook
here [https://github.com/PyMoDAQ/notebooks/blob/main/notebooks/data_analysis_tutorial.ipynb].

This example is using experimental data collected on a time-resolved optical spectroscopy set-up developed
by Arnaud Arbouet and “PyMoDAQed” by Sebastien Weber in CEMES.

Practical work sessions exploiting this set-up and data analysis are organized every year in the framework of the
Master PFIQMC at University Toulouse III PauL Sabatier. The students have to align an ultrafast transient absorption
experiment and acquire data from a gold thin film. In these pump-probe experiments, two femtosecond collinear
light pulses are focused on the sample (see Fig. 5.80). The absorption by a first “pump” pulse
places the sample out-of equilibrium. A second, delayed “probe” light pulse is used to measure the transmission
of the sample during its relaxation.

The measured dynamics shows (i) the transmission change associated with the injection of energy by the pump pulse
(< ps timescale) followed by (ii) the quick thermalization of the electron gas with the gold film phonons
(ps timescale) and (iii) the oscillations induced by the mechanical vibrations of the film (10s ps timescale).
To be able to detect these oscillations, one needs to repeat the pump-probe scan many times and average the data.

PyMoDAQ allows this using the DAQ_Scan extension. One can specify how many scan should be performed and both the
current scan and the averaged one are displayed live. However all the individual scans are saved as a multi-dimensional
array. Moreover, because of the different time-scales (for electrons and for phonons) a “Sparse” 1D scan is used. It
allows to quickly specify actuator values to be scanned in pieces (in the form of multiple start:step:stop). For
instance scanning the electronic time window using a low step value and the phonon time window with a higher time step.
The scan is therefore perfectly sampled but the time needed for one scan is reduced.

The author thanks Dr Arnaud Arbouet for the data and explanations. And if you don’t understand (or don’t care about)
the physics, it’s not an issue as this notebook is here to show you how to load, manipulate and easily plot your data.

[image: python]

Fig. 5.80 Experimental Setup for time-resolved optical spectroscopy

To execute this tutorial properly, you’ll need PyMoDAQ >= 4.0.2 (if not
released yet, you can get it from github)

%gui qt5
magic keyword only used to start a qt event loop within the jupyter notebook framwork

importing built in modules
from pathlib import Path
import sys

importing third party modules
import scipy as sc
import scipy.optimize as opt
import scipy.constants as cst
import numpy as np

importing PymoDAQ modules
from pymodaq.utils.h5modules.saving import H5SaverLowLevel # object to open the h5 file
from pymodaq.utils.h5modules.data_saving import DataLoader # object used to properly load data from the h5 file
from pymodaq.utils.data import DataRaw, DataToExport

from pymodaq import __version__
print(__version__)

LIGHT_SPEED = 3e8 #m/s

4.2.0

5.7.1. Loading Data

dwa_loader = DataLoader('Dataset_20240206_000.h5') # this way of loading data directly from a Path is
#available from pymodaq>=4.2.0

for node in dwa_loader.walk_nodes():
 if 'Scan012' in str(node):
 print(node)

/RawData/Scan012 (GROUP) 'DAQScan'
/RawData/Scan012/Actuator000 (GROUP) 'delay'
/RawData/Scan012/Detector000 (GROUP) 'Lockin'
/RawData/Scan012/NavAxes (GROUP) ''
/RawData/Scan012/Detector000/Data0D (GROUP) ''
/RawData/Scan012/NavAxes/Axis00 (CARRAY) 'delay'
/RawData/Scan012/NavAxes/Axis01 (CARRAY) 'Average'
/RawData/Scan012/Detector000/Data0D/CH00 (GROUP) 'MAG'
/RawData/Scan012/Detector000/Data0D/CH01 (GROUP) 'PHA'
/RawData/Scan012/Detector000/Data0D/CH00/Data00 (CARRAY) 'MAG'
/RawData/Scan012/Detector000/Data0D/CH01/Data00 (CARRAY) 'PHA'

To load a particular node, use the load_data method

dwa_loaded = dwa_loader.load_data('/RawData/Scan012/Detector000/Data0D/CH00/Data00')
print(dwa_loaded)

<DataWithAxes: MAG <len:1> (100, 392|)>

5.7.2. Plotting data

From PyMoDAQ 4.0.2 onwards, both the DataWithAxes (and its inheriting
children classes) and the DataToExport objects have a plot method.
One can specify as argument which backend to be used for plotting. At
least two are available: matplotlib and qt. See below

dwa_loaded.nav_indexes = () # this is converting both navigation axes: average and delay as signal axes (to be plotted in the Viewer2D)
dwa_loaded.plot('matplotlib')

[image: ../_images/output_7_0.png]
or using PyMoDAQ’s data viewer (interactive and with ROIs and all other
features)

dwa_loaded.plot('qt')

[image: python]

Fig. 5.81 python

The horizontal axis is a delay in millimeter (linear stage displacement,
see setup) and we used a Sparsed scan with a non equal scan step (see
figure below, right panel)

delay_axis = dwa_loaded.get_axis_from_index(1)[0]
dte = dwa_loaded.as_dte('mydata')
dte.append(DataRaw(delay_axis.label, data=[delay_axis.get_data()]))
dte.plot('qt')

[image: python]

Fig. 5.82 python

dwa_loaded_steps = dwa_loaded.deepcopy()
delay_axis = dwa_loaded_steps.get_axis_from_index(1)[0]
delay_axis.data = delay_axis.create_simple_linear_data(len(delay_axis))
delay_axis.label = 'steps'
delay_axis.units = ''

This delay axis is for the moment in mm and reversed (the stage is going
backwards to increase the delay). Let’s recreate a flipped axis with
seconds as units.

dwa_loaded_fs = dwa_loaded.deepcopy()
delay_axis = dwa_loaded_fs.get_axis_from_index(1)[0]
delay_axis.data = - 2 * delay_axis.get_data() / 1000 / LIGHT_SPEED # /1000 because the dsiplacement unit
of the stage is in mm and the speed of light in m/s
delay_axis.data -= delay_axis.get_data()[0]
delay_axis.units = 's'
print(delay_axis.get_data()[0:10])

[0.00000000e+00 1.33333333e-13 2.66666667e-13 4.00000000e-13
 5.33333333e-13 6.66666667e-13 8.00000000e-13 9.33333333e-13
 1.06666667e-12 1.20000000e-12]

dwa_loaded_fs.plot('qt')

[image: python]

Fig. 5.83 python

5.7.3. Data Analysis

Now we got our data, one can extract infos from it

	life-time of the electrons -> phonons thermalization

	Oscillation period of the phonons vibration

To do this, one will properly slice the data correpsonding to the
electrons and the one corresponding to the phonons. To get the scan
index to use for slicing, one will plot the raw data as a function of
scan steps and extract the index using ROIs

dwa_loaded_steps.plot('qt')

[image: python]

Fig. 5.84 python

5.7.3.1. Slicing the data

The ROi Manager (on the right, not visible here) tell us to use:

indexes_electrons = (70, 390)
indexes_phonons = (100, 300)
indexes_average = (0, 40) # we are not using all the averaging because the gold
film seems to be dying as time goes on...

First we slice the data over the average indexes and the electron
indexes This is done easily using the isig slicer (sig for signal
axes. For navigation one should use the inav slicer). Those slicers return a DataWithAxes object
where data and axes have been sliced. Then we immediately apply the mean method over the average axis
(index 0) to get 1D dimensionality data:

dwa_electrons = dwa_loaded_fs.isig[slice(*indexes_average), slice(*indexes_electrons)].mean(0)
print(dwa_electrons)

dwa_phonons = dwa_loaded_fs.isig[slice(*indexes_average), slice(*indexes_phonons)].mean(0)
print(dwa_phonons)

<DataWithAxes: MAG <len:1> (|320)>
<DataWithAxes: MAG <len:1> (|200)>

dte = DataToExport('mydata', data=[dwa_electrons, dwa_phonons])
print(dte)
dte.plot('qt')

DataToExport: mydata <len:2>
 * <DataWithAxes: MAG <len:1> (|320)>
 * <DataWithAxes: MAG <len:1> (|200)>

[image: python]

Fig. 5.85 python

5.7.3.2. Fitting the Data

5.7.3.2.1. Electrons:

def my_lifetime(x, A, B, C, tau):
 return A + C * np.exp(-(x - B)/tau)

time_axis = dwa_electrons.axes[0].get_data()
initial_guess = (2e-7, 10e-12, 7e-6, 3e-11)

dwa_electrons_fitted = dwa_electrons.fit(my_lifetime, initial_guess=initial_guess)
dwa_electrons_fitted.append(dwa_electrons)
dwa_electrons_fitted.plot('qt')

<pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D at 0x2ae0556cb80>

[image: python]

Fig. 5.86 python

One get a life time of about:

f'Life time: {dwa_electrons_fitted.fit_coeffs[0][3] *1e12} ps'

'Life time: 1.0688184683663233 ps'

5.7.3.2.2. Phonons:

For the phonons, it seems we have to analyse oscillations. The best for
this is a Fourier Transform analysis. However because of the sparse scan
the sampling at the begining is different from the one at the end. We’ll
have to resample our data on a regular grid before doing Fourier
Transform

5.7.3.2.2.1. Resampling

from pymodaq.utils import math_utils as mutils
from pymodaq.utils.data import Axis
phonon_axis_array = dwa_phonons.get_axis_from_index(0)[0].get_data()
phonon_axis_array -= phonon_axis_array[0]
time_step = phonon_axis_array[-1] - phonon_axis_array[-2]
time_array_linear = mutils.linspace_step(0, phonon_axis_array[-1], time_step)
dwa_phonons_interp = dwa_phonons.interp(time_array_linear)

dwa_phonons_interp.plot('qt')

[image: python]

Fig. 5.87 Interpolated data on a regular time axis

5.7.3.2.2.2. FFT

dwa_fft = dwa_phonons_interp.ft()

dwa_phonons_fft = DataToExport('FFT', data=[
 dwa_phonons_interp,
 dwa_fft.abs(),
 dwa_fft.abs(),
 dwa_fft.abs()])
dwa_phonons_fft.plot('qt')

[image: python]

Fig. 5.88 Temporal data and FFT amplitude (top). Zoom over the two first harmonics (bottom)

Using advanced math processors to extract data from dwa:

from pymodaq.post_treatment.process_to_scalar import DataProcessorFactory
data_processors = DataProcessorFactory()
print('Implemented possible processing methods, can be applied to any data type and dimensionality')
print(data_processors.keys)
dwa_processed = data_processors.get('argmax').process(dwa_fft.abs())
print(dwa_processed[0])

Implemented possible processing methods, can be applied to any data type and dimensionality
['argmax', 'argmean', 'argmin', 'argstd', 'max', 'mean', 'min', 'std', 'sum']
[0.]

or using builtin math methods applicable only to 1D data:

dte_peaks = dwa_fft.abs().find_peaks(height=1e-6)
print(dte_peaks[0].axes[0].get_data() / (2*np.pi))

dte_peaks[0].axes[0].as_dwa().plot('matplotlib', 'o-r') # transforms an Axis object to dwa for quick plotting

dte_peaks[0].get_data_as_dwa(0).plot('matplotlib', 'o-b') # select part of the data object for "selected" plotting

[-1.06435192e+11 -5.32175961e+10 0.00000000e+00 5.32175961e+10
 1.06435192e+11]

[image: ../_images/output_40_1.png]
[image: ../_images/output_40_2.png]
From this one get a fundamental frequency of 5.32e10 Hz that
corresponds to a period of:

T_phonons = 1/5.32e10
print(f'Period T = {T_phonons * 1e12} ps')

Period T = 18.796992481203006 ps

From this period and the speed of sound in gold, one can infer the gold film thickness:

thickness = T_phonons / 2 * SOUND_SPEED_GOLD
print(f"Gold Thickness: {thickness * 1e9} nm")

Gold Thickness: 30.45112781954887 nm

5.7.4. Summary

To summarize this tutorial, we learned to:

	easily load data using the DataLoader object and its load_data method (also using the convenience walk_nodes
method to print all nodes from a file)

	easily plot loaded data using the plot method (together with the adapted backend)

	manipulate the data using its axes, navigation indexes, slicers and built in mathematical methods
such as mean, ‘abs’, Fourier transforms, interpolation, fit…

For more details, see Data Management

 6. Who use it?

6. Who use it?

	PyMoDAQ is used as the core acquisition program of several experiments at CEMES/CNRS and the main
interface of its HC-IUMI Ultrafast Electron Microscope

	The attolab platform at CEA Saclay started using it in 2019

6.1. Institutions using PyMoDAQ

[image: cemes] [image: attolab]

6.2. What they think of PyMoDAQ?

	“The use of PyMoDAQ has really accelerated our experimental development by allowing to develop a modular acquisition
system involving very different motorized stages or piezoactuators. It is now running everyday on our experiments,
100% reliable”, Dr Arnaud Arbouet, Senior Researcher CEMES/CNRS

	Pymodaq is a python framework for data acquisition. If your specific device driver is not yet
implemented, that is the only thing you will have to do. Pymodaq take care of the rest. Graphical
user interface, synchronization of the instruments and so on, is already implemented. Once you have
implemented your driver, you can release it for the community. That is how Pymodaq will get more and
more complete. Of course you need to invest a bit of your time to get used to it, but it is worth it!, Dr David
Bresteau, Researcher at CEA Saclay, Attolab platform.

	We are setting up Pymodaq on our scanning NV microscopy and deep UV spectroscopy experiments and we appreciate a lot
its easy installation, its modularity and the automatic generation of the graphical interfaces, as well as the strong
community support. The updates of the modules, the training sessions organized regularly and the numerous video
tutorials also reflect the vitality of the community. We also start contributing by adding our own instruments and
functionalities to share them with all the users. We fully support this great project!
A. Finco, P. Valvin - L2C/S2QT

Note

If you are using PyMoDAQ and would like to help to promote the project, please send your feedback to
sebastien.weber@cemes.fr and we will include your message or logo on this page.
If you wish to contribute, see Contributing.

Note

If you wish to communicate with users of PyMoDAQ, a mailing list exists:
pymodaq@services.cnrs.fr

6.3. Some Scientific publication on/using PyMoDAQ

	Weber, S. J. PyMoDAQ: An open-source Python-based software for modular data acquisition.
Review of Scientific Instruments, 92(4), 045104 (2021) [https://aip.scitation.org/doi/full/10.1063/5.0032116].

	Luttmann, M. et al. In Situ Sub-50-Attosecond Active Stabilization of the Delay Between Infrared and Extreme-Ultraviolet Light Pulses.
Physical Review Applied, 15(3), 034036 (2021) [https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.034036].

	S. Meuret et al. Time-resolved cathodoluminescence in an ultrafast transmission electron microscope
Appl. Phys. Lett. 119, 062106 (2021) [https://doi.org/10.1063/5.0057861]

	F. Houdellier et al. Development of a high brightness ultrafast Transmission Electron Microscope based on a
laser-driven cold field emission source Ultramicroscopy, 186, 128 (2018) [https://doi.org/10.1016/j.ultramic.2017.12.015].

	D. Bresteau et al. FAB10: a user-oriented bandwidth-tunable extreme ultraviolet lightsource for investigations of
femtosecond to attosecond dynamics in gas and condensed phases Eur. Phys. J. Spec. Top. (2023) [https://doi.org/10.1140/epjs/s11734-022-00752-x]

 7. Glossary Terms

7. Glossary Terms

Here are some definitions of the specific terms used in the PyMoDAQ documentation:

	Actuator
	Any instrument with a controllable varying parameter

	Detector
	Any instrument generating data to be recorded

	Control Modules
	GUI for actuators and detectors, with subsequent classes: DAQ_Move and DAQ_Viewer, see Control Modules

	DashBoard
	GUI allowing configuration and loading of a preset of actuators and detectors. You can also start
extensions from its GUI such as the DAQ Scan, DAQ Logger, … See DashBoard

	Preset
	XML file containing the number and type of control modules to be used for a given experiment. You can
create, modify and load a preset from the Dashboard

	DataSource
	Enum informing about the source of the data object, for instance raw from a detector or processed from
mathematical functions (from ROI, …)

	DataDim
	Enum for the dimensionality representation of the data object, for instance scalars have a dimensionality Data0D,
waveforms or vectors have Data1D dimensionality, camera’s data are Data2D, and hyperspectral (or other) are
DataND

	DataDistribution
	Enum for the distribution type of the data object. Data can be stored on linear grid (think about an oscilloscope
trace having a fixed time interval, or camera having a regular grid of pixels) or stored on non uniform and non
linear “positions”, for instance data taken at random time intervals. Data can therefore have two distributions:
uniform or spread.

	Signal
	Signal and Navigation is a term taken from the hyperspy package vocabulary. It is useful when dealing with
multidimensional data.
Imagine data you obtained from a camera (256x1024 pixels) during a linear 1D scan of one actuator (100 steps).
The final shape of the data would be (100, 256, 1024). The first dimension corresponds to a Navigation axis
(the scan), and the rest to Signal axes (the real detector’s data).
The corresponding data has a dimensionality of DataND and a representation of (100|256,1024).

	Navigation
	See above.

	dwa
	Short name for DataWithAxes object

	dte
	Short name for DataToExport object

	Plugin
	A plugin is a python package whose name is of the type: pymodaq_plugins_apluginname containing functionalities
to be added to PyMoDAQ

Note

A plugin may contains added functionalities such as:

	Classes to add a given instrument: allows a given instrument to be added programmatically
in a Control Modules graphical interface

	Instrument drivers located in a hardware folder: contains scripts/classes to ease communication
with the instrument. Could be third party packages such as Pymeasure

	PID models located in a models folder: scripts and classes defining the behaviour of a given PID loop
including several actuators or detectors,
see The PID Model

	Extensions located in a extensions folder: scripts and classes allowing to build extensions on top of
the DashBoard

Entry points python mechanism is used to let know PyMoDAQ of installed Instrument, PID models or extensions plugins

	Module
	A module in the python sense is an importable object either a directory containing an __init__.py file or a
python file containing data, functions or classes.

Note

If there is code that can be executed within your module but you don’t want it to be executed when importing,
make sure to protect the execution using a : if __name__ == '__main__': clause.

 8. Library Reference

8. Library Reference

	8.1. Control modules
	8.1.1. ControlModule base classes
	ControlModule
	ControlModule.init_signal

	ControlModule.command_hardware

	ControlModule.command_tcpip

	ControlModule.quit_signal

	ControlModule.grab()

	ControlModule.init_hardware()

	ControlModule.init_hardware_ui()

	ControlModule.manage_ui_actions()

	ControlModule.quit_fun()

	ControlModule.show_config()

	ControlModule.show_log()

	ControlModule.stop_grab()

	ControlModule.thread_status()

	ControlModule.update_status()

	ControlModule.initialized_state

	ControlModule.module_type

	ControlModule.title

	ControlModuleUI
	ControlModuleUI.command_sig

	ControlModuleUI.do_init()

	ControlModuleUI.send_init()

	8.1.2. DAQ_Viewer class
	DAQ_Viewer
	DAQ_Viewer.grab_done_signal

	DAQ_Viewer.custom_sig

	DAQ_Viewer.overshoot_signal

	DAQ_Viewer.append_data()

	DAQ_Viewer.child_added()

	DAQ_Viewer.connect_tcp_ip()

	DAQ_Viewer.daq_type_changed_from_ui()

	DAQ_Viewer.get_scaling_options()

	DAQ_Viewer.grab()

	DAQ_Viewer.grab_data()

	DAQ_Viewer.init_hardware()

	DAQ_Viewer.insert_data()

	DAQ_Viewer.load_data()

	DAQ_Viewer.param_deleted()

	DAQ_Viewer.process_tcpip_cmds()

	DAQ_Viewer.process_ui_cmds()

	DAQ_Viewer.quit_fun()

	DAQ_Viewer.save_current()

	DAQ_Viewer.save_new()

	DAQ_Viewer.set_data_to_viewers()

	DAQ_Viewer.setup_continuous_saving()

	DAQ_Viewer.show_data()

	DAQ_Viewer.show_temp_data()

	DAQ_Viewer.snap()

	DAQ_Viewer.snapshot()

	DAQ_Viewer.stop()

	DAQ_Viewer.stop_grab()

	DAQ_Viewer.take_bkg()

	DAQ_Viewer.thread_status()

	DAQ_Viewer.value_changed()

	DAQ_Viewer.bkg

	DAQ_Viewer.current_data

	DAQ_Viewer.daq_type

	DAQ_Viewer.daq_types

	DAQ_Viewer.detector

	DAQ_Viewer.detectors

	DAQ_Viewer.do_bkg

	DAQ_Viewer.grab_state

	DAQ_Viewer.viewer_docks

	DAQ_Viewer.viewers

	DAQ_Viewer.viewers_docks

	8.1.3. DAQ_Detector class
	DAQ_Detector
	DAQ_Detector.detector

	DAQ_Detector.controller

	DAQ_Detector.controller_adress

	DAQ_Detector.close()

	DAQ_Detector.data_ready()

	DAQ_Detector.emit_temp_data()

	DAQ_Detector.grab_data()

	DAQ_Detector.ini_detector()

	DAQ_Detector.queue_command()

	DAQ_Detector.single()

	DAQ_Detector.update_settings()

	8.1.4. The Viewer UI class
	DAQ_Viewer_UI
	DAQ_Viewer_UI.command_sig

	DAQ_Viewer_UI.display_value()

	DAQ_Viewer_UI.do_init()

	DAQ_Viewer_UI.connect_things()

	DAQ_Viewer_UI.do_grab()

	DAQ_Viewer_UI.do_init()

	DAQ_Viewer_UI.do_snap()

	DAQ_Viewer_UI.do_stop()

	DAQ_Viewer_UI.send_init()

	DAQ_Viewer_UI.setup_actions()

	DAQ_Viewer_UI.setup_docks()

	DAQ_Viewer_UI.update_viewers()

	DAQ_Viewer_UI.detector_init

	8.1.5. The DAQ_Move Class
	DAQ_Move
	DAQ_Move.init_signal

	DAQ_Move.move_done_signal

	DAQ_Move.bounds_signal

	DAQ_Move.get_actuator_value()

	DAQ_Move.get_continuous_actuator_value()

	DAQ_Move.grab()

	DAQ_Move.init_hardware_ui()

	DAQ_Move.move()

	DAQ_Move.move_abs()

	DAQ_Move.move_home()

	DAQ_Move.move_rel()

	DAQ_Move.quit_fun()

	DAQ_Move.stop_motion()

	DAQ_Move.thread_status()

	DAQ_Move.actuator

	DAQ_Move.initialized_state

	DAQ_Move.move_done_bool

	8.1.6. The DAQ_Move UI class
	DAQ_Move_UI
	DAQ_Move_UI.command_sig

	DAQ_Move_UI.display_value()

	DAQ_Move_UI.do_init()

	DAQ_Move_UI.connect_things()

	DAQ_Move_UI.do_init()

	DAQ_Move_UI.send_init()

	DAQ_Move_UI.set_abs_spinbox_properties()

	DAQ_Move_UI.setup_actions()

	DAQ_Move_UI.setup_docks()

	DAQ_Move_UI.actuator_init

	DAQ_Move_UI.move_done

	8.1.7. The DAQ_Move Plugin Class
	DAQ_Move_base
	DAQ_Move_base.move_done_signal

	DAQ_Move_base.controller

	DAQ_Move_base.settings

	DAQ_Move_base.params

	DAQ_Move_base.is_multiaxes

	DAQ_Move_base.current_value

	DAQ_Move_base.target_value

	DAQ_Move_base.check_bound()

	DAQ_Move_base.commit_settings()

	DAQ_Move_base.emit_status()

	DAQ_Move_base.emit_value()

	DAQ_Move_base.get_position_with_scaling()

	DAQ_Move_base.ini_attributes()

	DAQ_Move_base.ini_stage_init()

	DAQ_Move_base.move_done()

	DAQ_Move_base.poll_moving()

	DAQ_Move_base.send_param_status()

	DAQ_Move_base.set_position_relative_with_scaling()

	DAQ_Move_base.set_position_with_scaling()

	DAQ_Move_base.update_settings()

	DAQ_Move_base.axis_name

	DAQ_Move_base.axis_names

	DAQ_Move_base.axis_value

	DAQ_Move_base.controller_units

	DAQ_Move_base.ispolling

	8.2. Extensions
	8.2.1. DAQ_Scan module

	8.2.2. The Bayesian Extension and utilities
	8.2.2.1. The Extension module
	BayesianOptimisation
	BayesianOptimisation.connect_things()

	BayesianOptimisation.setup_actions()

	BayesianOptimisation.setup_docks()

	BayesianOptimisation.setup_menu()

	BayesianOptimisation.value_changed()

	BayesianOptimisation.modules_manager

	8.2.2.2. The Base Models
	BayesianModelGeneric
	BayesianModelGeneric.convert_input()

	BayesianModelGeneric.convert_output()

	BayesianModelGeneric.ini_model()

	BayesianModelGeneric.runner_initialized()

	BayesianModelGeneric.update_plots()

	BayesianModelGeneric.update_settings()

	BayesianModelDefault
	BayesianModelDefault.convert_input()

	BayesianModelDefault.convert_output()

	BayesianModelDefault.ini_model()

	BayesianModelDefault.update_settings()

	8.2.3. The CustomApp base class
	CustomApp
	CustomApp.connect_things()

	CustomApp.setup_docks()

	CustomApp.setup_menu()

	CustomApp.modules_manager

	8.3. Utility Modules
	8.3.1. Hdf5 module and classes
	8.3.1.1. Hdf5 backends
	H5Backend
	H5Backend.add_group()

	H5Backend.close_file()

	H5Backend.create_earray()

	H5Backend.create_vlarray()

	H5Backend.define_compression()

	H5Backend.get_children()

	H5Backend.get_node_name()

	H5Backend.get_node_path()

	H5Backend.get_set_group()

	H5Backend.is_node_in_group()

	8.3.1.2. Low Level saving
	H5Saver
	H5Saver.emit_new_file()

	H5SaverBase
	H5SaverBase.settings

	H5SaverBase.settings_tree

	H5SaverBase.find_part_in_path_and_subpath()

	H5SaverBase.get_last_scan()

	H5SaverBase.get_scan_index()

	H5SaverBase.init_file()

	H5SaverBase.load_file()

	H5SaverBase.set_current_scan_path()

	H5SaverBase.update_file_paths()

	H5SaverBase.value_changed()

	8.3.1.3. High Level saving/loading
	8.3.1.3.1. Base data class saver/loader
	AxisSaverLoader

	DataManagement

	DataSaverLoader

	DataToExportSaver

	8.3.1.3.2. Specific data class saver/loader
	BkgSaver

	DataEnlargeableSaver

	DataExtendedSaver

	DataToExportEnlargeableSaver

	DataToExportExtendedSaver

	DataToExportTimedSaver

	8.3.1.4. Specialized loading
	DataLoader
	DataLoader.get_nav_group()

	DataLoader.get_node()

	DataLoader.load_data()

	DataLoader.walk_nodes()

	8.3.1.5. Browsing Data
	H5Browser
	H5Browser.add_comments()

	H5Browser.check_version()

	H5Browser.export_data()

	H5Browser.get_tree_node_path()

	H5Browser.populate_tree()

	H5Browser.quit_fun()

	H5Browser.setup_actions()

	H5Browser.show_h5_data()

	H5BrowserUtil
	H5BrowserUtil.export_data()

	H5BrowserUtil.get_h5_attributes()

	H5BrowserUtil.get_h5file_scans()

	8.3.1.6. Module savers
	ActuatorSaver

	DetectorEnlargeableSaver

	DetectorExtendedSaver

	DetectorSaver
	DetectorSaver.add_bkg()

	LoggerSaver
	LoggerSaver.add_data()

	ModuleSaver
	ModuleSaver.flush()

	ModuleSaver.get_last_node()

	ModuleSaver.get_set_node()

	ScanSaver
	ScanSaver.get_set_node()

	8.3.2. Scanner module and classes
	Scanner
	Scanner.get_indexes_from_scan_index()

	Scanner.get_scan_info()

	Scanner.get_scanner_sub_settings()

	Scanner.positions_at()

	Scanner.set_scan()

	Scanner.set_scan_type_and_subtypes()

	Scanner.value_changed()

	Scanner.actuators

	8.3.3. Managers
	QAction

	addaction()

	ActionManager
	ActionManager.add_action()

	ActionManager.add_widget()

	ActionManager.affect_to()

	ActionManager.connect_action()

	ActionManager.get_action()

	ActionManager.has_action()

	ActionManager.set_action_text()

	ActionManager.set_menu()

	ActionManager.set_toolbar()

	ActionManager.setup_actions()

	ActionManager.menu

	ActionManager.toolbar

	ParameterManager
	ParameterManager.params

	ParameterManager.settings_name

	ParameterManager.settings

	ParameterManager.settings_tree

	ParameterManager.tree

	ParameterManager.child_added()

	ParameterManager.load_settings_slot()

	ParameterManager.param_deleted()

	ParameterManager.save_settings_slot()

	ParameterManager.update_settings_slot()

	ParameterManager.value_changed()

	ModulesManager
	ModulesManager.connect_actuators()

	ModulesManager.connect_detectors()

	ModulesManager.get_det_data_list()

	ModulesManager.get_mod_from_name()

	ModulesManager.get_mods_from_names()

	ModulesManager.get_names()

	ModulesManager.get_selected_probed_data()

	ModulesManager.grab_datas()

	ModulesManager.move_actuators()

	ModulesManager.order_positions()

	ModulesManager.set_actuators()

	ModulesManager.set_detectors()

	ModulesManager.test_move_actuators()

	ModulesManager.value_changed()

	ModulesManager.Nactuators

	ModulesManager.Ndetectors

	ModulesManager.actuators

	ModulesManager.actuators_all

	ModulesManager.actuators_name

	ModulesManager.detectors

	ModulesManager.detectors_all

	ModulesManager.detectors_name

	ModulesManager.modules

	ModulesManager.modules_all

	ModulesManager.selected_actuators_name

	ModulesManager.selected_detectors_name

	8.3.4. Data Viewers
	Viewer0D

	Viewer1D
	Viewer1D.activate_roi()

	Viewer1D.move_roi_target()

	Viewer1D.set_crosshair_position()

	Viewer1D.crosshair

	Viewer1D.roi_manager

	Viewer1D.roi_target

	Viewer2D
	Viewer2D.activate_roi()

	Viewer2D.get_axes_from_view()

	Viewer2D.get_data_at()

	Viewer2D.move_roi_target()

	Viewer2D.set_crosshair_position()

	Viewer2D.set_gradient()

	Viewer2D.set_image_transform()

	Viewer2D.show_roi()

	Viewer2D.crosshair

	Viewer2D.image_widget

	Viewer2D.roi_manager

	Viewer2D.roi_target

	ViewerND
	ViewerND.setup_actions()

	8.3.5. Plotting utility classes
	ScanSelector
	ScanSelector.value_changed()

	LCD
	LCD.setvalues()

	8.4. Utility Libraries
	8.4.1. Utility Classes
	ThreadCommand
	ThreadCommand.command

	ThreadCommand.attribute

	8.4.2. TCP/IP related methods
	8.4.2.1. Serializing object to bytes and back
	DeSerializer
	DeSerializer.axis_deserialization()

	DeSerializer.boolean_deserialization()

	DeSerializer.bytes_to_int()

	DeSerializer.bytes_to_nd_array()

	DeSerializer.bytes_to_scalar()

	DeSerializer.dte_deserialization()

	DeSerializer.dwa_deserialization()

	DeSerializer.list_deserialization()

	DeSerializer.ndarray_deserialization()

	DeSerializer.scalar_deserialization()

	DeSerializer.string_deserialization()

	Serializer
	Serializer.axis_serialization()

	Serializer.dte_serialization()

	Serializer.dwa_serialization()

	Serializer.int_to_bytes()

	Serializer.list_serialization()

	Serializer.ndarray_serialization()

	Serializer.object_type_serialization()

	Serializer.scalar_serialization()

	Serializer.str_len_to_bytes()

	Serializer.string_serialization()

	Serializer.to_bytes()

	SocketString
	SocketString.check_received_length()

	SocketString.get_first_nbytes()

	8.4.2.2. Custom Sockets to implement PyMoDAQ protocol
	Socket
	Socket.check_received_length()

	Socket.check_sended()

	Socket.check_sended_with_serializer()

	Socket.get_first_nbytes()

	8.4.2.3. Base classes as TCP server and client
	Grabber
	Grabber.grab_data()

	MockServer

	TCPClient
	TCPClient.get_data()

	TCPClient.post_init()

	TCPClient.queue_command()

	TCPClient.ready_to_read()

	TCPClient.ready_to_write()

	TCPClient.ready_with_error()

	TCPServer
	TCPServer.close_server()

	TCPServer.find_socket_type_within_connected_clients()

	TCPServer.find_socket_within_connected_clients()

	TCPServer.listen_client()

	TCPServer.print_status()

	TCPServer.process_cmds()

	TCPServer.read_info()

	TCPServer.select()

	TCPServer.send_command()

	TCPServer.set_connected_clients_table()

	TCPServer.timerEvent()

	8.4.3. Units conversion
	Ecmrel2Enm()

	Enm2cmrel()

	cm2nm()

	eV2cm()

	eV2nm()

	l2w()

	nm2cm()

	nm2eV()

	8.4.4. Mathematical utilities
	find_index()

	ft()

	ft2()

	ftAxis()

	ftAxis_time()

	gauss1D()

	gauss2D()

	ift()

	ift2()

	linspace_step()

	my_moment()

	odd_even()

	8.4.5. Scan utilities

	8.4.6. File management
	select_file()

	8.4.7. Data Management
	8.4.7.1. Axes
	Axis
	Axis.create_linear_data()

	Axis.find_index()

	Axis.get_data()

	Axis.get_data_at()

	Axis.get_scale_offset_from_data()

	Axis.data

	Axis.index

	Axis.label

	Axis.size

	Axis.units

	8.4.7.2. DataObjects
	DataBase
	DataBase.name

	DataBase.source

	DataBase.dim

	DataBase.distribution

	DataBase.data

	DataBase.labels

	DataBase.origin

	DataBase.shape

	DataBase.size

	DataBase.length

	DataBase.extra_attributes

	DataBase.abs()

	DataBase.as_dte()

	DataBase.average()

	DataBase.fliplr()

	DataBase.flipud()

	DataBase.get_data_index()

	DataBase.get_dim_from_data()

	DataBase.get_full_name()

	DataBase.imag()

	DataBase.pop()

	DataBase.real()

	DataBase.set_dim()

	DataBase.stack_as_array()

	DataBase.data

	DataBase.dim

	DataBase.distribution

	DataBase.length

	DataBase.shape

	DataBase.size

	DataBase.source

	DataCalculated

	DataFromPlugins
	DataFromPlugins.do_plot

	DataFromPlugins.do_save

	DataFromRoi

	DataRaw

	8.4.7.3. Data Characteristics
	DataDim

	DataDistribution

	DataSource

	8.4.7.4. Union of Data
	DataToExport
	DataToExport.name

	DataToExport.timestamp

	DataToExport.data

	DataToExport.affect_name_to_origin_if_none()

	DataToExport.average()

	DataToExport.get_data_from_Naxes()

	DataToExport.get_data_from_attribute()

	DataToExport.get_data_from_dim()

	DataToExport.get_data_from_dims()

	DataToExport.get_data_from_full_name()

	DataToExport.get_data_from_missing_attribute()

	DataToExport.get_data_from_name()

	DataToExport.get_data_from_name_origin()

	DataToExport.get_data_from_sig_axes()

	DataToExport.get_data_from_source()

	DataToExport.get_data_with_naxes_lower_than()

	DataToExport.get_full_names()

	DataToExport.get_names()

	DataToExport.get_origins()

	DataToExport.index_from_name_origin()

	DataToExport.merge_as_dwa()

	DataToExport.plot()

	DataToExport.pop()

	DataToExport.data

	8.4.8. parameter
	8.4.8.1. New Tree items

	8.4.8.2. Parameter and XML
	XML_file_to_parameter()

	XML_string_to_parameter()

	add_text_to_elt()

	dict_from_param()

	elt_to_dict()

	parameter_to_xml_file()

	parameter_to_xml_string()

	set_txt_from_elt()

	walk_parameters_to_xml()

	walk_xml_to_parameter()

	8.4.8.3. Parameter management
	get_param_from_name()

	get_param_path()

	iter_children()

	iter_children_params()

 8.1. Control modules

8.1. Control modules

	8.1.1. ControlModule base classes
	ControlModule
	ControlModule.init_signal

	ControlModule.command_hardware

	ControlModule.command_tcpip

	ControlModule.quit_signal

	ControlModule.grab()

	ControlModule.init_hardware()

	ControlModule.init_hardware_ui()

	ControlModule.manage_ui_actions()

	ControlModule.quit_fun()

	ControlModule.show_config()

	ControlModule.show_log()

	ControlModule.stop_grab()

	ControlModule.thread_status()

	ControlModule.update_status()

	ControlModule.initialized_state

	ControlModule.module_type

	ControlModule.title

	ControlModuleUI
	ControlModuleUI.command_sig

	ControlModuleUI.do_init()

	ControlModuleUI.send_init()

	8.1.2. DAQ_Viewer class
	DAQ_Viewer
	DAQ_Viewer.grab_done_signal

	DAQ_Viewer.custom_sig

	DAQ_Viewer.overshoot_signal

	DAQ_Viewer.append_data()

	DAQ_Viewer.child_added()

	DAQ_Viewer.connect_tcp_ip()

	DAQ_Viewer.daq_type_changed_from_ui()

	DAQ_Viewer.get_scaling_options()

	DAQ_Viewer.grab()

	DAQ_Viewer.grab_data()

	DAQ_Viewer.init_hardware()

	DAQ_Viewer.insert_data()

	DAQ_Viewer.load_data()

	DAQ_Viewer.param_deleted()

	DAQ_Viewer.process_tcpip_cmds()

	DAQ_Viewer.process_ui_cmds()

	DAQ_Viewer.quit_fun()

	DAQ_Viewer.save_current()

	DAQ_Viewer.save_new()

	DAQ_Viewer.set_data_to_viewers()

	DAQ_Viewer.setup_continuous_saving()

	DAQ_Viewer.show_data()

	DAQ_Viewer.show_temp_data()

	DAQ_Viewer.snap()

	DAQ_Viewer.snapshot()

	DAQ_Viewer.stop()

	DAQ_Viewer.stop_grab()

	DAQ_Viewer.take_bkg()

	DAQ_Viewer.thread_status()

	DAQ_Viewer.value_changed()

	DAQ_Viewer.bkg

	DAQ_Viewer.current_data

	DAQ_Viewer.daq_type

	DAQ_Viewer.daq_types

	DAQ_Viewer.detector

	DAQ_Viewer.detectors

	DAQ_Viewer.do_bkg

	DAQ_Viewer.grab_state

	DAQ_Viewer.viewer_docks

	DAQ_Viewer.viewers

	DAQ_Viewer.viewers_docks

	8.1.3. DAQ_Detector class
	DAQ_Detector
	DAQ_Detector.detector

	DAQ_Detector.controller

	DAQ_Detector.controller_adress

	DAQ_Detector.close()

	DAQ_Detector.data_ready()

	DAQ_Detector.emit_temp_data()

	DAQ_Detector.grab_data()

	DAQ_Detector.ini_detector()

	DAQ_Detector.queue_command()

	DAQ_Detector.single()

	DAQ_Detector.update_settings()

	8.1.4. The Viewer UI class
	DAQ_Viewer_UI
	DAQ_Viewer_UI.command_sig

	DAQ_Viewer_UI.display_value()

	DAQ_Viewer_UI.do_init()

	DAQ_Viewer_UI.connect_things()

	DAQ_Viewer_UI.do_grab()

	DAQ_Viewer_UI.do_init()

	DAQ_Viewer_UI.do_snap()

	DAQ_Viewer_UI.do_stop()

	DAQ_Viewer_UI.send_init()

	DAQ_Viewer_UI.setup_actions()

	DAQ_Viewer_UI.setup_docks()

	DAQ_Viewer_UI.update_viewers()

	DAQ_Viewer_UI.detector_init

	8.1.5. The DAQ_Move Class
	DAQ_Move
	DAQ_Move.init_signal

	DAQ_Move.move_done_signal

	DAQ_Move.bounds_signal

	DAQ_Move.get_actuator_value()

	DAQ_Move.get_continuous_actuator_value()

	DAQ_Move.grab()

	DAQ_Move.init_hardware_ui()

	DAQ_Move.move()

	DAQ_Move.move_abs()

	DAQ_Move.move_home()

	DAQ_Move.move_rel()

	DAQ_Move.quit_fun()

	DAQ_Move.stop_motion()

	DAQ_Move.thread_status()

	DAQ_Move.actuator

	DAQ_Move.initialized_state

	DAQ_Move.move_done_bool

	8.1.6. The DAQ_Move UI class
	DAQ_Move_UI
	DAQ_Move_UI.command_sig

	DAQ_Move_UI.display_value()

	DAQ_Move_UI.do_init()

	DAQ_Move_UI.connect_things()

	DAQ_Move_UI.do_init()

	DAQ_Move_UI.send_init()

	DAQ_Move_UI.set_abs_spinbox_properties()

	DAQ_Move_UI.setup_actions()

	DAQ_Move_UI.setup_docks()

	DAQ_Move_UI.actuator_init

	DAQ_Move_UI.move_done

	8.1.7. The DAQ_Move Plugin Class
	DAQ_Move_base
	DAQ_Move_base.move_done_signal

	DAQ_Move_base.controller

	DAQ_Move_base.settings

	DAQ_Move_base.params

	DAQ_Move_base.is_multiaxes

	DAQ_Move_base.current_value

	DAQ_Move_base.target_value

	DAQ_Move_base.check_bound()

	DAQ_Move_base.commit_settings()

	DAQ_Move_base.emit_status()

	DAQ_Move_base.emit_value()

	DAQ_Move_base.get_position_with_scaling()

	DAQ_Move_base.ini_attributes()

	DAQ_Move_base.ini_stage_init()

	DAQ_Move_base.move_done()

	DAQ_Move_base.poll_moving()

	DAQ_Move_base.send_param_status()

	DAQ_Move_base.set_position_relative_with_scaling()

	DAQ_Move_base.set_position_with_scaling()

	DAQ_Move_base.update_settings()

	DAQ_Move_base.axis_name

	DAQ_Move_base.axis_names

	DAQ_Move_base.axis_value

	DAQ_Move_base.controller_units

	DAQ_Move_base.ispolling

 8.1.1. ControlModule base classes

	ControlModule()

	Abstract Base class common to both DAQ_Move and DAQ_Viewer control modules

	ControlModuleUI(parent)

	Base Class for ControlModules UIs

8.1.1. ControlModule base classes

Both DAQ_Move and DAQ_Viewer control modules share some specificities and inherit from a base class: the ControlModule

	
class pymodaq.control_modules.utils.ControlModule

	Abstract Base class common to both DAQ_Move and DAQ_Viewer control modules

	
init_signal

	This signal is emitted when the chosen hardware is correctly initialized

	Type

	Signal[bool [https://docs.python.org/3/library/functions.html#bool]]

	
command_hardware

	This signal is used to communicate with the instrument plugin within a separate thread

	Type

	Signal[ThreadCommand]

	
command_tcpip

	This signal is used to communicate through the TCP/IP Network

	Type

	Signal[ThreadCommand]

	
quit_signal

	This signal is emitted when the user requested to stop the module

	Type

	Signal[]

	Attributes

	
	initialized_state
	bool: Check if the module is initialized

	module_type
	str: Get the module type, either DAQ_Move or DAQ_viewer

	title
	str: get the title of the module

	ui
	

Methods

	grab()

	Programmatic entry to grab data from detectors or current value from actuator

	init_hardware([do_init])

	Programmatic entry to initialize/deinitialize the control module

	init_hardware_ui([do_init])

	Programmatic entry to simulate a click on the user interface init button

	manage_ui_actions(action_name, attribute, value)

	Method to manage actions for the UI (if any).

	quit_fun()

	Programmatic entry to quit the controle module

	show_config(config)

	Display in a tree the current configuration

	show_log()

	Open the log file in the default text editor

	stop_grab()

	Programmatic entry to stop data grabbing from detectors or current value polling from actuator

	thread_status(status[, control_module_type])

	Get back info (using the ThreadCommand object) from the hardware

	update_status(txt[, log])

	Display a message in the ui status bar and eventually log the message

	append_data

	

	command_hardware

	

	custom_sig

	

	init_signal

	

	insert_data

	

	quit_signal

	

	status_sig

	

	
grab()

	Programmatic entry to grab data from detectors or current value from actuator

	
init_hardware(do_init=True)

	Programmatic entry to initialize/deinitialize the control module

	Parameters

	do_init (bool [https://docs.python.org/3/library/functions.html#bool]) – if True initialize the selected hardware else deinitialize it

See also

init_hardware_ui()

	
init_hardware_ui(do_init=True)

	Programmatic entry to simulate a click on the user interface init button

	Parameters

	do_init (bool [https://docs.python.org/3/library/functions.html#bool]) – if True initialize the selected hardware else deinitialize it

Notes

This method should be preferred to init_hardware()

	
manage_ui_actions(action_name: str [https://docs.python.org/3/library/stdtypes.html#str], attribute: str [https://docs.python.org/3/library/stdtypes.html#str], value)

	Method to manage actions for the UI (if any).

Will try to apply the given value to the given attribute of the corresponding action

	Parameters

	
	action_name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	attribute (method signature or attribute) –

	value (object [https://docs.python.org/3/library/functions.html#object]) – actual type and value depend on the triggered attribute

Examples

>>>manage_ui_actions(‘quit’, ‘setEnabled’, False)
will disable the quit action (button) on the UI

	
quit_fun()

	Programmatic entry to quit the controle module

	
show_config(config: Config) → Config

	Display in a tree the current configuration

	
show_log()

	Open the log file in the default text editor

	
stop_grab()

	Programmatic entry to stop data grabbing from detectors or current value polling from actuator

	
thread_status(status: ThreadCommand, control_module_type='detector')

	Get back info (using the ThreadCommand object) from the hardware

And re-emit this ThreadCommand using the custom_sig signal if it should be used in a higher level module

	Parameters

	status (ThreadCommand) –
	The info returned from the hardware, the command (str) can be either:
	
	Update_Status: display messages and log info

	close: close the current thread and delete corresponding attribute on cascade.

	update_settings: Update the “detector setting” node in the settings tree.

	update_main_settings: update the “main setting” node in the settings tree

	raise_timeout:

	show_splash: Display the splash screen with attribute as message

	close_splash

	show_config: display the plugin configuration

	
update_status(txt, log=True)

	Display a message in the ui status bar and eventually log the message

	Parameters

	
	txt (str [https://docs.python.org/3/library/stdtypes.html#str]) – message to display

	log (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, log the message in the logger

	
property initialized_state

	Check if the module is initialized

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property module_type

	Get the module type, either DAQ_Move or DAQ_viewer

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property title

	get the title of the module

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

The same is also true for the UI of these modules sharing a common UI base class: the ControlModuleUI

	
class pymodaq.control_modules.utils.ControlModuleUI(parent)

	Base Class for ControlModules UIs

	
command_sig

	This signal is emitted whenever some actions done by the user has to be
applied on the main module. Possible commands are:
See specific implementation

	Type

	Signal[Threadcommand]

See also

daq_move_ui.DAQ_Move_UI, daq_viewer_ui.DAQ_Viewer_UI

Methods

	do_init([do_init])

	Programmatically press the Init button API entry :param do_init: will fire the Init button depending on the argument value and the button check state :type do_init: bool

	send_init(checked)

	Should be implemented to send to the main app the fact that someone (un)checked init.

	command_sig

	

	display_status

	

	
do_init(do_init=True)

	Programmatically press the Init button
API entry
:param do_init: will fire the Init button depending on the argument value and the button check state
:type do_init: bool

	
send_init(checked: bool [https://docs.python.org/3/library/functions.html#bool])

	Should be implemented to send to the main app the fact that someone (un)checked init.

 8.1.2. DAQ_Viewer class

 Summary of the classes dealing with the DAQ_Viewer control module:

	DAQ_Viewer([parent, title, daq_type, ...])

	Main PyMoDAQ class to drive detectors

	DAQ_Detector(title, settings_parameter, ...)

	Worker class to control the instrument plugin

	DAQ_Viewer_UI(parent[, title, daq_type, ...])

	DAQ_Viewer user interface.

8.1.2. DAQ_Viewer class

This documentation highlights the useful entry and output points that you may use in your applications.

	
class pymodaq.control_modules.daq_viewer.DAQ_Viewer(parent=None, title='Testing', daq_type='DAQ0D', dock_settings=None, dock_viewer=None)

	Bases: ParameterManager, ControlModule

Main PyMoDAQ class to drive detectors

Qt object and generic UI to drive actuators. The class is giving you full functionality to select (daq_detector),
initialize detectors (init_hardware), grab or snap data (grab_data) and save them (save_new, save_current). If
a DockArea is given as parent widget, the full User Interface (DAQ_Viewer_UI) is loaded allowing easy control of the
instrument.

	
grab_done_signal

	Signal emitted when the data from the plugin (and eventually from the data viewers) has been received. To be
used by connected objects.

	Type

	Signal[DataToExport]

	
custom_sig

	use this to propagate info/data coming from the hardware plugin to another object

	Type

	Signal[ThreadCommand]

	
overshoot_signal

	This signal is emitted when some 0D data from the plugin is higher than the overshoot threshold set in the
settings

	Type

	Signal[bool [https://docs.python.org/3/library/functions.html#bool]]

See also

ControlModule, DAQ_Viewer_UI, ParameterManager

Notes

A particular signal from the 2D DataViewer is directly connected to the plugin: ROI_select_signal. The position and
size of the corresponding ROI is then directly transferred to a plugin function named ROISelect that you have to
create if one want to receive infos from the ROI

	Attributes

	
	Naverage
	

	bkg
	Get the background data object

	current_data
	Get the current data stored internally

	daq_type
	Get/Set the daq_type as a DAQTypesEnum

	daq_types
	List of available DAQ_TYPES as keys of the DAQTypesEnum

	detector
	str [https://docs.python.org/3/library/stdtypes.html#str]: Get/Set the currently selected detector among available detectors

	detectors
	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]: List of available detectors of the current daq_type (DAQTypesEnum)

	do_bkg
	bool [https://docs.python.org/3/library/functions.html#bool]: Get/Set if background subtraction should be done

	grab_state
	bool [https://docs.python.org/3/library/functions.html#bool]: Get the current grabbing status

	viewer_docks
	list of Viewer Docks from the UI

	viewers
	list [https://docs.python.org/3/library/stdtypes.html#list]: Get/Set the Viewers (instances of real implementation of ViewerBase class) from the UI

	viewers_docks
	list of Viewer Docks from the UI, for back compatibility

Methods

	append_data([dte, where])

	Appends current DataToExport to a DetectorEnlargeableSaver

	child_added(param, data)

	Adds a child in the settings attribute

	connect_tcp_ip()

	Init a TCPClient in a separated thread to communicate with a distant TCp/IP Server

	daq_type_changed_from_ui(daq_type)

	Apply changes from the selection of a different DAQTypesEnum in the UI

	get_scaling_options()

	Create axes scaling options depending on the ('main_settings', 'axes') settings

	grab()

	Launch a continuous grab

	grab_data([grab_state, send_to_tcpip, ...])

	Generic method to grab or snap data from the selected (and initialized) detector

	init_hardware([do_init])

	Init the selected detector

	insert_data(indexes[, where, distribution])

	Insert DataToExport to a DetectorExtendedSaver at specified indexes

	load_data()

	Opens a H5 file in the H5Browser module

	param_deleted(param)

	Remove a child from the settings attribute

	process_tcpip_cmds(status)

	Receive commands from the TCP Server (if connected) and process them

	process_ui_cmds(cmd)

	Process commands sent by actions done in the ui

	quit_fun()

	Quit the application, closing the hardware and other modules

	save_current()

	Save current data into a h5file

	save_new()

	Snap data and save them into a h5file

	set_data_to_viewers(dte[, temp])

	Process data dimensionality and send appropriate data to their data viewers

	setup_continuous_saving()

	Configure the objects dealing with the continuous saving mode

	show_data(dte)

	Send data to their dedicated viewers

	show_temp_data(data)

	Send data to their dedicated viewers but those will not emit processed data signal

	snap()

	Launch a single grab

	snapshot([pathname, dosave, send_to_tcpip])

	Do one single grab (snap) and eventually save the data.

	stop()

	Stop the current continuous grabbing

	stop_grab()

	Stop the current continuous grabbing and unchecked the stop button of the UI

	take_bkg()

	Do a snap and store data to be used as background into an attribute: self._bkg

	thread_status(status)

	Get back info (using the ThreadCommand object) from the hardware

	value_changed(param)

	ParameterManager subclassed method.

	custom_sig

	

	data_saved

	

	detector_changed_from_ui

	

	detectors_changed_from_ui

	

	grab_done_signal

	

	grab_status

	

	overshoot_signal

	

	update_plugin_config

	

	
append_data(dte: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataToExport] = None, where: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]]] = None)

	Appends current DataToExport to a DetectorEnlargeableSaver

Method to be used when performing continuous saving into a h5file (continuous mode or DAQ_Logger)

	Parameters

	
	dte (DataToExport) – not really used

	where (Node or str [https://docs.python.org/3/library/stdtypes.html#str]) –

See also

DetectorEnlargeableSaver

	
child_added(param, data)

	Adds a child in the settings attribute

	Parameters

	
	param (Parameter) – the parameter where child will be added

	data (Parameter) – the child parameter

	
connect_tcp_ip()

	Init a TCPClient in a separated thread to communicate with a distant TCp/IP Server

Use the settings: ip_address and port to specify the connection

See also

TCPServer

	
daq_type_changed_from_ui(daq_type: DAQTypesEnum)

	Apply changes from the selection of a different DAQTypesEnum in the UI

	Parameters

	daq_type (DAQTypesEnum) –

	
get_scaling_options()

	Create axes scaling options depending on the (‘main_settings’, ‘axes’) settings

	Return type

	Tuple[Axis]

	
grab()

	Launch a continuous grab

	
grab_data(grab_state=False, send_to_tcpip=False, snap_state=False)

	Generic method to grab or snap data from the selected (and initialized) detector

	Parameters

	
	grab_state (bool [https://docs.python.org/3/library/functions.html#bool]) – Defines the grab status: if True: do live grabbing if False stops the grab

	send_to_tcpip (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, send the grabbed data through the TCP/IP pipe

	snap_state (bool [https://docs.python.org/3/library/functions.html#bool]) – if True performs a single grab

	
init_hardware(do_init=True)

	Init the selected detector

	Parameters

	do_init (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, create a DAQ_Detector instance and move it into a separated thread, connected its signals/slots
to the DAQ_Viewer object (self)
If False, force the instrument to close and kill the Thread (still not done properly in some cases)

	
insert_data(indexes: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]], where: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, distribution=DataDistribution.uniform)

	Insert DataToExport to a DetectorExtendedSaver at specified indexes

Method to be used when saving into an already initialized array within a h5file (DAQ_Scan for instance)

	Parameters

	
	indexes (tuple [https://docs.python.org/3/library/stdtypes.html#tuple](int [https://docs.python.org/3/library/functions.html#int])) – The indexes within the extended array where to place these data

	where (Node or str [https://docs.python.org/3/library/stdtypes.html#str]) –

	distribution (DataDistribution enum) –

See also

DAQ_Scan, DetectorExtendedSaver

	
static load_data()

	Opens a H5 file in the H5Browser module

Convenience static method.

	
param_deleted(param)

	Remove a child from the settings attribute

	Parameters

	param (Parameter) – a given parameter whose value has been changed by user

	
process_tcpip_cmds(status)

	Receive commands from the TCP Server (if connected) and process them

	Parameters

	status (ThreadCommand) – Possible commands are:
* ‘Send Data: to trigger a snapshot
* ‘connected’: show that connection is ok
* ‘disconnected’: show that connection is not OK
* ‘Update_Status’: update a status command
* ‘set_info’: receive settings from the server side and update them on this side

See also

connect_tcp_ip, TCPServer

	
process_ui_cmds(cmd: ThreadCommand)

	Process commands sent by actions done in the ui

	Parameters

	cmd (ThreadCommand) –
	Possible values are:
	
	init

	quit

	grab

	snap

	stop

	show_log

	detector_changed

	daq_type_changed

	save_current

	save_new

	do_bkg

	take_bkg

	viewers_changed

	show_config

	
quit_fun()

	Quit the application, closing the hardware and other modules

	
save_current()

	Save current data into a h5file

	
save_new()

	Snap data and save them into a h5file

	
set_data_to_viewers(dte: DataToExport, temp=False)

	Process data dimensionality and send appropriate data to their data viewers

	Parameters

	
	dte (DataToExport) –

	temp (bool [https://docs.python.org/3/library/functions.html#bool]) – if True notify the data viewers to display data as temporary (meaning not exporting processed data from roi)

See also

ViewerBase, Viewer0D, Viewer1D, Viewer2D

	
setup_continuous_saving()

	Configure the objects dealing with the continuous saving mode

	
show_data(dte: DataToExport)

	Send data to their dedicated viewers

Slot receiving data from plugins emitted with the data_grabed_signal
Process the data as specified in the settings, display them into the dedicated data viewers depending on the
settings:

	create a container (OrderedDict _data_to_save_export) with info from this DAQ_Viewer (title), a timestamp…

	call _process_data

	do background subtraction if any

	check refresh time (if set in the settings) to send or not data to data viewers

	either send to the data viewers (if refresh time is ok and/or show data option in settings is set)

	
	either
	
	send grab_done_signal (to the slot _save_export_data) to save the data

	Parameters

	dte (DataToExport) –

See also

_init_show_data, _process_data

	
show_temp_data(data: DataToExport)

	Send data to their dedicated viewers but those will not emit processed data signal

Slot receiving data from plugins emitted with the data_grabed_signal_temp

	Parameters

	data (list [https://docs.python.org/3/library/stdtypes.html#list] of DataFromPlugins) –

	
snap()

	Launch a single grab

	
snapshot(pathname=None, dosave=False, send_to_tcpip=False)

	Do one single grab (snap) and eventually save the data.

	Parameters

	
	pathname (str [https://docs.python.org/3/library/stdtypes.html#str] or Path object) – The path where to save data

	dosave (bool [https://docs.python.org/3/library/functions.html#bool]) – Do save or just grab data

	send_to_tcpip (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, send the grabbed data through the TCP/IP pipe

	
stop()

	Stop the current continuous grabbing

	
stop_grab()

	Stop the current continuous grabbing and unchecked the stop button of the UI

See also

stop()

	
take_bkg()

	Do a snap and store data to be used as background into an attribute: self._bkg

The content of the bkg will be saved if data is further saved with do_bkg property set to True

	
thread_status(status: ThreadCommand)

	Get back info (using the ThreadCommand object) from the hardware

And re-emit this ThreadCommand using the custom_sig signal if it should be used in a higher level module

Commands valid for all control modules are defined in the parent class, here are described only the specific
ones

	Parameters

	status (ThreadCommand) –
	The info returned from the hardware, the command (str) can be either:
	
	ini_detector: update the status with “detector initialized” value and init state if attribute not null.

	grab : emit grab_status(True)

	grab_stopped: emit grab_status(False)

	init_lcd: display a LCD panel

	lcd: display on the LCD panel, the content of the attribute

	stop: stop the grab

	
value_changed(param: Parameter)

	ParameterManager subclassed method. Process events from value changed by user in the UI Settings

	Parameters

	param (Parameter) – a given parameter whose value has been changed by user

	
property bkg: DataToExport

	Get the background data object

	
property current_data: DataToExport

	Get the current data stored internally

	
property daq_type: DAQTypesEnum

	Get/Set the daq_type as a DAQTypesEnum

Update the detector property with the list of available detectors of a given daq_type

	
property daq_types: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	List of available DAQ_TYPES as keys of the DAQTypesEnum

	
property detector: str [https://docs.python.org/3/library/stdtypes.html#str]

	Get/Set the currently selected detector among available detectors

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property detectors: str [https://docs.python.org/3/library/stdtypes.html#str]

	List of available detectors of the current daq_type (DAQTypesEnum)

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

	
property do_bkg: bool [https://docs.python.org/3/library/functions.html#bool]

	Get/Set if background subtraction should be done

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property grab_state

	Get the current grabbing status

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property viewer_docks: List [https://docs.python.org/3/library/typing.html#typing.List][Dock]

	list of Viewer Docks from the UI

	
property viewers: List [https://docs.python.org/3/library/typing.html#typing.List][ViewerBase]

	Get/Set the Viewers (instances of real implementation of ViewerBase class) from the UI

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property viewers_docks: List [https://docs.python.org/3/library/typing.html#typing.List][Dock]

	list of Viewer Docks from the UI, for back compatibility

8.1.3. DAQ_Detector class

The Detector class is an object leaving in the plugin thread and responsible for the communication between DAQ_Viewer
and the plugin itself

	
class pymodaq.control_modules.daq_viewer.DAQ_Detector(title, settings_parameter, detector_name)

	Worker class to control the instrument plugin

	
detector

	
	Type

	real instance of the instrument plugin class

	
controller

	wrapper object used to control a given instrument in the instrument plugin

	Type

	DAQ_Viewer_base

	
controller_adress

	unique integer used to identify a controller shared among multiple instrument plugins

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	Attributes

	
	title
	

Methods

	close()

	Call the close method of the instrument plugin class

	data_ready(data)

	Process the data received from the instrument plugin class

	emit_temp_data(data)

	Convenience method to export temporary data using the data_detector_temp_sig Signal

	grab_data([Naverage, live])

	General method to grab data from the instrument plugin class

	ini_detector([params_state, controller])

	Initialize an instrument plugin class and tries to apply preset settings

	queue_command(command)

	Transfer command from the main module to the hardware module

	single([Naverage])

	Convenience function to grab a single set of data

	update_settings(settings_parameter_dict)

	Apply a Parameter serialized as a dict to the instrument plugin class or to self

	data_detector_sig

	

	data_detector_temp_sig

	

	status_sig

	

	
close()

	Call the close method of the instrument plugin class

	
data_ready(data: DataToExport)

	Process the data received from the instrument plugin class

Processing here is eventual software averaging if it was not possible in the instrument plugin class

	Parameters

	data (DataToExport) –

	
emit_temp_data(data: DataToExport)

	Convenience method to export temporary data using the data_detector_temp_sig Signal

	Parameters

	data (DataToExport) –

	
grab_data(Naverage=1, live=True, **kwargs)

	General method to grab data from the instrument plugin class

Will check if the plugin class can do hardware averaging (if NAverage > 1) and and live_mode, otherwise
do both software wise here

	Parameters

	
	Naverage (int [https://docs.python.org/3/library/functions.html#int]) – The number of data to average

	live (bool [https://docs.python.org/3/library/functions.html#bool]) – Try to run the instrument plugin class grabbing in live mode

	kwargs (optional named arguments passed to the grab_data method of the instrument plugin class) –

	
ini_detector(params_state=None, controller=None)

	Initialize an instrument plugin class and tries to apply preset settings

When the instrument is initialized from the Dashboard using a Preset, tries to apply the preset
settings to the instrument instance

	Parameters

	
	params_state (dict [https://docs.python.org/3/library/stdtypes.html#dict]) –

	controller (wrapper) –

	
queue_command(command: ThreadCommand)

	Transfer command from the main module to the hardware module

	Parameters

	command (ThreadCommand) – The specific (or generic) command (str) to pass to the hardware, either:
* ini_detector
* close
* grab
* single
* stop_grab
* stop_all
* update_scanner
* move_at_navigator
* update_wait_time
* get_axis
* any string that the hardware is able to understand

	
single(Naverage=1, *args, **kwargs)

	Convenience function to grab a single set of data

	Parameters

	
	Naverage (int [https://docs.python.org/3/library/functions.html#int]) – The number of data to average before displaying

	kwargs (optional named arguments) –

	
update_settings(settings_parameter_dict)

	Apply a Parameter serialized as a dict to the instrument plugin class or to self

	Parameters

	settings_parameter_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary serializing a Parameter object

Examples

If the parameter is of the form (‘detector_settings’, ‘xxx’) then the parameter is sent to the instrument
plugin class.

8.1.4. The Viewer UI class

This object is the User Interface of the DAQ_Viewer, allowing easy access to all of the DAQ_Viewer functionnalities
in a generic interface.

	
class pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI(parent, title='DAQ_Viewer', daq_type='DAQ2D', dock_settings=None, dock_viewer=None)

	DAQ_Viewer user interface.

This class manages the UI and emit dedicated signals depending on actions from the user

	
command_sig

	This signal is emitted whenever some actions done by the user has to be
applied on the main module. Possible commands are:

	init

	quit

	grab

	snap

	stop

	show_log

	detector_changed

	daq_type_changed

	save_current

	save_new

	Type

	Signal[Threadcommand]

	
display_value(value: float [https://docs.python.org/3/library/functions.html#float])

	Update the display of the actuator’s value on the UI

	
do_init()

	Programmatic init

See also

pymodaq.utils.daq_utils.ThreadCommand

	Attributes

	
	daq_type
	

	daq_types
	

	data_ready
	

	detector
	

	detector_init
	bool: the status of the init LED.

	detectors
	

Methods

	connect_things()

	Connect actions and/or other widgets signal to methods

	do_grab([do_grab])

	Programmatically press the Grab button API entry :param do_grab: will fire the Init button depending on the argument value and the button check state :type do_grab: bool

	do_init([do_init])

	Programmatically press the Init button API entry :param do_init: will fire the Init button depending on the argument value and the button check state :type do_init: bool

	do_snap()

	Programmatically press the Snap button API entry

	do_stop()

	Programmatically press the Stop button API entry

	send_init(checked)

	Should be implemented to send to the main app the fact that someone (un)checked init.

	setup_actions()

	Method where to create actions to be subclassed.

	setup_docks()

	Mandatory method to be subclassed to setup the docks layout

	update_viewers(viewers_type)

	
	param viewers_type

	

	add_setting_tree

	

	close

	

	command_sig

	

	show_controls

	

	show_settings

	

	
connect_things()

	Connect actions and/or other widgets signal to methods

	
do_grab(do_grab=True)

	Programmatically press the Grab button
API entry
:param do_grab: will fire the Init button depending on the argument value and the button check state
:type do_grab: bool

	
do_init(do_init=True)

	Programmatically press the Init button
API entry
:param do_init: will fire the Init button depending on the argument value and the button check state
:type do_init: bool

	
do_snap()

	Programmatically press the Snap button
API entry

	
do_stop()

	Programmatically press the Stop button
API entry

	
send_init(checked: bool [https://docs.python.org/3/library/functions.html#bool])

	Should be implemented to send to the main app the fact that someone (un)checked init.

	
setup_actions()

	Method where to create actions to be subclassed. Mandatory

Examples

>>> self.add_action('Quit', 'close2', "Quit program")
>>> self.add_action('Grab', 'camera', "Grab from camera", checkable=True)
>>> self.add_action('Load', 'Open', "Load target file (.h5, .png, .jpg) or data from camera", checkable=False)
>>> self.add_action('Save', 'SaveAs', "Save current data", checkable=False)

See also

ActionManager.add_action

	
setup_docks()

	Mandatory method to be subclassed to setup the docks layout

Examples

>>>self.docks[‘ADock’] = gutils.Dock(‘ADock name’)
>>>self.dockarea.addDock(self.docks[‘ADock’])
>>>self.docks[‘AnotherDock’] = gutils.Dock(‘AnotherDock name’)
>>>self.dockarea.addDock(self.docks[‘AnotherDock’’’], ‘bottom’, self.docks[‘ADock’])

See also

pyqtgraph.dockarea.Dock

	
update_viewers(viewers_type: List [https://docs.python.org/3/library/typing.html#typing.List][ViewersEnum])

	
	Parameters

	
	viewers_type (List[ViewersEnum]) –

	viewers_name (List[str [https://docs.python.org/3/library/stdtypes.html#str]] or None) –

	force (bool [https://docs.python.org/3/library/functions.html#bool]) – if True remove all viewers before update else check if new viewers type are compatible with old ones

	
property detector_init

	the status of the init LED.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

 8.1.5. The DAQ_Move Class

	pymodaq.control_modules.daq_move.DAQ_Move([...])

	Main PyMoDAQ class to drive actuators

	pymodaq.control_modules.daq_move.DAQ_Move_Hardware(...)

	

	pymodaq.control_modules.move_utility_classes.params

	Built-in mutable sequence.

8.1.5. The DAQ_Move Class

This documentation highlights the useful entry and output points that you may use in your
applications.

	
class pymodaq.control_modules.daq_move.DAQ_Move(parent=None, title='DAQ Move')

	Main PyMoDAQ class to drive actuators

Qt object and generic UI to drive actuators.

	
init_signal

	This signal is emitted when the chosen actuator is correctly initialized

	Type

	Signal[bool [https://docs.python.org/3/library/functions.html#bool]]

	
move_done_signal

	This signal is emitted when the chosen actuator finished its action. It gives the actuator’s name and current
value

	Type

	Signal[str [https://docs.python.org/3/library/stdtypes.html#str], DataActuator]

	
bounds_signal

	This signal is emitted when the actuator reached defined limited boundaries.

	Type

	Signal[bool [https://docs.python.org/3/library/functions.html#bool]]

See also

ControlModule, ParameterManager

	Attributes

	
	actuator
	str: the selected actuator’s type

	initialized_state
	bool: status of the actuator’s initialization (init or not)

	move_done_bool
	bool: status of the actuator’s status (done or not)

Methods

	get_actuator_value()

	Get the current actuator value via the "get_actuator_value" command send to the hardware

	get_continuous_actuator_value([get_value])

	Start the continuous getting of the actuator's value

	grab()

	Programmatic entry to grab data from detectors or current value from actuator

	move(move_command)

	Generic method to trigger the correct action on the actuator

	move_abs(value[, send_to_tcpip])

	Move the connected hardware to the absolute value

	move_home([send_to_tcpip])

	Move the connected actuator to its home value (if any)

	move_rel(rel_value[, send_to_tcpip])

	Move the connected hardware to the relative value

	quit_fun()

	Programmatic quitting of the current instance of DAQ_Move

	stop_motion()

	Stop any motion

	thread_status(status)

	Get back info (using the ThreadCommand object) from the hardware

	
get_actuator_value()

	Get the current actuator value via the “get_actuator_value” command send to the hardware

Returns nothing but the move_done_signal will be send once the action is done

	
get_continuous_actuator_value(get_value=True)

	Start the continuous getting of the actuator’s value

	Parameters

	get_value (bool [https://docs.python.org/3/library/functions.html#bool]) – if True start the timer to periodically fetch the actuator’s value, else stop it

Notes

The current timer period is set by the refresh value ‘refresh_timeout’ in the actuator main settings.

	
grab()

	Programmatic entry to grab data from detectors or current value from actuator

	
init_hardware_ui(do_init=True)

	Programmatic entry to simulate a click on the user interface init button

	Parameters

	do_init (bool [https://docs.python.org/3/library/functions.html#bool]) – if True initialize the selected hardware else deinitialize it

Notes

This method should be preferred to init_hardware()

	
move(move_command: MoveCommand)

	Generic method to trigger the correct action on the actuator

	Parameters

	move_command (MoveCommand) – MoveCommand with move_type attribute either:
* ‘abs’: performs an absolute action
* ‘rel’: performs a relative action
* ‘home’: find the actuator’s home

See also

move_abs(), move_rel(), move_home(), utility_classes.MoveCommand

	
move_abs(value: Union [https://docs.python.org/3/library/typing.html#typing.Union][DataActuator, Number [https://docs.python.org/3/library/numbers.html#numbers.Number]], send_to_tcpip=False)

	Move the connected hardware to the absolute value

Returns nothing but the move_done_signal will be send once the action is done

	Parameters

	
	value (ndarray) – The value the actuator should reach

	send_to_tcpip (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, this position is send through the TCP/IP communication canal

	
move_home(send_to_tcpip=False)

	Move the connected actuator to its home value (if any)

	Parameters

	send_to_tcpip (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, this position is send through the TCP/IP communication canal

	
move_rel(rel_value: Union [https://docs.python.org/3/library/typing.html#typing.Union][DataActuator, Number [https://docs.python.org/3/library/numbers.html#numbers.Number]], send_to_tcpip=False)

	Move the connected hardware to the relative value

Returns nothing but the move_done_signal will be send once the action is done

	Parameters

	
	value (float [https://docs.python.org/3/library/functions.html#float]) – The relative value the actuator should reach

	send_to_tcpip (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, this position is send through the TCP/IP communication canal

	
quit_fun()

	Programmatic quitting of the current instance of DAQ_Move

Des-init the actuator then close the UI parent widget

	
stop_motion()

	Stop any motion

	
thread_status(status: ThreadCommand)

	Get back info (using the ThreadCommand object) from the hardware

And re-emit this ThreadCommand using the custom_sig signal if it should be used in a higher level module

Commands valid for all control modules are defined in the parent class, here are described only the specific
ones

	Parameters

	status (ThreadCommand) – Possible values are:

	ini_stage: obtains info from the initialization

	get_actuator_value: update the UI current value

	move_done: update the UI current value and emits the move_done signal

	outofbounds: emits the bounds_signal signal with a True argument

	set_allowed_values: used to change the behaviour of the spinbox controlling absolute values (see
daq_move_ui.set_abs_spinbox_properties()

	stop: stop the motion

	
property actuator

	the selected actuator’s type

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property initialized_state

	status of the actuator’s initialization (init or not)

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property move_done_bool

	status of the actuator’s status (done or not)

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

8.1.6. The DAQ_Move UI class

This object is the User Interface of the DAQ_Viewer, allowing easy access to all of the DAQ_Viewer functionnalities
in a generic interface.

	
class pymodaq.control_modules.daq_move_ui.DAQ_Move_UI(parent, title='DAQ_Move')

	DAQ_Move user interface.

This class manages the UI and emit dedicated signals depending on actions from the user

	
command_sig

	This signal is emitted whenever some actions done by the user has to be
applied on the main module. Possible commands are:

	init

	quit

	get_value

	loop_get_value

	find_home

	stop

	move_abs

	move_rel

	show_log

	actuator_changed

	rel_value

	show_config

	show_plugin_config

	Type

	Signal[Threadcommand]

	
display_value(value: float [https://docs.python.org/3/library/functions.html#float])

	Update the display of the actuator’s value on the UI

	
do_init()

	Programmatic init

See also

pymodaq.utils.daq_utils.ThreadCommand

	Attributes

	
	actuator
	

	actuator_init
	bool: the status of the init LED.

	actuators
	

	move_done
	bool: the status of the move_done LED.

Methods

	connect_things()

	Connect actions and/or other widgets signal to methods

	do_init([do_init])

	Programmatically press the Init button API entry :param do_init: will fire the Init button depending on the argument value and the button check state :type do_init: bool

	send_init(checked)

	Should be implemented to send to the main app the fact that someone (un)checked init.

	set_abs_spinbox_properties(**properties)

	Change the Spinbox properties

	setup_actions()

	Method where to create actions to be subclassed.

	setup_docks()

	Mandatory method to be subclassed to setup the docks layout

	close

	

	display_value

	

	emit_move_abs

	

	emit_move_rel

	

	enable_move_buttons

	

	set_settings_tree

	

	show_data

	

	
connect_things()

	Connect actions and/or other widgets signal to methods

	
do_init(do_init=True)

	Programmatically press the Init button
API entry
:param do_init: will fire the Init button depending on the argument value and the button check state
:type do_init: bool

	
send_init(checked)

	Should be implemented to send to the main app the fact that someone (un)checked init.

	
set_abs_spinbox_properties(**properties)

	Change the Spinbox properties

	Parameters

	properties (dict [https://docs.python.org/3/library/stdtypes.html#dict] or named parameters) – possible keys are :

	decimals: to set the number of displayed decimals

	’minimum’: to set the minimum value

	’maximum’: to set the maximum value

	’step’: to set the step value

	
setup_actions()

	Method where to create actions to be subclassed. Mandatory

Examples

>>> self.add_action('Quit', 'close2', "Quit program")
>>> self.add_action('Grab', 'camera', "Grab from camera", checkable=True)
>>> self.add_action('Load', 'Open', "Load target file (.h5, .png, .jpg) or data from camera", checkable=False)
>>> self.add_action('Save', 'SaveAs', "Save current data", checkable=False)

See also

ActionManager.add_action

	
setup_docks()

	Mandatory method to be subclassed to setup the docks layout

Examples

>>>self.docks[‘ADock’] = gutils.Dock(‘ADock name’)
>>>self.dockarea.addDock(self.docks[‘ADock’])
>>>self.docks[‘AnotherDock’] = gutils.Dock(‘AnotherDock name’)
>>>self.dockarea.addDock(self.docks[‘AnotherDock’’’], ‘bottom’, self.docks[‘ADock’])

See also

pyqtgraph.dockarea.Dock

	
property actuator_init

	the status of the init LED.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property move_done

	the status of the move_done LED.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

8.1.7. The DAQ_Move Plugin Class

This object is the base class from which all actuator plugins should inherit. It exposes a few methods, attributes
and signal that could be useful to understand.

	
class pymodaq.control_modules.move_utility_classes.DAQ_Move_base(parent: DAQ_Move_Hardware = None, params_state: dict [https://docs.python.org/3/library/stdtypes.html#dict] = None)

	The base class to be inherited by all actuator modules

This base class implements all necessary parameters and methods for the plugin to communicate with its parent (the
DAQ_Move module)

	Parameters

	
	parent (DAQ_Move_Hardware) –

	params_state (Parameter) – pyqtgraph Parameter instance from which the module will get the initial settings (as defined in the preset)

	
move_done_signal

	signal represented by a float. Is emitted each time the hardware reached the target position within the epsilon
precision (see comon_parameters variable)

	Type

	Signal

	
controller

	the object representing the hardware in the plugin. Used to access hardware functionality

	Type

	object [https://docs.python.org/3/library/functions.html#object]

	
settings

	
	instance representing the hardware settings defined from the params attribute. Modifications on the GUI settings
	will be transferred to this attribute. It stores at all times the current state of the hardware/plugin settings

	Type

	Parameter

	
params

	Its definition on the class level enable the automatic update of the GUI settings when changing plugins
(even in managers mode creation). To be populated on the plugin level as the base class does’t represents a
real hardware

	Type

	List of dict used to create a Parameter object.

	
is_multiaxes

	class level attribute. Defines if the plugin controller controls multiple axes. If True, one has to define
a Master instance of this plugin and slave instances of this plugin (all sharing the same controller_ID
parameter)

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
current_value

	stores the current position after each call to the get_actuator_value in the plugin

	Type

	DataActuator

	
target_value

	stores the target position the controller should reach within epsilon

	Type

	DataActuator

	Attributes

	
	axis_name
	Get/Set the current axis using its string identifier

	axis_names
	Get/Set the names of all axes controlled by this instrument plugin

	axis_value
	Get the current value selected from the current axis

	controller_units
	Get/Set the units of this plugin

	current_position
	

	current_value
	

	ispolling
	Get/Set the polling status

	target_position
	

	target_value
	

Methods

	check_bound(position)

	Check if the current position is within the software bounds

	commit_settings(param)

	to subclass to transfer parameters to hardware

	emit_status(status)

	Emit the status_sig signal with the given status ThreadCommand back to the main GUI.

	emit_value(pos)

	Convenience method to emit the current actuator value back to the UI

	get_position_with_scaling(pos)

	Get the current position from the hardware with scaling conversion.

	ini_attributes()

	To be subclassed, in order to init specific attributes needed by the real implementation

	ini_stage_init([old_controller, new_controller])

	Manage the Master/Slave controller issue

	move_done([position])

	
Emit a move done signal transmitting the float position to hardware.

	poll_moving()

	Poll the current moving.

	send_param_status(param, changes)

	Send changes value updates to the gui to update consequently the User Interface

	set_position_relative_with_scaling(pos)

	Set the scaled positions in case of relative moves

	set_position_with_scaling(pos)

	Set the current position from the parameter and hardware with scaling conversion.

	update_settings(settings_parameter_dict)

	Receive the settings_parameter signal from the param_tree_changed method and make hardware updates of modified values.

	check_target_reached

	

	commit_common_settings

	

	get_actuator_value

	

	move_abs

	

	move_done_signal

	

	move_home

	

	move_rel

	

	
check_bound(position: DataActuator) → DataActuator

	Check if the current position is within the software bounds

Return the new position eventually coerced within the bounds

	
commit_settings(param: Parameter)

	to subclass to transfer parameters to hardware

	
emit_status(status: ThreadCommand)

	Emit the status_sig signal with the given status ThreadCommand back to the main GUI.

	
emit_value(pos: DataActuator)

	Convenience method to emit the current actuator value back to the UI

	
get_position_with_scaling(pos: DataActuator) → DataActuator

	Get the current position from the hardware with scaling conversion.

	
ini_attributes()

	To be subclassed, in order to init specific attributes needed by the real implementation

	
ini_stage_init(old_controller=None, new_controller=None)

	Manage the Master/Slave controller issue

First initialize the status dictionnary
Then check whether this stage is controlled by a multiaxe controller (to be defined for each plugin)

if it is a multiaxes controller then:
* if it is Master: init the controller here
* if it is Slave: use an already initialized controller (defined in the preset of the dashboard)

	Parameters

	
	old_controller (object [https://docs.python.org/3/library/functions.html#object]) – The particular object that allow the communication with the hardware, in general a python wrapper around the
hardware library. In case of Slave this one comes from a previously initialized plugin

	new_controller (object [https://docs.python.org/3/library/functions.html#object]) – The particular object that allow the communication with the hardware, in general a python wrapper around the
hardware library. In case of Master it is the new instance of your plugin controller

	
move_done(position: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataActuator] = None)

	
Emit a move done signal transmitting the float position to hardware.

The position argument is just there to match some signature of child classes.

	Arguments

	Type

	Description

	position

	float

	The position argument is just there to match some signature of child classes

	
poll_moving()

	Poll the current moving. In case of timeout emit the raise timeout Thread command.

See also

DAQ_utils.ThreadCommand, move_done

	
send_param_status(param, changes)

	Send changes value updates to the gui to update consequently the User Interface

The message passing is made via the ThreadCommand “update_settings”.

	
set_position_relative_with_scaling(pos: DataActuator) → DataActuator

	Set the scaled positions in case of relative moves

	
set_position_with_scaling(pos: DataActuator) → DataActuator

	Set the current position from the parameter and hardware with scaling conversion.

	
update_settings(settings_parameter_dict)

	Receive the settings_parameter signal from the param_tree_changed method and make hardware updates of
modified values.

	
property axis_name: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]

	Get/Set the current axis using its string identifier

	
property axis_names: Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List], Dict [https://docs.python.org/3/library/typing.html#typing.Dict]]

	Get/Set the names of all axes controlled by this instrument plugin

	Return type

	List of string or dictionary mapping names to integers

	
property axis_value: object [https://docs.python.org/3/library/functions.html#object]

	Get the current value selected from the current axis

	
property controller_units

	Get/Set the units of this plugin

	
property ispolling

	Get/Set the polling status

 8.2. Extensions

8.2. Extensions

	8.2.1. DAQ_Scan module

	8.2.2. The Bayesian Extension and utilities
	8.2.2.1. The Extension module
	BayesianOptimisation
	BayesianOptimisation.connect_things()

	BayesianOptimisation.setup_actions()

	BayesianOptimisation.setup_docks()

	BayesianOptimisation.setup_menu()

	BayesianOptimisation.value_changed()

	BayesianOptimisation.modules_manager

	8.2.2.2. The Base Models
	BayesianModelGeneric
	BayesianModelGeneric.convert_input()

	BayesianModelGeneric.convert_output()

	BayesianModelGeneric.ini_model()

	BayesianModelGeneric.runner_initialized()

	BayesianModelGeneric.update_plots()

	BayesianModelGeneric.update_settings()

	BayesianModelDefault
	BayesianModelDefault.convert_input()

	BayesianModelDefault.convert_output()

	BayesianModelDefault.ini_model()

	BayesianModelDefault.update_settings()

	8.2.3. The CustomApp base class
	CustomApp
	CustomApp.connect_things()

	CustomApp.setup_docks()

	CustomApp.setup_menu()

	CustomApp.modules_manager

 8.2.1. DAQ_Scan module

8.2.1. DAQ_Scan module

 8.2.2. The Bayesian Extension and utilities

8.2.2. The Bayesian Extension and utilities

Summary of the main classes for the Bayesian Optimization extension

	BayesianOptimisation(dockarea, dashboard)

	PyMoDAQ extension of the DashBoard to perform the optimization of a target signal taken form the detectors as a function of one or more parameters controlled by the actuators.

	BayesianModelGeneric(optimisation_controller)

	Methods

	BayesianModelDefault(optimisation_controller)

	Methods

8.2.2.1. The Extension module

	
class pymodaq.extensions.BayesianOptimisation(dockarea, dashboard)

	PyMoDAQ extension of the DashBoard to perform the optimization of a target signal
taken form the detectors as a function of one or more parameters controlled by the actuators.

	Attributes

	
	modules_manager
	useful tool to interact with DAQ_Moves and DAQ_Viewers

Methods

	connect_things()

	Connect actions and/or other widgets signal to methods

	setup_actions()

	Method where to create actions to be subclassed.

	setup_docks()

	to be subclassed to setup the docks layout for instance:

	setup_menu()

	to be subclassed create menu for actions contained into the self.actions_manager, for instance:

	value_changed(param)

	to be subclassed for actions to perform when one of the param's value in self.settings is changed

	clean_h5_temp

	

	command_runner

	

	enable_controls_opti

	

	format_bounds

	

	get_set_model_params

	

	get_stopping_parameters

	

	go_to_best

	

	ini_live_plot

	

	ini_model

	

	ini_optimisation_runner

	

	ini_temp_file

	

	optimisation_done

	

	optimisation_done_signal

	

	process_output

	

	quit

	

	run_optimisation

	

	set_algorithm

	

	set_model

	

	update_actuators

	

	update_bounds

	

	update_data_plot

	

	update_stopping_criteria

	

	update_utility_function

	

	
connect_things()

	Connect actions and/or other widgets signal to methods

	
setup_actions()

	Method where to create actions to be subclassed. Mandatory

Examples

>>> self.add_action('Quit', 'close2', "Quit program")
>>> self.add_action('Grab', 'camera', "Grab from camera", checkable=True)
>>> self.add_action('Load', 'Open', "Load target file (.h5, .png, .jpg) or data from camera", checkable=False)
>>> self.add_action('Save', 'SaveAs', "Save current data", checkable=False)

See also

ActionManager.add_action

	
setup_docks()

	to be subclassed to setup the docks layout
for instance:

self.docks[‘ADock’] = gutils.Dock(‘ADock name)
self.dockarea.addDock(self.docks[‘ADock”])
self.docks[‘AnotherDock’] = gutils.Dock(‘AnotherDock name)
self.dockarea.addDock(self.docks[‘AnotherDock”], ‘bottom’, self.docks[‘ADock”])

See also

pyqtgraph.dockarea.Dock

	
setup_menu()

	to be subclassed
create menu for actions contained into the self.actions_manager, for instance:

For instance:

file_menu = self.menubar.addMenu(‘File’)
self.actions_manager.affect_to(‘load’, file_menu)
self.actions_manager.affect_to(‘save’, file_menu)

file_menu.addSeparator()
self.actions_manager.affect_to(‘quit’, file_menu)

	
value_changed(param)

	to be subclassed for actions to perform when one of the param’s value in self.settings is changed

For instance:
if param.name() == ‘do_something’:

	if param.value():
	print(‘Do something’)
self.settings.child(‘main_settings’, ‘something_done’).setValue(False)

	Parameters

	param ((Parameter) the parameter whose value just changed) –

	
property modules_manager: ModulesManager

	useful tool to interact with DAQ_Moves and DAQ_Viewers

Will be available if a DashBoard has been set

	Return type

	ModulesManager

8.2.2.2. The Base Models

	
class pymodaq.extensions.BayesianModelGeneric(optimisation_controller: BayesianOptimisation)

	Methods

	convert_input(measurements)

	Convert the measurements in the units to be fed to the Optimisation Controller :param measurements: data object exported from the detectors from which the model extract a float value (fitness) to be fed to the algorithm :type measurements: DataToExport

	convert_output(outputs[, best_individual])

	Convert the output of the Optimisation Controller in units to be fed into the actuators :param outputs: output value from the controller from which the model extract a value of the same units as the actuators :type outputs: list of numpy ndarray :param best_individual: the coordinates of the best individual so far :type best_individual: np.ndarray

	ini_model()

	To be subclassed

	runner_initialized()

	To be subclassed

	update_plots()

	Called when updating the live plots

	update_settings(param)

	Get a parameter instance whose value has been modified by a user on the UI To be overwritten in child class

	check_modules

	

	ini_model_base

	

	optimisation_algorithm

	

	update_detector_names

	

	
convert_input(measurements: DataToExport) → float [https://docs.python.org/3/library/functions.html#float]

	Convert the measurements in the units to be fed to the Optimisation Controller
:param measurements: data object exported from the detectors from which the model extract a float value

(fitness) to be fed to the algorithm

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
convert_output(outputs: List [https://docs.python.org/3/library/typing.html#typing.List][ndarray], best_individual=None) → DataToActuators

	Convert the output of the Optimisation Controller in units to be fed into the actuators
:param outputs: output value from the controller from which the model extract a value of the same units as the actuators
:type outputs: list of numpy ndarray
:param best_individual: the coordinates of the best individual so far
:type best_individual: np.ndarray

	Returns

	DataToActuatorOpti – attribute, either ‘rel’ for relative or ‘abs’ for absolute.

	Return type

	derived from DataToExport. Contains value to be fed to the actuators with a a mode

	
ini_model()

	To be subclassed

Initialize whatever is needed by your custom model

	
runner_initialized()

	To be subclassed

Initialize whatever is needed by your custom model after the optimization runner is
initialized

	
update_plots()

	Called when updating the live plots

	
update_settings(param: Parameter)

	Get a parameter instance whose value has been modified by a user on the UI
To be overwritten in child class

	
class pymodaq.extensions.BayesianModelDefault(optimisation_controller: BayesianOptimisation)

	Methods

	convert_input(measurements)

	Convert the measurements in the units to be fed to the Optimisation Controller

	convert_output(outputs[, best_individual])

	Convert the output of the Optimisation Controller in units to be fed into the actuators :param outputs: output value from the controller from which the model extract a value of the same units as the actuators :type outputs: list of numpy ndarray :param best_individual: the coordinates of the best individual so far :type best_individual: np.ndarray

	ini_model()

	To be subclassed

	update_settings(param)

	Get a parameter instance whose value has been modified by a user on the UI To be overwritten in child class

	optimize_from

	

	
convert_input(measurements: DataToExport) → float [https://docs.python.org/3/library/functions.html#float]

	Convert the measurements in the units to be fed to the Optimisation Controller

	Parameters

	measurements (DataToExport) – data object exported from the detectors from which the model extract a float value
(fitness) to be fed to the algorithm

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
convert_output(outputs: List [https://docs.python.org/3/library/typing.html#typing.List][ndarray], best_individual=None) → DataToActuators

	Convert the output of the Optimisation Controller in units to be fed into the actuators
:param outputs: output value from the controller from which the model extract a value of the same units as the actuators
:type outputs: list of numpy ndarray
:param best_individual: the coordinates of the best individual so far
:type best_individual: np.ndarray

	Returns

	
	DataToActuators (derived from DataToExport. Contains value to be fed to the actuators)

	with a mode attribute, either ‘rel’ for relative or ‘abs’ for absolute.

	
ini_model()

	To be subclassed

Initialize whatever is needed by your custom model

	
update_settings(param: Parameter)

	Get a parameter instance whose value has been modified by a user on the UI
To be overwritten in child class

 8.2.3. The CustomApp base class

8.2.3. The CustomApp base class

	CustomApp(parent[, dashboard])

	Base Class to ease the implementation of User Interfaces

	
class pymodaq.utils.gui_utils.CustomApp(parent: Union [https://docs.python.org/3/library/typing.html#typing.Union][DockArea, QWidget], dashboard: DashBoard = None)

	Base Class to ease the implementation of User Interfaces

Inherits the MixIns ActionManager and ParameterManager classes. You have to subclass some methods and make
concrete implementation of a given number of methods:

	setup_actions: mandatory, see pymodaq.utils.managers.action_manager.ActionManager

	value_changed: non mandatory, see pymodaq.utils.managers.parameter_manager.ParameterManager

	child_added: non mandatory, see pymodaq.utils.managers.parameter_manager.ParameterManager

	param_deleted: non mandatory, see pymodaq.utils.managers.parameter_manager.ParameterManager

	setup_docks: mandatory

	setup_menu: non mandatory

	connect_things: mandatory

	Parameters

	
	parent (DockArea or QtWidget) –

	dashboard (DashBoard, optional) –

See also

pymodaq.utils.managers.action_manager.ActionManager, pymodaq.utils.managers.parameter_manager.ParameterManager, pymodaq.utils.managers.modules_manager.ModulesManager, pymodaq.dashboard.DashBoard

	Attributes

	
	modules_manager
	useful tool to interact with DAQ_Moves and DAQ_Viewers

Methods

	connect_things()

	Connect actions and/or other widgets signal to methods

	setup_docks()

	Mandatory method to be subclassed to setup the docks layout

	setup_menu()

	Non mandatory method to be subclassed in order to create a menubar

	log_signal

	

	setup_ui

	

	
connect_things()

	Connect actions and/or other widgets signal to methods

	
setup_docks()

	Mandatory method to be subclassed to setup the docks layout

Examples

>>>self.docks[‘ADock’] = gutils.Dock(‘ADock name’)
>>>self.dockarea.addDock(self.docks[‘ADock’])
>>>self.docks[‘AnotherDock’] = gutils.Dock(‘AnotherDock name’)
>>>self.dockarea.addDock(self.docks[‘AnotherDock’’’], ‘bottom’, self.docks[‘ADock’])

See also

pyqtgraph.dockarea.Dock

	
setup_menu()

	Non mandatory method to be subclassed in order to create a menubar

create menu for actions contained into the self._actions, for instance:

Examples

>>>file_menu = self._menubar.addMenu(‘File’)
>>>self.affect_to(‘load’, file_menu)
>>>self.affect_to(‘save’, file_menu)

>>>file_menu.addSeparator()
>>>self.affect_to(‘quit’, file_menu)

See also

pymodaq.utils.managers.action_manager.ActionManager

	
property modules_manager: ModulesManager

	useful tool to interact with DAQ_Moves and DAQ_Viewers

Will be available if a DashBoard has been set

	Return type

	ModulesManager

 8.3. Utility Modules

8.3. Utility Modules

	8.3.1. Hdf5 module and classes
	8.3.1.1. Hdf5 backends
	H5Backend
	H5Backend.add_group()

	H5Backend.close_file()

	H5Backend.create_earray()

	H5Backend.create_vlarray()

	H5Backend.define_compression()

	H5Backend.get_children()

	H5Backend.get_node_name()

	H5Backend.get_node_path()

	H5Backend.get_set_group()

	H5Backend.is_node_in_group()

	8.3.1.2. Low Level saving
	H5Saver
	H5Saver.emit_new_file()

	H5SaverBase
	H5SaverBase.settings

	H5SaverBase.settings_tree

	H5SaverBase.find_part_in_path_and_subpath()

	H5SaverBase.get_last_scan()

	H5SaverBase.get_scan_index()

	H5SaverBase.init_file()

	H5SaverBase.load_file()

	H5SaverBase.set_current_scan_path()

	H5SaverBase.update_file_paths()

	H5SaverBase.value_changed()

	8.3.1.3. High Level saving/loading
	8.3.1.3.1. Base data class saver/loader
	AxisSaverLoader
	AxisSaverLoader.data_type

	AxisSaverLoader.add_axis()

	AxisSaverLoader.get_axes()

	AxisSaverLoader.load_axis()

	DataManagement
	DataManagement.data_type

	DataManagement.get_last_node_name()

	DataSaverLoader
	DataSaverLoader.data_type

	DataSaverLoader.add_data()

	DataSaverLoader.get_axes()

	DataSaverLoader.get_data_arrays()

	DataSaverLoader.isopen()

	DataSaverLoader.load_data()

	DataToExportSaver
	DataToExportSaver.add_data()

	DataToExportSaver.channel_formatter()

	DataToExportSaver.isopen()

	8.3.1.3.2. Specific data class saver/loader
	BkgSaver
	BkgSaver.data_type

	DataEnlargeableSaver
	DataEnlargeableSaver.data_type

	DataEnlargeableSaver.add_data()

	DataExtendedSaver
	DataExtendedSaver.data_type

	DataExtendedSaver.add_data()

	DataToExportEnlargeableSaver
	DataToExportEnlargeableSaver.add_data()

	DataToExportExtendedSaver
	DataToExportExtendedSaver.add_data()

	DataToExportExtendedSaver.add_nav_axes()

	DataToExportTimedSaver
	DataToExportTimedSaver.add_data()

	8.3.1.4. Specialized loading
	DataLoader
	DataLoader.get_nav_group()

	DataLoader.get_node()

	DataLoader.load_data()

	DataLoader.walk_nodes()

	8.3.1.5. Browsing Data
	H5Browser
	H5Browser.add_comments()

	H5Browser.check_version()

	H5Browser.export_data()

	H5Browser.get_tree_node_path()

	H5Browser.populate_tree()

	H5Browser.quit_fun()

	H5Browser.setup_actions()

	H5Browser.show_h5_data()

	H5BrowserUtil
	H5BrowserUtil.export_data()

	H5BrowserUtil.get_h5_attributes()

	H5BrowserUtil.get_h5file_scans()

	8.3.1.6. Module savers
	ActuatorSaver

	DetectorEnlargeableSaver

	DetectorExtendedSaver

	DetectorSaver
	DetectorSaver.add_bkg()

	LoggerSaver
	LoggerSaver.add_data()

	ModuleSaver
	ModuleSaver.flush()

	ModuleSaver.get_last_node()

	ModuleSaver.get_set_node()

	ScanSaver
	ScanSaver.get_set_node()

	8.3.2. Scanner module and classes
	Scanner
	Scanner.get_indexes_from_scan_index()

	Scanner.get_scan_info()

	Scanner.get_scanner_sub_settings()

	Scanner.positions_at()

	Scanner.set_scan()

	Scanner.set_scan_type_and_subtypes()

	Scanner.value_changed()

	Scanner.actuators

	8.3.3. Managers
	QAction

	addaction()

	ActionManager
	ActionManager.add_action()

	ActionManager.add_widget()

	ActionManager.affect_to()

	ActionManager.connect_action()

	ActionManager.get_action()

	ActionManager.has_action()

	ActionManager.set_action_text()

	ActionManager.set_menu()

	ActionManager.set_toolbar()

	ActionManager.setup_actions()

	ActionManager.menu

	ActionManager.toolbar

	ParameterManager
	ParameterManager.params

	ParameterManager.settings_name

	ParameterManager.settings

	ParameterManager.settings_tree

	ParameterManager.tree

	ParameterManager.child_added()

	ParameterManager.load_settings_slot()

	ParameterManager.param_deleted()

	ParameterManager.save_settings_slot()

	ParameterManager.update_settings_slot()

	ParameterManager.value_changed()

	ModulesManager
	ModulesManager.connect_actuators()

	ModulesManager.connect_detectors()

	ModulesManager.get_det_data_list()

	ModulesManager.get_mod_from_name()

	ModulesManager.get_mods_from_names()

	ModulesManager.get_names()

	ModulesManager.get_selected_probed_data()

	ModulesManager.grab_datas()

	ModulesManager.move_actuators()

	ModulesManager.order_positions()

	ModulesManager.set_actuators()

	ModulesManager.set_detectors()

	ModulesManager.test_move_actuators()

	ModulesManager.value_changed()

	ModulesManager.Nactuators

	ModulesManager.Ndetectors

	ModulesManager.actuators

	ModulesManager.actuators_all

	ModulesManager.actuators_name

	ModulesManager.detectors

	ModulesManager.detectors_all

	ModulesManager.detectors_name

	ModulesManager.modules

	ModulesManager.modules_all

	ModulesManager.selected_actuators_name

	ModulesManager.selected_detectors_name

	8.3.4. Data Viewers
	Viewer0D

	Viewer1D
	Viewer1D.activate_roi()

	Viewer1D.move_roi_target()

	Viewer1D.set_crosshair_position()

	Viewer1D.crosshair

	Viewer1D.roi_manager

	Viewer1D.roi_target

	Viewer2D
	Viewer2D.activate_roi()

	Viewer2D.get_axes_from_view()

	Viewer2D.get_data_at()

	Viewer2D.move_roi_target()

	Viewer2D.set_crosshair_position()

	Viewer2D.set_gradient()

	Viewer2D.set_image_transform()

	Viewer2D.show_roi()

	Viewer2D.crosshair

	Viewer2D.image_widget

	Viewer2D.roi_manager

	Viewer2D.roi_target

	ViewerND
	ViewerND.setup_actions()

	8.3.5. Plotting utility classes
	ScanSelector
	ScanSelector.value_changed()

	LCD
	LCD.setvalues()

 8.3.1. Hdf5 module and classes

8.3.1. Hdf5 module and classes

8.3.1.1. Hdf5 backends

The H5Backend is a wrapper around three hdf5 python packages: pytables, h5py and h5pyd. It allows seamless integration
of any of these with PyMoDAQ features.

	
class pymodaq.utils.h5modules.backends.H5Backend(backend='tables')

	
	Attributes

	
	filename
	

	h5file
	

Methods

	add_group(group_name, group_type, where[, ...])

	Add a node in the h5 file tree of the group type :param group_name: :type group_name: (str) a custom name for this group :param group_type: one of the possible values of GroupType :type group_type: str or GroupType enum :param where: :type where: (str or node) parent node where to create the new group :param metadata: :type metadata: (dict) extra metadata to be saved with this new group node

	close_file()

	Flush data and close the h5file

	create_earray(where, name, dtype[, ...])

	create enlargeable arrays from data with a given shape and of a given type.

	create_vlarray(where, name, dtype[, title])

	create variable data length and type and enlargeable 1D arrays

	define_compression(compression, compression_opts)

	Define cmpression library and level of compression :param compression: but zlib is used by pytables while gzip is used by h5py :type compression: (str) either gzip and zlib are supported here as they are compatible :param compression_opts (int): :type compression_opts (int): 0 to 9 0: None, 9: maximum compression

	get_children(where)

	Get a dict containing all children node hanging from where with their name as keys and types among Node, CARRAY, EARRAY, VLARRAY or StringARRAY

	get_node_name(node)

	return node name :param node (str or node instance): :param see h5py and pytables documentation on nodes:

	get_node_path(node)

	return node path :param node (str or node instance): :param see h5py and pytables documentation on nodes:

	get_set_group(where, name[, title])

	Retrieve or create (if absent) a node group Get attributed to the class attribute current_group

	is_node_in_group(where, name)

	Check if a given node with name is in the group defined by where (comparison on lower case strings) :param where: path or parent node instance :type where: (str or node) :param name: group node name :type name: (str)

	create_carray

	

	flush

	

	get_attr

	

	get_group_by_title

	

	get_node

	

	get_parent_node

	

	has_attr

	

	isopen

	

	open_file

	

	read

	

	root

	

	save_file_as

	

	set_attr

	

	walk_groups

	

	walk_nodes

	

	
add_group(group_name, group_type: GroupType, where, title='', metadata={}) → GROUP

	Add a node in the h5 file tree of the group type
:param group_name:
:type group_name: (str) a custom name for this group
:param group_type: one of the possible values of GroupType
:type group_type: str or GroupType enum
:param where:
:type where: (str or node) parent node where to create the new group
:param metadata:
:type metadata: (dict) extra metadata to be saved with this new group node

	Returns

	(node)

	Return type

	newly created group node

	
close_file()

	Flush data and close the h5file

	
create_earray(where, name, dtype, data_shape=None, title='')

	create enlargeable arrays from data with a given shape and of a given type. The array is enlargeable along
the first dimension

	
create_vlarray(where, name, dtype, title='')

	create variable data length and type and enlargeable 1D arrays

	Parameters

	
	where ((str [https://docs.python.org/3/library/stdtypes.html#str]) group location in the file where to create the array node) –

	name ((str [https://docs.python.org/3/library/stdtypes.html#str]) name of the array) –

	dtype ((dtype) numpy dtype style, for particular case of strings, use dtype='string') –

	title ((str [https://docs.python.org/3/library/stdtypes.html#str]) node title attribute (written in capitals)) –

	Return type

	array

	
define_compression(compression, compression_opts)

	Define cmpression library and level of compression
:param compression: but zlib is used by pytables while gzip is used by h5py
:type compression: (str) either gzip and zlib are supported here as they are compatible
:param compression_opts (int):
:type compression_opts (int): 0 to 9 0: None, 9: maximum compression

	
get_children(where)

	Get a dict containing all children node hanging from where with their name as keys and types among Node,
CARRAY, EARRAY, VLARRAY or StringARRAY

	Parameters

	instance) (where (str [https://docs.python.org/3/library/stdtypes.html#str] or node) – see h5py and pytables documentation on nodes, and Node objects of this module

	Returns

	dict

	Return type

	keys are children node names, values are the children nodes

See also

GROUP.children_name()

	
get_node_name(node)

	return node name
:param node (str or node instance):
:param see h5py and pytables documentation on nodes:

	Returns

	str

	Return type

	name of the node

	
get_node_path(node)

	return node path
:param node (str or node instance):
:param see h5py and pytables documentation on nodes:

	Returns

	str

	Return type

	full path of the node

	
get_set_group(where, name, title='')

	Retrieve or create (if absent) a node group
Get attributed to the class attribute current_group

	Parameters

	
	where (str [https://docs.python.org/3/library/stdtypes.html#str] or node) – path or parent node instance

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – group node name

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – node title

	Returns

	group

	Return type

	group node

	
is_node_in_group(where, name)

	Check if a given node with name is in the group defined by where (comparison on lower case strings)
:param where: path or parent node instance
:type where: (str or node)
:param name: group node name
:type name: (str)

	Returns

	True if node exists, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

8.3.1.2. Low Level saving

H5SaverBase and H5Saver classes are a help to save data in a hierachical hdf5 binary file through the H5Backend
object and allowing integration in the PyMoDAQ Framework. These objects allows the creation of a file, of the various
nodes necessary to save PyMoDAQ’s data. The saving functionalities are divided in two objects: H5SaverBase and H5Saver. H5SaverBase contains everything
needed for saving, while H5Saver, inheriting H5SaverBase, add Qt functionality such as emitted signals. However,
these are not specific of PyMoDAQ’s data types. To save and load data, one should use higher level objects, see
High Level saving/loading.

Created the 15/11/2022

@author: Sebastien Weber

	
class pymodaq.utils.h5modules.saving.H5Saver(*args, **kwargs)

	
	status_sig: Signal
	emits a signal of type Threadcommand in order to senf log information to a main UI

	new_file_sig: Signal
	emits a boolean signal to let the program know when the user pressed the new file button on the UI

	
emit_new_file(status)

	Emits the new_file_sig

	Parameters

	status (bool [https://docs.python.org/3/library/functions.html#bool]) – emits True if a new file has been asked by the user pressing the new file button on the UI

	
class pymodaq.utils.h5modules.saving.H5SaverBase(save_type='scan', backend='tables')

	Object containing all methods in order to save datas in a hdf5 file with a hierarchy compatible with
the H5Browser. The saving parameters are contained within a Parameter object: self.settings that can be displayed
on a UI using the widget self.settings_tree. At the creation of a new file, a node
group named Raw_datas and represented by the attribute raw_group is created and set with a metadata attribute:

	‘type’ given by the save_type class parameter

The root group of the file is then set with a few metadata:

	‘pymodaq_version’ the current pymodaq version, e.g. 1.6.2

	‘file’ the file name

	‘date’ the current date

	‘time’ the current time

All datas will then be saved under this node in various groups

See also

H5Browser

	Parameters

	
	h5_file (pytables hdf5 file) – object used to save all datas and metadas

	h5_file_path (str [https://docs.python.org/3/library/stdtypes.html#str] or Path) – Signal signal represented by a float. Is emitted each time the hardware reached the target
position within the epsilon precision (see comon_parameters variable)

	save_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – an element of the enum module attribute SaveType
* ‘scan’ is used for DAQScan module and should be used for similar application
* ‘detector’ is used for DAQ_Viewer module and should be used for similar application
* ‘custom’ should be used for customized applications

	
settings

	Parameter instance (pyqtgraph) containing all settings (could be represented using the settings_tree widget)

	Type

	Parameter

	
settings_tree

	Widget representing as a Tree structure, all the settings defined in the class preamble variable params

	Type

	ParameterTree

	
classmethod find_part_in_path_and_subpath(base_dir, part='', create=False, increment=True)

	Find path from part time.

	Parameters

	Type

	Description

	base_dir

	Path object

	The directory to browse

	part

	string

	The date of the directory to find/create

	create

	boolean

	Indicate the creation flag of the directory

	Returns

	found path from part

	Return type

	Path object

	
get_last_scan()

	Gets the last scan node within the h5_file and under the raw_group

	Returns

	scan_group

	Return type

	pytables group or None

	
get_scan_index()

	return the scan group index in the “scan templating”: Scan000, Scan001 as an integer

	
init_file(update_h5=False, custom_naming=False, addhoc_file_path=None, metadata={})

	Initializes a new h5 file.
Could set the h5_file attributes as:

	a file with a name following a template if custom_naming is False and addhoc_file_path is None

	a file within a name set using a file dialog popup if custom_naming is True

	a file with a custom name if addhoc_file_path is a Path object or a path string

	Parameters

	
	update_h5 (bool [https://docs.python.org/3/library/functions.html#bool]) – create a new h5 file with name specified by other parameters
if false try to open an existing file and will append new data to it

	custom_naming (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, a selection file dialog opens to set a new file name

	addhoc_file_path (Path or str [https://docs.python.org/3/library/stdtypes.html#str]) – supplied name by the user for the new file

	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionnary with pair of key, value that should be saved as attributes of the root group

	Returns

	update_h5 – True if new file has been created, False otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
load_file(base_path=None, file_path=None)

	Opens a file dialog to select a h5file saved on disk to be used

	Parameters

	
	base_path –

	file_path –

See also

init_file()

	
classmethod set_current_scan_path(base_dir, base_name='Scan', update_h5=False, next_scan_index=0, create_scan_folder=False, create_dataset_folder=True, curr_date=None, ind_dataset=None)

	
	Parameters

	
	base_dir –

	base_name –

	update_h5 –

	next_scan_index –

	create_scan_folder –

	create_dataset_folder –

	
update_file_paths(update_h5=False)

	
	Parameters

	update_h5 (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, will increment the file name and eventually the current scan index
if False, get the current scan index in the h5 file

	Returns

	
	scan_path (Path)

	current_filename (str)

	dataset_path (Path)

	
value_changed(param)

	Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param’s
value in self._settings is changed

	Parameters

	param (Parameter) – the parameter whose value just changed

Examples

>>> if param.name() == 'do_something':
>>> if param.value():
>>> print('Do something')
>>> self.settings.child('main_settings', 'something_done').setValue(False)

They both inherits from the ParameterManager MixIn class that deals with Parameter and ParameterTree,
see saving_settings_fig.

8.3.1.3. High Level saving/loading

Each PyMoDAQ’s data type: Axis, DataWithAxes, DataToExport (see What is PyMoDAQ’s Data?) is associated
with its saver/loader
counterpart. These objects ensures that all metadata necessary for an exact regeneration of the data is being saved at
the correct location in the hdf5 file hierarchy. The AxisSaverLoader, DataSaverLoader, DataToExportSaver
all derive from an abstract class: DataManagement allowing the manipulation of the nodes and making sure the data type
is defined.

8.3.1.3.1. Base data class saver/loader

Created the 21/11/2022

@author: Sebastien Weber

	
class pymodaq.utils.h5modules.data_saving.AxisSaverLoader(*args, **kwargs)

	Specialized Object to save and load Axis object to and from a h5file

	Parameters

	h5saver (H5Saver) –

	
data_type

	The enum for this type of data, here ‘axis’

	Type

	DataType

	
add_axis(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], axis: Axis, enlargeable=False)

	Write Axis info at a given position within a h5 file

	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	axis (Axis) – the Axis object to add as a node in the h5file

	enlargeable (bool [https://docs.python.org/3/library/functions.html#bool]) – Specify if the underlying array will be enlargebale

	
get_axes(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) → List [https://docs.python.org/3/library/typing.html#typing.List][Axis]

	Return a list of Axis objects from the Axis Nodes hanging from (or among) a given Node

	Parameters

	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	Returns

	List[Axis]

	Return type

	the list of all Axis object

	
load_axis(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) → Axis

	create an Axis object from the data and metadata at a given node if of data_type: ‘axis

	Parameters

	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	Return type

	Axis

	
class pymodaq.utils.h5modules.data_saving.DataManagement(*args, **kwargs)

	Base abstract class to be used for all specialized object saving and loading data to/from a h5file

	
data_type

	The enum for this type of data, here abstract and should be redefined

	Type

	DataType

	
get_last_node_name(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Node]) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get the last node name among the ones already saved

	Parameters

	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	Returns

	str

	Return type

	the name of the last saved node or None if none saved

	
class pymodaq.utils.h5modules.data_saving.DataSaverLoader(*args, **kwargs)

	Specialized Object to save and load DataWithAxes object to and from a h5file

	Parameters

	h5saver (H5Saver or Path or str [https://docs.python.org/3/library/stdtypes.html#str]) –

	
data_type

	The enum for this type of data, here ‘data’

	Type

	DataType

	
add_data(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], data: DataWithAxes, save_axes=True, **kwargs)

	Adds Array nodes to a given location adding eventually axes as others nodes and metadata

	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	data (DataWithAxes) –

	save_axes (bool [https://docs.python.org/3/library/functions.html#bool]) –

	
get_axes(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) → List [https://docs.python.org/3/library/typing.html#typing.List][Axis]

	
	Parameters

	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	
get_data_arrays(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], with_bkg=False, load_all=False) → List [https://docs.python.org/3/library/typing.html#typing.List][ndarray]

	
	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	with_bkg (bool [https://docs.python.org/3/library/functions.html#bool]) – If True try to load background node and return the array with background subtraction

	load_all (bool [https://docs.python.org/3/library/functions.html#bool]) – If True load all similar nodes hanging from a parent

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] of ndarray

	
isopen() → bool [https://docs.python.org/3/library/functions.html#bool]

	Get the opened status of the underlying hdf5 file

	
load_data(where, with_bkg=False, load_all=False) → DataWithAxes

	Return a DataWithAxes object from the Data and Axis Nodes hanging from (or among) a
given Node

Does not include navigation axes stored elsewhere in the h5file. The node path is stored in
the DatWithAxis using the attribute path

	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	with_bkg (bool [https://docs.python.org/3/library/functions.html#bool]) – If True try to load background node and return the data with background subtraction

	load_all (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, will load all data hanging from the same parent node

See also

load_data

	
class pymodaq.utils.h5modules.data_saving.DataToExportSaver(h5saver: Union [https://docs.python.org/3/library/typing.html#typing.Union][H5Saver, Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], str [https://docs.python.org/3/library/stdtypes.html#str]])

	Object used to save DataToExport object into a h5file following the PyMoDAQ convention

	Parameters

	h5saver (H5Saver) –

	
add_data(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], data: DataToExport, settings_as_xml='', metadata=None, **kwargs)

	
	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	data (DataToExport) –

	settings_as_xml (str [https://docs.python.org/3/library/stdtypes.html#str]) – The settings parameter as an XML string

	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – all extra metadata to be saved in the group node where data will be saved

	
static channel_formatter(ind: int [https://docs.python.org/3/library/functions.html#int])

	All DataWithAxes included in the DataToExport will be saved into a channel group indexed
and formatted as below

	
isopen() → bool [https://docs.python.org/3/library/functions.html#bool]

	Get the opened status of the underlying hdf5 file

8.3.1.3.2. Specific data class saver/loader

Some more dedicated objects are derived from the objects above. They allow to add background data, Extended arrays
(arrays that will be populated after creation, for instance for a scan) and Enlargeable arrays (whose final length
is not known at the moment of creation, for instance when logging or continuously saving)

Created the 21/11/2022

@author: Sebastien Weber

	
class pymodaq.utils.h5modules.data_saving.BkgSaver(*args, **kwargs)

	Specialized Object to save and load DataWithAxes background object to and from a h5file

	Parameters

	hsaver (H5Saver) –

	
data_type

	The enum for this type of data, here ‘bkg’

	Type

	DataType

	
class pymodaq.utils.h5modules.data_saving.DataEnlargeableSaver(*args, **kwargs)

	Specialized Object to save and load enlargeable DataWithAxes saved object to and from a
h5file

Particular case of DataND with a single nav_indexes parameter will be appended as chunks
of signal data

	Parameters

	h5saver (H5Saver) –

	
data_type

	The enum for this type of data, here ‘data_enlargeable’

	Type

	DataType

Notes

To be used to save data from a timed logger (DAQViewer continuous saving or DAQLogger extension) or from an
adaptive scan where the final shape is unknown or other module that need this feature

	
add_data(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], data: DataWithAxes, axis_values: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][float [https://docs.python.org/3/library/functions.html#float]]] = None)

	Append data to an enlargeable array node

Data of dim (0, 1 or 2) will be just appended to the enlargeable array.

Uniform DataND with one navigation axis of length (Lnav) will be considered as a collection
of Lnav signal data of dim (0, 1 or 2) and will therefore be appended as Lnav signal data

	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	data (DataWithAxes) –

	axis_values (optional, list [https://docs.python.org/3/library/stdtypes.html#list] of floats) – the new spread axis values added to the data
if None the axes are not added to the h5 file

	
class pymodaq.utils.h5modules.data_saving.DataExtendedSaver(*args, **kwargs)

	Specialized Object to save and load DataWithAxes saved object to and from a h5file in extended arrays

	Parameters

	
	h5saver (H5Saver) –

	extended_shape (Tuple[int [https://docs.python.org/3/library/functions.html#int]]) – the extra shape compared to the data the h5array will have

	
data_type

	The enum for this type of data, here ‘data’

	Type

	DataType

	
add_data(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], data: DataWithAxes, indexes: List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]], distribution=DataDistribution.uniform)

	Adds given DataWithAxes at a location within the initialized h5 array

	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	data (DataWithAxes) –

	indexes (Iterable[int [https://docs.python.org/3/library/functions.html#int]]) – indexes where to save data in the init h5array (should have the same length as extended_shape and with values
coherent with this shape

	
class pymodaq.utils.h5modules.data_saving.DataToExportEnlargeableSaver(h5saver: H5Saver, enl_axis_names: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, enl_axis_units: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, axis_name: str [https://docs.python.org/3/library/stdtypes.html#str] = 'nav axis', axis_units: str [https://docs.python.org/3/library/stdtypes.html#str] = '')

	Generic object to save DataToExport objects in an enlargeable h5 array

The next enlarged value should be specified in the add_data method

	Parameters

	
	h5saver (H5Saver) –

	enl_axis_names (Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The names of the enlargeable axis, default [‘nav_axis’]

	enl_axis_units (Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]) – The names of the enlargeable axis, default [‘’]

	axis_name (str [https://docs.python.org/3/library/stdtypes.html#str], deprecated use enl_axis_names) – the name of the enlarged axis array

	axis_units (str [https://docs.python.org/3/library/stdtypes.html#str], deprecated use enl_axis_units) – the units of the enlarged axis array

	
add_data(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], data: DataToExport, axis_values: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray]]] = None, axis_value: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray]] = None, settings_as_xml='', metadata=None)

	
	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	data (DataToExport) – The data to be saved into an enlargeable array

	axis_values (iterable float or np.ndarray) – The next value (or values) of the enlarged axis

	axis_value (float [https://docs.python.org/3/library/functions.html#float] or np.ndarray #deprecated in 4.2.0, use axis_values) – The next value (or values) of the enlarged axis

	settings_as_xml (str [https://docs.python.org/3/library/stdtypes.html#str]) – The settings parameter as an XML string

	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – all extra metadata to be saved in the group node where data will be saved

	
class pymodaq.utils.h5modules.data_saving.DataToExportExtendedSaver(h5saver: H5Saver, extended_shape: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]])

	Object to save DataToExport at given indexes within arrays including extended shape

Mostly used for data generated from the DAQScan

	Parameters

	
	h5saver (H5Saver) –

	extended_shape (Tuple[int [https://docs.python.org/3/library/functions.html#int]]) – the extra shape compared to the data the h5array will have

	
add_data(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], data: DataToExport, indexes: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][int [https://docs.python.org/3/library/functions.html#int]], distribution=DataDistribution.uniform, settings_as_xml='', metadata={})

	
	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	data (DataToExport) –

	indexes (List[int [https://docs.python.org/3/library/functions.html#int]]) – indexes where to save data in the init h5array (should have the same length as
extended_shape and with values coherent with this shape

	settings_as_xml (str [https://docs.python.org/3/library/stdtypes.html#str]) – The settings parameter as an XML string

	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – all extra metadata to be saved in the group node where data will be saved

	
add_nav_axes(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], axes: List [https://docs.python.org/3/library/typing.html#typing.List][Axis])

	Used to add navigation axes related to the extended array

Notes

For instance the scan axes in the DAQScan

	
class pymodaq.utils.h5modules.data_saving.DataToExportTimedSaver(h5saver: H5Saver)

	Specialized DataToExportEnlargeableSaver to save data as a function of a time axis

Only one element ca be added at a time, the time axis value are enlarged using the data to be
added timestamp

Notes

This object is made for continuous saving mode of DAQViewer and logging to h5file for DAQLogger

	
add_data(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], data: DataToExport, settings_as_xml='', metadata=None, **kwargs)

	
	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	data (DataToExport) – The data to be saved into an enlargeable array

	axis_values (iterable float or np.ndarray) – The next value (or values) of the enlarged axis

	axis_value (float [https://docs.python.org/3/library/functions.html#float] or np.ndarray #deprecated in 4.2.0, use axis_values) – The next value (or values) of the enlarged axis

	settings_as_xml (str [https://docs.python.org/3/library/stdtypes.html#str]) – The settings parameter as an XML string

	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – all extra metadata to be saved in the group node where data will be saved

8.3.1.4. Specialized loading

Data saved from a DAQ_Scan will naturally include navigation axes shared between many different DataWithAxes
(as many as detectors/channels/ROIs). They are therefore saved at the root of the scan node and cannot be retrieved
using the standard data loader. Hence this DataLoader object.

	
class pymodaq.utils.h5modules.data_saving.DataLoader(h5saver: Union [https://docs.python.org/3/library/typing.html#typing.Union][H5Saver, Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]])

	Specialized Object to load DataWithAxes object from a h5file

On the contrary to DataSaverLoader, does include navigation axes stored elsewhere in the h5file
(for instance if saved from the DAQ_Scan)

	Parameters

	h5saver (H5Saver) –

	Attributes

	
	h5saver
	

Methods

	get_nav_group(where)

	
	param where

	the path of a given node or the node itself

	get_node(where[, name])

	Convenience method to get node

	load_data(where[, with_bkg, load_all])

	Load data from a node (or channel node)

	walk_nodes([where])

	Return a Node generator iterating over the h5file content

	close_file

	

	load_all

	

	
get_nav_group(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Node]

	
	Parameters

	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	Returns

	
	GROUP (returns the group named SPECIAL_GROUP_NAMES[‘nav_axes’] holding all NavAxis for)

	those data

See also

SPECIAL_GROUP_NAMES

	
get_node(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → Node

	Convenience method to get node

	
load_data(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], with_bkg=False, load_all=False) → DataWithAxes

	Load data from a node (or channel node)

Loaded data contains also nav_axes if any and with optional background subtraction

	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	with_bkg (bool [https://docs.python.org/3/library/functions.html#bool]) – If True will attempt to substract a background data node before loading

	load_all (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, will load all data hanging from the same parent node

	
walk_nodes(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Node] = '/')

	Return a Node generator iterating over the h5file content

8.3.1.5. Browsing Data

Using the H5Backend it is possible to write scripts to easily access a hdf5 file content. However, PyMoDAQ includes
a dedicated hdf5 viewer understanding dedicated metadata and therefore displaying nicely the content of the file,
see H5Browser. Two objects can be used to browse data: H5BrowserUtil and H5Browser. H5BrowserUtil
gives you methods to quickly (in a script) get info and data from your file while the H5Browser adds a UI to interact with the hdf5
file.

Created the 15/11/2022

@author: Sebastien Weber

	
class pymodaq.utils.h5modules.browsing.H5Browser(parent: QMainWindow, h5file=None, h5file_path=None, backend='tables')

	UI used to explore h5 files, plot and export subdatas

	Parameters

	
	parent (QtWidgets container) – either a QWidget or a QMainWindow

	h5file (h5file instance) – exact type depends on the backend

	h5file_path (str [https://docs.python.org/3/library/stdtypes.html#str] or Path) – if specified load the corresponding file, otherwise open a select file dialog

	backend (str [https://docs.python.org/3/library/stdtypes.html#str]) – either ‘tables, ‘h5py’ or ‘h5pyd’

See also

H5Backend, H5Backend

	
add_comments(status: bool [https://docs.python.org/3/library/functions.html#bool], comment='')

	Add comments to a node

	Parameters

	
	status (bool [https://docs.python.org/3/library/functions.html#bool]) –

	comment (str [https://docs.python.org/3/library/stdtypes.html#str]) – The comment to be added in a comment attribute to the current node path

See also

current_node_path

	
check_version()

	Check version of PyMoDAQ to assert if file is compatible or not with the current version of the Browser

	
export_data()

	Opens a dialog to export data

See also

H5BrowserUtil.export_data

	
get_tree_node_path()

	Get the node path of the currently selected node in the UI

	
populate_tree()

	
Init the ui-tree and store data into calling the h5_tree_to_Qtree convertor method

See also

h5tree_to_QTree, update_status

	
quit_fun()

	

	
setup_actions()

	Method where to create actions to be subclassed. Mandatory

Examples

>>> self.add_action('Quit', 'close2', "Quit program")
>>> self.add_action('Grab', 'camera', "Grab from camera", checkable=True)
>>> self.add_action('Load', 'Open', "Load target file (.h5, .png, .jpg) or data from camera", checkable=False)
>>> self.add_action('Save', 'SaveAs', "Save current data", checkable=False)

See also

ActionManager.add_action

	
show_h5_data(item, with_bkg=False, plot_all=False)

	
	Parameters

	
	item –

	with_bkg –

	plot_all –

	
class pymodaq.utils.h5modules.browsing.H5BrowserUtil(backend='tables')

	Utility object to interact and get info and data from a hdf5 file

Inherits H5Backend and all its functionalities

	Parameters

	backend (str [https://docs.python.org/3/library/stdtypes.html#str]) – The used hdf5 backend: either tables, h5py or h5pyd

	
export_data(node_path='/', filesavename: str [https://docs.python.org/3/library/stdtypes.html#str] = 'datafile.h5', filter=None)

	Initialize the correct exporter and export the node

	
get_h5_attributes(node_path)

	

	
get_h5file_scans(where='/')

	Get the list of the scan nodes in the file

	Parameters

	where (str [https://docs.python.org/3/library/stdtypes.html#str]) – the path in the file

	Returns

	dict with keys: scan_name, path (within the file) and data (the live scan png image)

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] of dict [https://docs.python.org/3/library/stdtypes.html#dict]

8.3.1.6. Module savers

Created the 23/11/2022

@author: Sebastien Weber

	
class pymodaq.utils.h5modules.module_saving.ActuatorSaver(*args, **kwargs)

	Implementation of the ModuleSaver class dedicated to DAQ_Move modules

	Parameters

	
	h5saver –

	module –

	
class pymodaq.utils.h5modules.module_saving.DetectorEnlargeableSaver(*args, **kwargs)

	Implementation of the ModuleSaver class dedicated to DAQ_Viewer modules in order to save enlargeable data

	Parameters

	module –

	
class pymodaq.utils.h5modules.module_saving.DetectorExtendedSaver(*args, **kwargs)

	Implementation of the ModuleSaver class dedicated to DAQ_Viewer modules in order to save enlargeable data

	Parameters

	module –

	
class pymodaq.utils.h5modules.module_saving.DetectorSaver(*args, **kwargs)

	Implementation of the ModuleSaver class dedicated to DAQ_Viewer modules

	Parameters

	module –

	
add_bkg(where: Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]], data_bkg: DataToExport)

	Adds a DataToExport as a background node in the h5file

	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	data_bkg (DataToExport) – The data to be saved as background

	
class pymodaq.utils.h5modules.module_saving.LoggerSaver(*args, **kwargs)

	Implementation of the ModuleSaver class dedicated to H5Logger module

H5Logger is the special logger to h5file of the DAQ_Logger extension

	Parameters

	
	h5saver –

	module –

	
add_data(dte: DataToExport)

	Add data to it’s corresponding control module

The name of the control module is the DataToExport name attribute

	
class pymodaq.utils.h5modules.module_saving.ModuleSaver(*args, **kwargs)

	Abstract base class to save info and data from main modules (DAQScan, DAQViewer, DAQMove, …)

	
flush()

	Flush the underlying file

	
get_last_node(where: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]]] = None)

	Get the last node corresponding to this particular Module instance

	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	new (bool [https://docs.python.org/3/library/functions.html#bool]) – if True force the creation of a new indexed node of this class type
if False return the last node (or create one if None)

	Returns

	GROUP

	Return type

	the Node associated with this module which should be a GROUP node

	
get_set_node(where: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → GROUP

	Get or create the node corresponding to this particular Module instance

	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	new (bool [https://docs.python.org/3/library/functions.html#bool]) – if True force the creation of a new indexed node of this class type
if False return the last node (or create one if None)

	Returns

	GROUP

	Return type

	the Node associated with this module which should be a GROUP node

	
class pymodaq.utils.h5modules.module_saving.ScanSaver(*args, **kwargs)

	Implementation of the ModuleSaver class dedicated to DAQScan module

	Parameters

	
	h5saver –

	module –

	
get_set_node(where: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, new=False) → GROUP

	Get the last group scan node

Get the last Scan Group or create one
get the last Scan Group if:
* there is one already created
* new is False

	Parameters

	
	where (Union[Node, str [https://docs.python.org/3/library/stdtypes.html#str]]) – the path of a given node or the node itself

	new (bool [https://docs.python.org/3/library/functions.html#bool]) –

	Returns

	GROUP

	Return type

	the GROUP associated with this module

 8.3.2. Scanner module and classes

8.3.2. Scanner module and classes

Summary of the classes in the scanner module

	Scanner([parent_widget, scanner_items, ...])

	Main Object to define a PyMoDAQ scan and create a UI to set it

The scanner module contains all functionalities to defines a particular scan see scanner_paragrah.

	
class pymodaq.utils.scanner.Scanner(parent_widget: QtWidgets.QWidget = None, scanner_items={}, actuators: List[DAQ_Move] = [])

	Main Object to define a PyMoDAQ scan and create a UI to set it

	Parameters

	
	parent_widget (QtWidgets.QWidget) –

	scanner_items (list [https://docs.python.org/3/library/stdtypes.html#list] of GraphicItems) – used by ScanSelector for chosing scan area or linear traces

	actuators (List[DAQ_Move]) – list actuators names

See also

ScanSelector, ScannerBase, TableModelSequential, TableModelTabular, pymodaq_types.TableViewCustom

	Attributes

	
	actuators
	list of str: Returns as a list the name of the selected actuators to describe the actual scan

	axes_indexes
	

	axes_unique
	

	distribution
	

	n_axes
	

	n_steps
	

	positions
	

	scan_sub_type
	

	scan_type
	

	scanner
	

Methods

	get_indexes_from_scan_index(scan_index)

	To be reimplemented.

	get_scan_info()

	Get a summary of the configured scan as a ScanInfo object

	get_scanner_sub_settings()

	Get the current ScannerBase implementation's settings

	positions_at(index)

	Extract the actuators positions at a given index in the scan as a DataToExport of DataActuators

	set_scan()

	Process the settings options to calculate the scan positions

	set_scan_type_and_subtypes(scan_type, ...)

	Convenience function to set the main scan type

	value_changed(param)

	Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param's value in self._settings is changed

	connect_things

	

	get_nav_axes

	

	get_scan_shape

	

	save_scanner_settings

	

	scanner_updated_signal

	

	set_scan_from_settings

	

	set_scanner

	

	setup_ui

	

	update_from_scan_selector

	

	
get_indexes_from_scan_index(scan_index: int [https://docs.python.org/3/library/functions.html#int]) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]]

	To be reimplemented. Calculations of indexes within the scan

	
get_scan_info() → ScanInfo

	Get a summary of the configured scan as a ScanInfo object

	
get_scanner_sub_settings()

	Get the current ScannerBase implementation’s settings

	
positions_at(index: int [https://docs.python.org/3/library/functions.html#int]) → DataToExport

	Extract the actuators positions at a given index in the scan as a DataToExport of DataActuators

	
set_scan()

	Process the settings options to calculate the scan positions

	Returns

	bool

	Return type

	True if the processed number of steps if higher than the configured number of steps

	
set_scan_type_and_subtypes(scan_type: str [https://docs.python.org/3/library/stdtypes.html#str], scan_subtype: str [https://docs.python.org/3/library/stdtypes.html#str])

	Convenience function to set the main scan type

	Parameters

	
	scan_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – one of registered Scanner main identifier

	scan_subtype (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str] or None) – one of registered Scanner second identifier for a given main identifier

See also

ScannerFactory

	
value_changed(param: Parameter)

	Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param’s
value in self._settings is changed

	Parameters

	param (Parameter) – the parameter whose value just changed

Examples

>>> if param.name() == 'do_something':
>>> if param.value():
>>> print('Do something')
>>> self.settings.child('main_settings', 'something_done').setValue(False)

	
property actuators

	Returns as a list the name of the selected actuators to describe the actual scan

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

 8.3.3. Managers

8.3.3. Managers

API of the various managers, special classes to deals with QAction, Paramaters, ControlModules…

	addaction([name, icon_name, tip, checkable, ...])

	Create a new action and add it eventually to a toolbar and a menu

	QAction(*args, **kwargs)

	QAction subclass to mimic signals as pushbuttons.

	ActionManager([toolbar, menu])

	MixIn Class to be used by all UserInterface to manage their QActions and the action they are connected to

	ParameterManager([settings_name, action_list])

	Class dealing with Parameter and ParameterTree

	ModulesManager([detectors, actuators, ...])

	Class to manage DAQ_Viewers and DAQ_Moves with UI to select some

	
class pymodaq.utils.managers.action_manager.QAction(*args, **kwargs)

	QAction subclass to mimic signals as pushbuttons. Done to be sure of backcompatibility when I moved from
pushbuttons to QAction

	Attributes

	
	clicked
	

Methods

	click

	

	connect_to

	

	set_icon

	

	
pymodaq.utils.managers.action_manager.addaction(name: str [https://docs.python.org/3/library/stdtypes.html#str] = '', icon_name: str [https://docs.python.org/3/library/stdtypes.html#str] = '', tip='', checkable=False, checked=False, slot: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None, toolbar: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][QToolBar] = None, menu: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][QMenu] = None, visible=True, shortcut=None, enabled=True)

	Create a new action and add it eventually to a toolbar and a menu

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Displayed name if should be displayed (for instance in menus)

	icon_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – png file name to produce the icon

	tip (str [https://docs.python.org/3/library/stdtypes.html#str]) – a tooltip to be displayed when hovering above the action

	checkable (bool [https://docs.python.org/3/library/functions.html#bool]) – set the checkable state of the action

	checked (bool [https://docs.python.org/3/library/functions.html#bool]) – set the current state of the action

	slot (callable) – Method or function that will be called when the action is triggered

	toolbar (QToolBar) – a toolbar where action should be added.

	menu (QMenu) – a menu where action should be added.

	visible (bool [https://docs.python.org/3/library/functions.html#bool]) – display or not the action in the toolbar/menu

	shortcut (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string defining a shortcut for this action

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) – set the enabled state

	
class pymodaq.utils.managers.action_manager.ActionManager(toolbar=None, menu=None)

	MixIn Class to be used by all UserInterface to manage their QActions and the action they are connected to

	Parameters

	
	toolbar (QToolbar, optional) – The toolbar to use as default

	menu (QMenu, option) – The menu to use as default

	Attributes

	
	actions
	

	menu
	Get the default menu

	toolbar
	Get the default toolbar

Methods

	add_action([short_name, name, icon_name, ...])

	Create a new action and add it to toolbar and menu

	add_widget(short_name, klass, *args[, tip, ...])

	Create and add a widget to a toolbar

	affect_to(action_name, obj)

	Affect action to an object either a toolbar or a menu

	connect_action(name, slot[, connect, ...])

	Connect (or disconnect) the action referenced by name to the given slot

	get_action(name)

	Getter of a given action

	has_action(action_name)

	Check if an action has been defined :param action_name: The action name as defined in setup_actions :type action_name: str

	is_action_checked

	Dispatch methods based on type signature

	is_action_enabled

	Dispatch methods based on type signature

	is_action_visible

	Dispatch methods based on type signature

	set_action_checked

	Dispatch methods based on type signature

	set_action_enabled

	Dispatch methods based on type signature

	set_action_text(action_name, text)

	Convenience method to set the displayed text on an action

	set_action_visible

	Dispatch methods based on type signature

	set_menu(menu)

	affect a menu to self

	set_toolbar(toolbar)

	affect a toolbar to self

	setup_actions()

	Method where to create actions to be subclassed.

	
add_action(short_name: str [https://docs.python.org/3/library/stdtypes.html#str] = '', name: str [https://docs.python.org/3/library/stdtypes.html#str] = '', icon_name: str [https://docs.python.org/3/library/stdtypes.html#str] = '', tip='', checkable=False, checked=False, toolbar=None, menu=None, visible=True, shortcut=None, auto_toolbar=True, auto_menu=True, enabled=True)

	Create a new action and add it to toolbar and menu

	Parameters

	
	short_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name as referenced in the dict self.actions

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Displayed name if should be displayed in

	icon_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – png file name to produce the icon

	tip (str [https://docs.python.org/3/library/stdtypes.html#str]) – a tooltip to be displayed when hovering above the action

	checkable (bool [https://docs.python.org/3/library/functions.html#bool]) – set the checkable state of the action

	checked (bool [https://docs.python.org/3/library/functions.html#bool]) – set the current state of the action

	toolbar (QToolBar) – a toolbar where action should be added. Actions can also be added later see affect_to

	menu (QMenu) – a menu where action should be added. Actions can also be added later see affect_to

	visible (bool [https://docs.python.org/3/library/functions.html#bool]) – display or not the action in the toolbar/menu

	auto_toolbar (bool [https://docs.python.org/3/library/functions.html#bool]) – if True add this action to the defined toolbar

	auto_menu (bool [https://docs.python.org/3/library/functions.html#bool]) – if True add this action to the defined menu

	enabled (bool [https://docs.python.org/3/library/functions.html#bool]) – set the enabled state of this action

See also

affect_to, pymodaq.resources.QtDesigner_Ressources.Icon_Library, pymodaq.utils.managers.action_manager.add_action

	
add_widget(short_name, klass: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], QWidget], *args, tip='', toolbar: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][QToolBar] = None, visible=True, signal_str=None, slot: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]] = None, **kwargs)

	Create and add a widget to a toolbar

	Parameters

	
	short_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name as referenced in the dict self.actions

	klass (str [https://docs.python.org/3/library/stdtypes.html#str] or QWidget) – should be a custom widget class or the name of a standard widget of QWidgets

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – variable arguments passed as is to the widget constructor

	tip (str [https://docs.python.org/3/library/stdtypes.html#str]) – a tooltip to be displayed when hovering above the widget

	toolbar (QToolBar) – a toolbar where the widget should be added.

	visible (bool [https://docs.python.org/3/library/functions.html#bool]) – display or not the action in the toolbar/menu

	signal_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – an attribute of type Signal of the widget

	slot (Callable) – a callable connected to the signal

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – variable named arguments passed as is to the widget constructor

	Return type

	QtWidgets.QWidget

	
affect_to(action_name, obj: Union [https://docs.python.org/3/library/typing.html#typing.Union][QToolBar, QMenu])

	Affect action to an object either a toolbar or a menu

	Parameters

	
	action_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The action name as defined in setup_actions

	obj (QToolbar or QMenu) – The object where to add the action

	
connect_action(name, slot, connect=True, signal_name='')

	Connect (or disconnect) the action referenced by name to the given slot

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – key of the action as referenced in the self._actions dict

	slot (method) – a method/function

	connect (bool [https://docs.python.org/3/library/functions.html#bool]) – if True connect the trigger signal of the action to the defined slot else disconnect it

	signal_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – try to use it as a signal (for widgets added…) otherwise use the triggered signal

	
get_action(name) → QAction

	Getter of a given action

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The action name as defined in setup_actions

	Return type

	QAction

	
has_action(action_name) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if an action has been defined
:param action_name: The action name as defined in setup_actions
:type action_name: str

	Returns

	bool

	Return type

	True if the action exists, False otherwise

	
set_action_text(action_name: str [https://docs.python.org/3/library/stdtypes.html#str], text: str [https://docs.python.org/3/library/stdtypes.html#str])

	Convenience method to set the displayed text on an action

	Parameters

	
	action_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The action name as defined in setup_actions

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The text to display

	
set_menu(menu)

	affect a menu to self

	Parameters

	menu – QtWidgets.QMenu

	
set_toolbar(toolbar)

	affect a toolbar to self

	Parameters

	toolbar – QtWidgets.QToolBar

	
setup_actions()

	Method where to create actions to be subclassed. Mandatory

Examples

>>> self.add_action('Quit', 'close2', "Quit program")
>>> self.add_action('Grab', 'camera', "Grab from camera", checkable=True)
>>> self.add_action('Load', 'Open', "Load target file (.h5, .png, .jpg) or data from camera", checkable=False)
>>> self.add_action('Save', 'SaveAs', "Save current data", checkable=False)

See also

ActionManager.add_action

	
property menu

	Get the default menu

	
property toolbar

	Get the default toolbar

	
class pymodaq.utils.managers.parameter_manager.ParameterManager(settings_name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, action_list: tuple [https://docs.python.org/3/library/stdtypes.html#tuple] = ('save', 'update', 'load'))

	Class dealing with Parameter and ParameterTree

	
params

	Defining the Parameter tree like structure

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list] of dicts

	
settings_name

	The particular name to give to the object parent Parameter (self.settings)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
settings

	The higher level (parent) Parameter

	Type

	Parameter

	
settings_tree

	widget Holding a ParameterTree and a toolbar for interacting with the tree

	Type

	QWidget

	
tree

	the underlying ParameterTree

	Type

	ParameterTree

	Attributes

	
	settings
	

	settings_tree
	

	tree
	

Methods

	child_added(param, data)

	Non-mandatory method to be subclassed for actions to perform when a param has been added in self.settings

	load_settings_slot([file_path])

	Method to load settings into the parameter using a xml file extension.

	param_deleted(param)

	Non-mandatory method to be subclassed for actions to perform when one of the param in self.settings has been deleted

	save_settings_slot([file_path])

	Method to save the current settings using a xml file extension.

	update_settings_slot([file_path])

	Method to update settings using a xml file extension.

	value_changed(param)

	Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param's value in self._settings is changed

	create_parameter

	

	parameter_tree_changed

	

	
child_added(param, data)

	Non-mandatory method to be subclassed for actions to perform when a param has been added in self.settings

	Parameters

	
	param (Parameter) – the parameter where child will be added

	data (Parameter) – the child parameter

	
load_settings_slot(file_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]] = None)

	Method to load settings into the parameter using a xml file extension.

The starting directory is the user config folder with a subfolder called settings folder

	Parameters

	file_path (Path) – Path like object pointing to a xml file encoding a Parameter object
If None, opens a file explorer window to pick manually a file

	
param_deleted(param)

	Non-mandatory method to be subclassed for actions to perform when one of the param in self.settings has been deleted

	Parameters

	param (Parameter) – the parameter that has been deleted

	
save_settings_slot(file_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]] = None)

	Method to save the current settings using a xml file extension.

The starting directory is the user config folder with a subfolder called settings folder

	Parameters

	file_path (Path) – Path like object pointing to a xml file encoding a Parameter object
If None, opens a file explorer window to save manually a file

	
update_settings_slot(file_path: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]] = None)

	Method to update settings using a xml file extension.

The file should define the same settings structure (names and children)

The starting directory is the user config folder with a subfolder called settings folder

	Parameters

	file_path (Path) – Path like object pointing to a xml file encoding a Parameter object
If None, opens a file explorer window to pick manually a file

	
value_changed(param)

	Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param’s
value in self._settings is changed

	Parameters

	param (Parameter) – the parameter whose value just changed

Examples

>>> if param.name() == 'do_something':
>>> if param.value():
>>> print('Do something')
>>> self.settings.child('main_settings', 'something_done').setValue(False)

	
class pymodaq.utils.managers.modules_manager.ModulesManager(detectors=[], actuators=[], selected_detectors=[], selected_actuators=[], **kwargs)

	Class to manage DAQ_Viewers and DAQ_Moves with UI to select some

Easier to connect control modules signals to slots, test, …

	Parameters

	
	detectors (list [https://docs.python.org/3/library/stdtypes.html#list] of DAQ_Viewer) –

	actuators (list [https://docs.python.org/3/library/stdtypes.html#list] of DAQ_Move) –

	selected_detectors (list [https://docs.python.org/3/library/stdtypes.html#list] of DAQ_Viewer) – sublist of detectors

	selected_actuators (list [https://docs.python.org/3/library/stdtypes.html#list] of DAQ_Move) – sublist of actuators

	Attributes

	
	Nactuators
	Get the number of selected actuators

	Ndetectors
	Get the number of selected detectors

	actuators
	Get the list of selected actuators

	actuators_all
	Get the list of all actuators

	actuators_name
	Get all the names of the actuators

	detectors
	Get the list of selected detectors

	detectors_all
	Get the list of all detectors

	detectors_name
	Get all the names of the detectors

	modules
	Get the list of all detectors and actuators

	modules_all
	Get the list of all detectors and actuators

	selected_actuators_name
	Get/Set the names of the selected actuators

	selected_detectors_name
	Get/Set the names of the selected detectors

Methods

	connect_actuators([connect, slot, signal])

	Connect the selected actuators signal to a given or default slot

	connect_detectors([connect, slot])

	Connect selected DAQ_Viewers's grab_done_signal to the given slot

	get_det_data_list()

	Do a snap of selected detectors, to get the list of all the data and processed data

	get_mod_from_name(name[, mod])

	Getter of a given module from its name (title)

	get_mods_from_names(names[, mod])

	Getter of a list of given modules from their name (title)

	get_names(modules)

	Get the titles of a list of Control Modules

	get_selected_probed_data([dim])

	Get the name of selected data names of a given dimensionality

	grab_datas(**kwargs)

	Do a single grab of connected and selected detectors

	move_actuators(dte_act[, mode, polling])

	will apply positions to each currently selected actuators.

	order_positions(positions)

	Reorder the content of the DataToExport given the order of the selected actuators

	set_actuators(actuators, selected_actuators)

	Populates actuators and the subset to be selected in the UI

	set_detectors(detectors, selected_detectors)

	Populates detectors and the subset to be selected in the UI

	test_move_actuators()

	Do a move of selected actuator

	value_changed(param)

	Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param's value in self._settings is changed

	actuators_changed

	

	det_done

	

	det_done_signal

	

	detectors_changed

	

	move_done

	

	move_done_signal

	

	reset_signals

	

	show_only_control_modules

	

	timeout_signal

	

	
connect_actuators(connect=True, slot=None, signal='move_done')

	Connect the selected actuators signal to a given or default slot

	Parameters

	
	connect (bool [https://docs.python.org/3/library/functions.html#bool]) –

	slot (builtin_function_or_method) – method or function the chosen signal will be connected to
if None, then the default move_done slot is used

	signal (str [https://docs.python.org/3/library/stdtypes.html#str]) – What kind of signal is to be used:

	’move_done’ will connect the move_done_signal to the slot

	’current_value’ will connect the ‘current_value_signal’ to the slot

See also

move_done()

	
connect_detectors(connect=True, slot=None)

	Connect selected DAQ_Viewers’s grab_done_signal to the given slot

	Parameters

	
	connect (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, connect to the given slot (or default slot)
if False, disconnect all detectors (not only the currently selected ones.
This is made because when selected detectors changed if you only disconnect those one,
the previously connected ones will stay connected)

	slot (method) – A method that should be connected, if None self.det_done is connected by default

	
get_det_data_list()

	Do a snap of selected detectors, to get the list of all the data and processed data

	
get_mod_from_name(name, mod='det') → Union [https://docs.python.org/3/library/typing.html#typing.Union][DAQ_Move, DAQ_Viewer]

	Getter of a given module from its name (title)

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	mod (str [https://docs.python.org/3/library/stdtypes.html#str]) – either ‘det’ for DAQ_Viewer modules or ‘act’ for DAQ_Move modules

	
get_mods_from_names(names, mod='det')

	Getter of a list of given modules from their name (title)

	Parameters

	
	names (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) –

	mod (str [https://docs.python.org/3/library/stdtypes.html#str]) – either ‘det’ for DAQ_Viewer modules or ‘act’ for DAQ_Move modules

	
classmethod get_names(modules)

	Get the titles of a list of Control Modules

	Parameters

	modules (list [https://docs.python.org/3/library/stdtypes.html#list] of DAQ_Move and/or DAQ_Viewer) –

	
get_selected_probed_data(dim='0D')

	Get the name of selected data names of a given dimensionality

	Parameters

	dim (str [https://docs.python.org/3/library/stdtypes.html#str]) – either ‘0D’, ‘1D’, ‘2D’ or ‘ND’

	
grab_datas(**kwargs)

	Do a single grab of connected and selected detectors

	
move_actuators(dte_act: DataToExport, mode='abs', polling=True) → DataToExport

	will apply positions to each currently selected actuators. By Default the mode is absolute but can be

	Parameters

	
	dte_act (DataToExport) – the DataToExport of position to apply. Its length must be equal to the number of selected actuators

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – either ‘abs’ for absolute positionning or ‘rel’ for relative

	polling (bool [https://docs.python.org/3/library/functions.html#bool]) – if True will wait for the selected actuators to reach their target positions (they have to be
connected to a method checking for the position and letting the programm know the move is done (default
connection is this object move_done method)

	Return type

	DataToExport with the selected actuators’s name as key and current actuators’s value as value

	
order_positions(positions: DataToExport)

	Reorder the content of the DataToExport given the order of the selected actuators

	
set_actuators(actuators, selected_actuators)

	Populates actuators and the subset to be selected in the UI

	
set_detectors(detectors, selected_detectors)

	Populates detectors and the subset to be selected in the UI

	
test_move_actuators()

	Do a move of selected actuator

	
value_changed(param)

	Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param’s
value in self._settings is changed

	Parameters

	param (Parameter) – the parameter whose value just changed

Examples

>>> if param.name() == 'do_something':
>>> if param.value():
>>> print('Do something')
>>> self.settings.child('main_settings', 'something_done').setValue(False)

	
property Nactuators

	Get the number of selected actuators

	
property Ndetectors

	Get the number of selected detectors

	
property actuators: List [https://docs.python.org/3/library/typing.html#typing.List][DAQ_Move]

	Get the list of selected actuators

	
property actuators_all

	Get the list of all actuators

	
property actuators_name

	Get all the names of the actuators

	
property detectors: List [https://docs.python.org/3/library/typing.html#typing.List][DAQ_Viewer]

	Get the list of selected detectors

	
property detectors_all

	Get the list of all detectors

	
property detectors_name

	Get all the names of the detectors

	
property modules

	Get the list of all detectors and actuators

	
property modules_all

	Get the list of all detectors and actuators

	
property selected_actuators_name: List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get/Set the names of the selected actuators

	
property selected_detectors_name

	Get/Set the names of the selected detectors

 8.3.4. Data Viewers

8.3.4. Data Viewers

The data viewers are classes devoted to data display from scalar data up to 4 dimensions data. All the viewers inherits
from the base class ViewerBase and then offers options and interactions depending their dimensionality

Summary of the data viewers classes

	pymodaq.utils.plotting.data_viewers.viewer0D.Viewer0D([...])

	this plots 0D data on a plotwidget with history.

	pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D([...])

	DataWithAxis of type Data1D can be plotted using this data viewer

	pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D([...])

	Object managing plotting and manipulation of 2D data using a View2D

	pymodaq.utils.plotting.data_viewers.viewerND.ViewerND([...])

	Methods

	
class pymodaq.utils.plotting.data_viewers.viewer0D.Viewer0D(parent=None, title='', show_toolbar=True, no_margins=False)

	this plots 0D data on a plotwidget with history. Display as numbers in a table is possible.

Datas and measurements are then exported with the signal data_to_export_signal

	Attributes

	
	labels
	

Methods

	update_colors

	

	
class pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D(parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][QWidget] = None, title='', show_toolbar=True, no_margins=False, flip_axes=False)

	DataWithAxis of type Data1D can be plotted using this data viewer

	
show_data:

	parameter:
* dwa: a DataWithaxis
* scatter_dwa: an optional extra DataWithAxis to be plotted with scatter points

it could define extra_attributes such as symbol: str (to define the symbol layout
default: ‘o’) and symbol_size: int (to define the symbol size)

	Attributes

	
	crosshair
	Convenience method

	labels
	

	roi_manager
	Convenience method

	roi_target
	To be implemented if necessary (Viewer1D and above)

Methods

	activate_roi([activate])

	Activate the Roi manager using the corresponding action

	move_roi_target([pos])

	move a specific read only ROI at the given position on the viewer

	set_crosshair_position(xpos[, ypos])

	Convenience method to set the crosshair positions

	add_plot_item

	

	crosshair_changed

	

	double_clicked

	

	get_axis_from_view

	

	prepare_connect_ui

	

	process_crosshair_lineouts

	

	process_roi_lineouts

	

	roi_changed

	

	selected_region_changed

	

	update_colors

	

	update_status

	

	
activate_roi(activate=True)

	Activate the Roi manager using the corresponding action

	
move_roi_target(pos: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][float [https://docs.python.org/3/library/functions.html#float]]] = None)

	move a specific read only ROI at the given position on the viewer

	
set_crosshair_position(xpos, ypos=0)

	Convenience method to set the crosshair positions

	
property crosshair

	Convenience method

	
property roi_manager

	Convenience method

	
property roi_target: InfiniteLine

	To be implemented if necessary (Viewer1D and above)

	
class pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D(parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][QWidget] = None, title='')

	Object managing plotting and manipulation of 2D data using a View2D

	Attributes

	
	crosshair
	Convenience method

	image_widget
	Convenience method

	roi_manager
	Convenience method

	roi_target
	To be implemented if necessary (Viewer1D and above)

	x_axis
	

	y_axis
	

Methods

	activate_roi([activate])

	Activate the Roi manager using the corresponding action

	get_axes_from_view(data)

	Obtain axes info from the view

	get_data_at()

	Convenience method

	move_roi_target([pos, size])

	move a specific read only ROI at the given position on the viewer

	set_crosshair_position(xpos, ypos)

	Convenience method to set the crosshair positions

	set_gradient(image_key, gradient)

	convenience function

	set_image_transform()

	Deactivate some tool buttons if data type is "spread" then apply transform_image

	show_roi([show, show_roi_widget])

	convenience function to control roi

	autolevels_first

	

	crosshair_changed

	

	double_clicked

	

	prepare_connect_ui

	

	process_crosshair_lineouts

	

	process_roi_lineouts

	

	roi_changed

	

	selected_region_changed

	

	set_visible_items

	

	transform_image

	

	update_crosshair_data

	

	update_data

	

	
activate_roi(activate=True)

	Activate the Roi manager using the corresponding action

	
get_axes_from_view(data: DataWithAxes)

	Obtain axes info from the view

Only for uniform data

	
get_data_at()

	Convenience method

	
move_roi_target(pos: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][float [https://docs.python.org/3/library/functions.html#float]]] = None, size: Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][float [https://docs.python.org/3/library/functions.html#float]] = (1, 1))

	move a specific read only ROI at the given position on the viewer

	
set_crosshair_position(xpos, ypos)

	Convenience method to set the crosshair positions

	
set_gradient(image_key, gradient)

	convenience function

	
set_image_transform() → DataRaw

	Deactivate some tool buttons if data type is “spread” then apply transform_image

	
show_roi(show=True, show_roi_widget=True)

	convenience function to control roi

	
property crosshair

	Convenience method

	
property image_widget

	Convenience method

	
property roi_manager

	Convenience method

	
property roi_target: ROI

	To be implemented if necessary (Viewer1D and above)

	
class pymodaq.utils.plotting.data_viewers.viewerND.ViewerND(parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][QWidget] = None, title='')

	Methods

	setup_actions()

	Method where to create actions to be subclassed.

	connect_things

	

	prepare_ui

	

	reshape_data

	

	set_data_test

	

	setup_widgets

	

	show_settings

	

	update_data_dim

	

	update_data_displayer

	

	update_filters

	

	update_widget_visibility

	

	
setup_actions()

	Method where to create actions to be subclassed. Mandatory

Examples

>>> self.add_action('Quit', 'close2', "Quit program")
>>> self.add_action('Grab', 'camera', "Grab from camera", checkable=True)
>>> self.add_action('Load', 'Open', "Load target file (.h5, .png, .jpg) or data from camera", checkable=False)
>>> self.add_action('Save', 'SaveAs', "Save current data", checkable=False)

See also

ActionManager.add_action

 8.3.5. Plotting utility classes

8.3.5. Plotting utility classes

	
class pymodaq.utils.plotting.scan_selector.ScanSelector(viewer_items: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][SelectorItem]] = None, positions: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List]] = None)

	Allows selection of a given 2D viewer to get scan info

respectively scan2D or scan Tabular from respectively a rectangular ROI or a polyline

	Parameters

	
	viewer_items (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – where the keys are the titles of the sources while the values are dict with keys
* viewers: list of plotitems
* names: list of viewer titles

	selector_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – either ‘PolyLines’ corresponding to a polyline ROI or ‘Rectangle’ for a rect Roi

	positions (list [https://docs.python.org/3/library/stdtypes.html#list]) – a sequence of 2 floats sequence [(x1,y1),(x2,y2),(x3,y3),…]

	Attributes

	
	selector_type
	

	source_name
	

	viewers_items
	

Methods

	value_changed(param)

	Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param's value in self._settings is changed

	hide

	

	remove_selector

	

	scan_select_signal

	

	show

	

	show_selector

	

	update_model

	

	update_model_data

	

	update_scan

	

	update_selector_type

	

	update_table_view

	

	
value_changed(param)

	Non-mandatory method to be subclassed for actions to perform (methods to call) when one of the param’s
value in self._settings is changed

	Parameters

	param (Parameter) – the parameter whose value just changed

Examples

>>> if param.name() == 'do_something':
>>> if param.value():
>>> print('Do something')
>>> self.settings.child('main_settings', 'something_done').setValue(False)

	
class pymodaq.utils.gui_utils.widgets.lcd.LCD(parent: Optional[QObject] = None)

	Methods

	setvalues(values)

	display values on lcds :param values: :type values: list of 0D ndarray

	setupui

	

	
setvalues(values: List [https://docs.python.org/3/library/typing.html#typing.List][ndarray])

	display values on lcds
:param values:
:type values: list of 0D ndarray

 8.4. Utility Libraries

8.4. Utility Libraries

	8.4.1. Utility Classes
	ThreadCommand
	ThreadCommand.command

	ThreadCommand.attribute

	8.4.2. TCP/IP related methods
	8.4.2.1. Serializing object to bytes and back
	DeSerializer
	DeSerializer.axis_deserialization()

	DeSerializer.boolean_deserialization()

	DeSerializer.bytes_to_int()

	DeSerializer.bytes_to_nd_array()

	DeSerializer.bytes_to_scalar()

	DeSerializer.dte_deserialization()

	DeSerializer.dwa_deserialization()

	DeSerializer.list_deserialization()

	DeSerializer.ndarray_deserialization()

	DeSerializer.scalar_deserialization()

	DeSerializer.string_deserialization()

	Serializer
	Serializer.axis_serialization()

	Serializer.dte_serialization()

	Serializer.dwa_serialization()

	Serializer.int_to_bytes()

	Serializer.list_serialization()

	Serializer.ndarray_serialization()

	Serializer.object_type_serialization()

	Serializer.scalar_serialization()

	Serializer.str_len_to_bytes()

	Serializer.string_serialization()

	Serializer.to_bytes()

	SocketString
	SocketString.check_received_length()

	SocketString.get_first_nbytes()

	8.4.2.2. Custom Sockets to implement PyMoDAQ protocol
	Socket
	Socket.check_received_length()

	Socket.check_sended()

	Socket.check_sended_with_serializer()

	Socket.get_first_nbytes()

	8.4.2.3. Base classes as TCP server and client
	Grabber
	Grabber.grab_data()

	MockServer

	TCPClient
	TCPClient.get_data()

	TCPClient.post_init()

	TCPClient.queue_command()

	TCPClient.ready_to_read()

	TCPClient.ready_to_write()

	TCPClient.ready_with_error()

	TCPServer
	TCPServer.close_server()

	TCPServer.find_socket_type_within_connected_clients()

	TCPServer.find_socket_within_connected_clients()

	TCPServer.listen_client()

	TCPServer.print_status()

	TCPServer.process_cmds()

	TCPServer.read_info()

	TCPServer.select()

	TCPServer.send_command()

	TCPServer.set_connected_clients_table()

	TCPServer.timerEvent()

	8.4.3. Units conversion
	Ecmrel2Enm()

	Enm2cmrel()

	cm2nm()

	eV2cm()

	eV2nm()

	l2w()

	nm2cm()

	nm2eV()

	8.4.4. Mathematical utilities
	find_index()

	ft()

	ft2()

	ftAxis()

	ftAxis_time()

	gauss1D()

	gauss2D()

	ift()

	ift2()

	linspace_step()

	my_moment()

	odd_even()

	8.4.5. Scan utilities

	8.4.6. File management
	select_file()

	8.4.7. Data Management
	8.4.7.1. Axes
	Axis
	Axis.create_linear_data()

	Axis.find_index()

	Axis.get_data()

	Axis.get_data_at()

	Axis.get_scale_offset_from_data()

	Axis.data

	Axis.index

	Axis.label

	Axis.size

	Axis.units

	8.4.7.2. DataObjects
	DataBase
	DataBase.name

	DataBase.source

	DataBase.dim

	DataBase.distribution

	DataBase.data

	DataBase.labels

	DataBase.origin

	DataBase.shape

	DataBase.size

	DataBase.length

	DataBase.extra_attributes

	DataBase.abs()

	DataBase.as_dte()

	DataBase.average()

	DataBase.fliplr()

	DataBase.flipud()

	DataBase.get_data_index()

	DataBase.get_dim_from_data()

	DataBase.get_full_name()

	DataBase.imag()

	DataBase.pop()

	DataBase.real()

	DataBase.set_dim()

	DataBase.stack_as_array()

	DataBase.data

	DataBase.dim

	DataBase.distribution

	DataBase.length

	DataBase.shape

	DataBase.size

	DataBase.source

	DataCalculated

	DataFromPlugins
	DataFromPlugins.do_plot

	DataFromPlugins.do_save

	DataFromRoi

	DataRaw

	8.4.7.3. Data Characteristics
	DataDim

	DataDistribution

	DataSource

	8.4.7.4. Union of Data
	DataToExport
	DataToExport.name

	DataToExport.timestamp

	DataToExport.data

	DataToExport.affect_name_to_origin_if_none()

	DataToExport.average()

	DataToExport.get_data_from_Naxes()

	DataToExport.get_data_from_attribute()

	DataToExport.get_data_from_dim()

	DataToExport.get_data_from_dims()

	DataToExport.get_data_from_full_name()

	DataToExport.get_data_from_missing_attribute()

	DataToExport.get_data_from_name()

	DataToExport.get_data_from_name_origin()

	DataToExport.get_data_from_sig_axes()

	DataToExport.get_data_from_source()

	DataToExport.get_data_with_naxes_lower_than()

	DataToExport.get_full_names()

	DataToExport.get_names()

	DataToExport.get_origins()

	DataToExport.index_from_name_origin()

	DataToExport.merge_as_dwa()

	DataToExport.plot()

	DataToExport.pop()

	DataToExport.data

8.4.8. parameter

Extension of the pyqtgraph Parameter, ParameterTree widgets and dedicated functions to deals with Parameters
(e.g. save them in XML)

	8.4.8.1. New Tree items

	8.4.8.2. Parameter and XML
	XML_file_to_parameter()

	XML_string_to_parameter()

	add_text_to_elt()

	dict_from_param()

	elt_to_dict()

	parameter_to_xml_file()

	parameter_to_xml_string()

	set_txt_from_elt()

	walk_parameters_to_xml()

	walk_xml_to_parameter()

	8.4.8.3. Parameter management
	get_param_from_name()

	get_param_path()

	iter_children()

	iter_children_params()

 8.4.1. Utility Classes

8.4.1. Utility Classes

	
class pymodaq.utils.daq_utils.ThreadCommand(command: str [https://docs.python.org/3/library/stdtypes.html#str], attribute=None, attributes=None)

	Generic object to pass info (command) and data (attribute) between thread or objects using signals

	Parameters

	
	command (str [https://docs.python.org/3/library/stdtypes.html#str]) – The command to be analysed for further action

	attribute (any type) – the attribute related to the command. The actual type and value depend on the command and the situation

	attributes (deprecated, attribute should be used instead) –

	
command

	The command to be analysed for further action

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
attribute

	the attribute related to the command. The actual type and value depend on the command and the situation

	Type

	any type

 8.4.2. TCP/IP related methods

8.4.2. TCP/IP related methods

8.4.2.1. Serializing object to bytes and back

Created the 20/10/2023

@author: Sebastien Weber

	
class pymodaq.utils.tcp_ip.serializer.DeSerializer(bytes_string: Union [https://docs.python.org/3/library/typing.html#typing.Union][bytes [https://docs.python.org/3/library/stdtypes.html#bytes], Socket] = None)

	Used to DeSerialize bytes to python objects, numpy arrays and PyMoDAQ Axis, DataWithAxes and DataToExport
objects

	Parameters

	bytes_string (bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or Socket) – the bytes string to deserialize into an object: int, float, string, arrays, list, Axis, DataWithAxes…
Could also be a Socket object reading bytes from the network having a get_first_nbytes method

See also

SocketString, Socket

Methods

	axis_deserialization()

	Convert bytes into an Axis object

	boolean_deserialization()

	Convert bytes into a boolean object

	bytes_to_int(bytes_string)

	Convert a bytes of length 4 into an integer

	bytes_to_nd_array(data, dtype, shape)

	Convert bytes to a ndarray given a certain numpy dtype and shape

	bytes_to_scalar(data, dtype)

	Convert bytes to a scalar given a certain numpy dtype

	dte_deserialization()

	Convert bytes into a DataToExport object

	dwa_deserialization()

	Convert bytes into a DataWithAxes object

	list_deserialization()

	Convert bytes into a list of homogeneous objects

	ndarray_deserialization()

	Convert bytes into a numpy ndarray object

	scalar_deserialization()

	Convert bytes into a numbers.Number object

	string_deserialization()

	Convert bytes into a str object

	bytes_to_string

	

	object_deserialization

	

	
axis_deserialization() → Axis

	Convert bytes into an Axis object

Convert the first bytes into an Axis reading first information about the Axis

	Returns

	Axis

	Return type

	the decoded Axis

	
boolean_deserialization() → bool [https://docs.python.org/3/library/functions.html#bool]

	Convert bytes into a boolean object

Get first the data type from a string deserialization, then the data length and finally
convert this length of bytes into a number (float, int) and cast it to a bool

	Returns

	bool

	Return type

	the decoded boolean

	
static bytes_to_int(bytes_string: bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) → int [https://docs.python.org/3/library/functions.html#int]

	Convert a bytes of length 4 into an integer

	
static bytes_to_nd_array(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], dtype: dtype, shape: Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int]]) → ndarray

	Convert bytes to a ndarray given a certain numpy dtype and shape

	Parameters

	
	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

	dtype (np.dtype) –

	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	np.ndarray

	
static bytes_to_scalar(data: bytes [https://docs.python.org/3/library/stdtypes.html#bytes], dtype: dtype) → Number [https://docs.python.org/3/library/numbers.html#numbers.Number]

	Convert bytes to a scalar given a certain numpy dtype

	Parameters

	
	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

	dtype (np.dtype) –

	Return type

	numbers.Number [https://docs.python.org/3/library/numbers.html#numbers.Number]

	
dte_deserialization() → DataToExport

	Convert bytes into a DataToExport object

Convert the first bytes into a DataToExport reading first information about the underlying data

	Returns

	DataToExport

	Return type

	the decoded DataToExport

	
dwa_deserialization() → DataWithAxes

	Convert bytes into a DataWithAxes object

Convert the first bytes into a DataWithAxes reading first information about the underlying data

	Returns

	DataWithAxes

	Return type

	the decoded DataWithAxes

	
list_deserialization() → list [https://docs.python.org/3/library/stdtypes.html#list]

	Convert bytes into a list of homogeneous objects

Convert the first bytes into a list reading first information about the list elt types, length …

	Returns

	list

	Return type

	the decoded list

	
ndarray_deserialization() → ndarray

	Convert bytes into a numpy ndarray object

Convert the first bytes into a ndarray reading first information about the array’s data

	Returns

	ndarray

	Return type

	the decoded numpy array

	
scalar_deserialization() → Number [https://docs.python.org/3/library/numbers.html#numbers.Number]

	Convert bytes into a numbers.Number object

Get first the data type from a string deserialization, then the data length and finally convert this
length of bytes into a number (float, int)

	Returns

	numbers.Number

	Return type

	the decoded number

	
string_deserialization() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Convert bytes into a str object

Convert first the fourth first bytes into an int encoding the length of the string to decode

	Returns

	str

	Return type

	the decoded string

	
class pymodaq.utils.tcp_ip.serializer.Serializer(obj: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], Number [https://docs.python.org/3/library/numbers.html#numbers.Number], list [https://docs.python.org/3/library/stdtypes.html#list], ndarray, Axis, DataWithAxes, DataToExport]] = None)

	Used to Serialize to bytes python objects, numpy arrays and PyMoDAQ DataWithAxes and DataToExport objects

Methods

	axis_serialization(axis)

	Convert an Axis object into a bytes message together with the info to convert it back

	dte_serialization(dte)

	Convert a DataToExport into a bytes string

	dwa_serialization(dwa)

	Convert a DataWithAxes into a bytes string

	int_to_bytes(an_integer)

	Convert an unsigned integer into a byte array of length 4 in big endian

	list_serialization(list_object)

	Convert a list of objects into a bytes message together with the info to convert it back

	ndarray_serialization(array)

	Convert a ndarray into a bytes message together with the info to convert it back

	object_type_serialization(obj)

	Convert an object type into a bytes message as a string together with the info to convert it back

	scalar_serialization(scalar)

	Convert a scalar into a bytes message together with the info to convert it back

	str_len_to_bytes(message)

	Convert a string and its length to two bytes :param message: the message to convert :type message: str

	string_serialization(string)

	Convert a string into a bytes message together with the info to convert it back

	to_bytes()

	Generic method to obtain the bytes string from various objects

	bytes_serialization

	

	str_to_bytes

	

	type_and_object_serialization

	

	
axis_serialization(axis: Axis) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Convert an Axis object into a bytes message together with the info to convert it back

	Parameters

	axis (Axis) –

	Returns

	bytes

	Return type

	the total bytes message to serialize the Axis

Notes

The bytes sequence is constructed as:

	serialize the type: ‘Axis’

	serialize the axis label

	serialize the axis units

	serialize the axis array

	serialize the axis

	serialize the axis spread_order

	
dte_serialization(dte: DataToExport) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Convert a DataToExport into a bytes string

	Parameters

	dte (DataToExport) –

	Returns

	bytes

	Return type

	the total bytes message to serialize the DataToExport

Notes

The bytes sequence is constructed as:

	serialize the string type: ‘DataToExport’

	serialize the timestamp: float

	serialize the name

	serialize the list of DataWithAxes

	
dwa_serialization(dwa: DataWithAxes) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Convert a DataWithAxes into a bytes string

	Parameters

	dwa (DataWithAxes) –

	Returns

	bytes

	Return type

	the total bytes message to serialize the DataWithAxes

Notes

The bytes sequence is constructed as:

	serialize the string type: ‘DataWithAxes’

	serialize the timestamp: float

	serialize the name

	serialize the source enum as a string

	serialize the dim enum as a string

	serialize the distribution enum as a string

	serialize the list of numpy arrays

	serialize the list of labels

	serialize the origin

	serialize the nav_index tuple as a list of int

	serialize the list of axis

	serialize the errors attributes (None or list(np.ndarray))

	serialize the list of names of extra attributes

	serialize the extra attributes

	
static int_to_bytes(an_integer: int [https://docs.python.org/3/library/functions.html#int]) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Convert an unsigned integer into a byte array of length 4 in big endian

	Parameters

	an_integer (int [https://docs.python.org/3/library/functions.html#int]) –

	Return type

	bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]

	
list_serialization(list_object: List [https://docs.python.org/3/library/typing.html#typing.List]) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Convert a list of objects into a bytes message together with the info to convert it back

	Parameters

	list_object (list [https://docs.python.org/3/library/stdtypes.html#list]) – the list could contains either scalars, strings or ndarrays or Axis objects or DataWithAxis objects
module

	Returns

	bytes

	Return type

	the total bytes message to serialize the list of objects

Notes

The bytes sequence is constructed as:
* the length of the list

Then for each object:

	get data type as a string

	use the serialization method adapted to each object in the list

	
ndarray_serialization(array: ndarray) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Convert a ndarray into a bytes message together with the info to convert it back

	Parameters

	array (np.ndarray) –

	Returns

	bytes

	Return type

	the total bytes message to serialize the scalar

Notes

The bytes sequence is constructed as:

	get data type as a string

	reshape array as 1D array and get the array dimensionality (len of array’s shape)

	convert Data array as bytes

	serialize data type

	serialize data length

	serialize data shape length

	serialize all values of the shape as integers converted to bytes

	serialize array as bytes

	
object_type_serialization(obj: Union [https://docs.python.org/3/library/typing.html#typing.Union][Axis, DataToExport, DataWithAxes]) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Convert an object type into a bytes message as a string together with the info to convert it back

Applies to Data object from the pymodaq.utils.data module

	
scalar_serialization(scalar: Number [https://docs.python.org/3/library/numbers.html#numbers.Number]) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Convert a scalar into a bytes message together with the info to convert it back

	Parameters

	scalar (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	bytes

	Return type

	the total bytes message to serialize the scalar

	
classmethod str_len_to_bytes(message: str) -> (<class 'bytes'>, <class 'bytes'>)

	Convert a string and its length to two bytes
:param message: the message to convert
:type message: str

	Returns

	
	bytes (message converted as a byte array)

	bytes (length of the message byte array, itself as a byte array of length 4)

	
string_serialization(string: str [https://docs.python.org/3/library/stdtypes.html#str]) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Convert a string into a bytes message together with the info to convert it back

	Parameters

	string (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	bytes

	Return type

	the total bytes message to serialize the string

	
to_bytes()

	Generic method to obtain the bytes string from various objects

Compatible objects are:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	numbers.Number [https://docs.python.org/3/library/numbers.html#numbers.Number]

	str [https://docs.python.org/3/library/stdtypes.html#str]

	numpy.ndarray

	Axis

	DataWithAxes and sub-flavours

	DataToExport

	list [https://docs.python.org/3/library/stdtypes.html#list] of any objects above

	
class pymodaq.utils.tcp_ip.serializer.SocketString(bytes_string: bytes [https://docs.python.org/3/library/stdtypes.html#bytes])

	Mimic the Socket object but actually using a bytes string not a socket connection

Implements a minimal interface of two methods

	Parameters

	bytes_string (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) –

See also

Socket

Methods

	check_received_length(length)

	Make sure all bytes (length) that should be received are received through the socket.

	get_first_nbytes(length)

	Read the first N bytes from the socket

	
check_received_length(length: int [https://docs.python.org/3/library/functions.html#int]) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Make sure all bytes (length) that should be received are received through the socket.

Here just read the content of the underlying bytes string

	Parameters

	length (int [https://docs.python.org/3/library/functions.html#int]) – The number of bytes to be read from the socket

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
get_first_nbytes(length: int [https://docs.python.org/3/library/functions.html#int]) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Read the first N bytes from the socket

	Parameters

	length (int [https://docs.python.org/3/library/functions.html#int]) – The number of bytes to be read from the socket

	Returns

	the read bytes string

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

8.4.2.2. Custom Sockets to implement PyMoDAQ protocol

Created the 26/10/2023

@author: Sebastien Weber

	
class pymodaq.utils.tcp_ip.mysocket.Socket(socket: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][socket [https://docs.python.org/3/library/socket.html#socket.socket]] = None)

	Custom Socket wrapping the built-in one and added functionalities to
make sure message have been sent and received entirely

	Attributes

	
	socket
	

Methods

	check_received_length(length)

	Make sure all bytes (length) that should be received are received through the socket

	check_sended(data_bytes)

	Make sure all bytes are sent through the socket :param data_bytes: :type data_bytes: bytes

	check_sended_with_serializer(obj)

	Convenience function to convert permitted objects to bytes and then use the check_sended method

	get_first_nbytes(length)

	Read the first N bytes from the socket

	accept

	

	bind

	

	close

	

	connect

	

	getsockname

	

	listen

	

	recv

	

	send

	

	sendall

	

	
check_received_length(length) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Make sure all bytes (length) that should be received are received through the socket

	Parameters

	length (int [https://docs.python.org/3/library/functions.html#int]) – The number of bytes to be read from the socket

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
check_sended(data_bytes: bytes [https://docs.python.org/3/library/stdtypes.html#bytes])

	Make sure all bytes are sent through the socket
:param data_bytes:
:type data_bytes: bytes

	
check_sended_with_serializer(obj: object [https://docs.python.org/3/library/functions.html#object])

	Convenience function to convert permitted objects to bytes and then use the check_sended method

For a list of allowed objects, see Serializer.to_bytes()

	
get_first_nbytes(length: int [https://docs.python.org/3/library/functions.html#int]) → bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Read the first N bytes from the socket

	Parameters

	length (int [https://docs.python.org/3/library/functions.html#int]) – The number of bytes to be read from the socket

	Returns

	bytes

	Return type

	the read bytes string

8.4.2.3. Base classes as TCP server and client

Created on Fri Aug 30 12:21:56 2019

@author: Weber

	
class pymodaq.utils.tcp_ip.tcp_server_client.Grabber(parent: Optional[QObject] = None)

	Methods

	grab_data()

	Do a grab session using 2 profile :

	command_tcpip

	

	connect_tcp_ip

	

	process_tcpip_cmds

	

	snapshot

	

	
grab_data()

	
	Do a grab session using 2 profile :
	
	if grab pb checked do a continous save and send an “update_channels” thread command and a “grab” too.

	if not send a “stop_grab” thread command with settings “main settings-naverage” node value as an attribute.

See also

daq_utils.ThreadCommand, set_enabled_Ini_buttons

	
class pymodaq.utils.tcp_ip.tcp_server_client.MockServer(client_type='GRABBER')

	

	
class pymodaq.utils.tcp_ip.tcp_server_client.TCPClient(ipaddress='192.168.1.62', port=6341, params_state=None, client_type='GRABBER')

	PyQt5 object initializing a TCP socket client. Can be used by any module but is a builtin functionality of all
actuators and detectors of PyMoDAQ

The module should init TCPClient, move it in a thread and communicate with it using a custom signal connected to
TCPClient.queue_command slot. The module should also connect TCPClient.cmd_signal to one of its methods inorder to
get info/data back from the client

The client itself communicate with a TCP server, it is best to use a server object subclassing the TCPServer
class defined within this python module

	Parameters

	params_state ((dict [https://docs.python.org/3/library/stdtypes.html#dict]) state of the Parameter settings of the module instantiating this client and wishing to) – export its settings to the server. Obtained from param.saveState() where param is an
instance of Parameter object, see pyqtgraph.parametertree::Parameter

Methods

	get_data(message)

	
	param message

	

	post_init([extra_commands])

	To implement in a real object implementation

	queue_command([command])

	when this TCPClient object is within a thread, the corresponding module communicate with it with signal and slots from module to client: module_signal to queue_command slot from client to module: self.cmd_signal to a module slot

	ready_to_read()

	Do stuff (like read data) when messages arrive through the socket

	ready_to_write()

	Send stuff into the socket

	ready_with_error()

	Error in the socket communication

	cmd_signal

	

	data_ready

	

	not_connected

	

	process_error_in_polling

	

	send_data

	

	send_info_string

	

	send_infos_xml

	

	
get_data(message: str [https://docs.python.org/3/library/stdtypes.html#str])

	
	Parameters

	message –

	
post_init(extra_commands=[])

	To implement in a real object implementation

	
queue_command(command=<class 'pymodaq.utils.daq_utils.ThreadCommand'>)

	when this TCPClient object is within a thread, the corresponding module communicate with it with signal and slots
from module to client: module_signal to queue_command slot
from client to module: self.cmd_signal to a module slot

	
ready_to_read()

	Do stuff (like read data) when messages arrive through the socket

	
ready_to_write()

	Send stuff into the socket

	
ready_with_error()

	Error in the socket communication

	
class pymodaq.utils.tcp_ip.tcp_server_client.TCPServer(client_type='GRABBER')

	Abstract class to be used as inherited by DAQ_Viewer_TCP or DAQ_Move_TCP

Methods

	close_server()

	close the current opened server.

	find_socket_type_within_connected_clients(sock)

	Find a socket type from a connected client with socket content corresponding.

	find_socket_within_connected_clients(client_type)

	Find a socket from a connected client with socket type corresponding.

	listen_client()

	Server function.

	print_status(status)

	Print the given status.

	process_cmds(command[, command_sock])

	Process the given command.

	read_info([sock, test_info, test_value])

	if the client is not from PyMoDAQ it can use this method to display some info into the server widget

	select(rlist[, wlist, xlist, timeout])

	Implements the select method, https://docs.python.org/3/library/select.html :param rlist: :type rlist: (list) wait until ready for reading :param wlist: :type wlist: (list) wait until ready for writing :param xlist: :type xlist: (list) wait for an “exceptional condition” :param timeout: When the timeout argument is omitted the function blocks until at least one file descriptor is ready. A time-out value of zero specifies a poll and never blocks. :type timeout: (float) optional timeout argument specifies a time-out as a floating point number in seconds.

	send_command(sock[, command])

	Send one of the message contained in self.message_list toward a socket with identity socket_type.

	timerEvent(event)

	Called by set timers.

	command_done

	

	command_to_from_client

	

	emit_status

	

	init_server

	

	read_data

	

	read_info_xml

	

	read_infos

	

	remove_client

	

	send_data

	

	set_connected_clients_table

	

	
close_server()

	close the current opened server.
Update the settings tree consequently.

See also

set_connected_clients_table, daq_utils.ThreadCommand

	
find_socket_type_within_connected_clients(sock)

	Find a socket type from a connected client with socket content corresponding.

	Parameters

	Type

	Description

	sock

	???

	The socket content corresponding.

	Returns

	the socket dictionnary

	Return type

	dictionnary

	
find_socket_within_connected_clients(client_type) → Socket

	Find a socket from a connected client with socket type corresponding.

	Parameters

	Type

	Description

	client_type

	string

	The corresponding client type

	Returns

	the socket dictionnary

	Return type

	dictionnary

	
listen_client()

	Server function.
Used to connect or listen incoming message from a client.

	
print_status(status)

	Print the given status.

	Parameters

	Type

	Description

	status

	string list

	a string list representing the status socket

	
process_cmds(command, command_sock=None)

	Process the given command.

	
read_info(sock: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Socket] = None, test_info='an_info', test_value='')

	if the client is not from PyMoDAQ it can use this method to display some info into the server widget

	
select(rlist, wlist=[], xlist=[], timeout=0)

	Implements the select method, https://docs.python.org/3/library/select.html
:param rlist:
:type rlist: (list) wait until ready for reading
:param wlist:
:type wlist: (list) wait until ready for writing
:param xlist:
:type xlist: (list) wait for an “exceptional condition”
:param timeout: When the timeout argument is omitted the function blocks until at least one file descriptor is ready.

A time-out value of zero specifies a poll and never blocks.

	Returns

	
	list (readable sockets)

	list (writable sockets)

	list (sockets with error pending)

	
send_command(sock: Socket, command='move_at')

	Send one of the message contained in self.message_list toward a socket with identity socket_type.
First send the length of the command with 4bytes.

	Parameters

	Type

	Description

	sock

	???

	The current socket

	command

	string

	The command as a string

See also

utility_classes.DAQ_Viewer_base.emit_status, daq_utils.ThreadCommand, message_to_bytes

	
set_connected_clients_table()

	

	
timerEvent(event)

	Called by set timers.
If the process is free, start the listen_client function.

	Parameters

	Type

	Description

	event

	QTimerEvent object

	Containing id from timer issuing this event

See also

listen_client

 8.4.3. Units conversion

8.4.3. Units conversion

Created the 27/10/2022

@author: Sebastien Weber

	
pymodaq.utils.units.Ecmrel2Enm(Ecmrel, ref_wavelength=515)

	Converts energy from cm-1 relative to a ref wavelength to an energy in wavelength (nm)

	Parameters

	
	Ecmrel (float [https://docs.python.org/3/library/functions.html#float]) – photon energy in cm-1

	ref_wavelength (float [https://docs.python.org/3/library/functions.html#float]) – reference wavelength in nm from which calculate the photon relative energy

	Returns

	photon energy in nm

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Examples

>>> Ecmrel2Enm(500, 515)
528.6117526302285

	
pymodaq.utils.units.Enm2cmrel(E_nm, ref_wavelength=515)

	Converts energy in nm to cm-1 relative to a ref wavelength

	Parameters

	
	E_nm (float [https://docs.python.org/3/library/functions.html#float]) – photon energy in wavelength (nm)

	ref_wavelength (float [https://docs.python.org/3/library/functions.html#float]) – reference wavelength in nm from which calculate the photon relative energy

	Returns

	photon energy in cm-1 relative to the ref wavelength

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Examples

>>> Enm2cmrel(530, 515)
549.551199853453

	
pymodaq.utils.units.cm2nm(E_cm)

	Converts photon energy from absolute cm-1 to wavelength

	Parameters

	E_cm (float [https://docs.python.org/3/library/functions.html#float]) – photon energy in cm-1

	Returns

	Photon energy in nm

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Examples

>>> cm2nm(1e5)
100

	
pymodaq.utils.units.eV2cm(E_eV)

	Converts photon energy from electronvolt to absolute cm-1

	Parameters

	E_eV (float [https://docs.python.org/3/library/functions.html#float]) – Photon energy in eV

	Returns

	photon energy in cm-1

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Examples

>>> eV2cm(0.07)
564.5880342655984

	
pymodaq.utils.units.eV2nm(E_eV)

	Converts photon energy from electronvolt to wavelength in nm

	Parameters

	E_eV (float [https://docs.python.org/3/library/functions.html#float]) – Photon energy in eV

	Returns

	photon energy in nm

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Examples

>>> eV2nm(1.55)
799.898112990037

	
pymodaq.utils.units.l2w(x, speedlight=300)

	Converts photon energy in rad/fs to nm (and vice-versa)

	Parameters

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – photon energy in wavelength or rad/fs

	speedlight (float [https://docs.python.org/3/library/functions.html#float], optional) – the speed of light, by default 300 nm/fs

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Examples

>>> l2w(800)
2.356194490192345
>>> l2w(800,3e8)
2356194.490192345

	
pymodaq.utils.units.nm2cm(E_nm)

	Converts photon energy from wavelength to absolute cm-1

	Parameters

	E_nm (float [https://docs.python.org/3/library/functions.html#float]) – Photon energy in nm

	Returns

	photon energy in cm-1

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Examples

>>> nm2cm(0.04)
0.000025

	
pymodaq.utils.units.nm2eV(E_nm)

	Converts photon energy from wavelength in nm to electronvolt

	Parameters

	E_nm (float [https://docs.python.org/3/library/functions.html#float]) – Photon energy in nm

	Returns

	photon energy in eV

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Examples

>>> nm2eV(800)
1.549802593918197

 8.4.4. Mathematical utilities

8.4.4. Mathematical utilities

	
pymodaq.utils.math_utils.find_index(x, threshold: Union [https://docs.python.org/3/library/typing.html#typing.Union][Number [https://docs.python.org/3/library/numbers.html#numbers.Number], List [https://docs.python.org/3/library/typing.html#typing.List][Number [https://docs.python.org/3/library/numbers.html#numbers.Number]]]) → List [https://docs.python.org/3/library/typing.html#typing.List][tuple [https://docs.python.org/3/library/stdtypes.html#tuple]]

	find_index finds the index ix such that x(ix) is the closest from threshold

	Parameters

	
	x (vector) –

	threshold (list [https://docs.python.org/3/library/stdtypes.html#list] of real numbers) –

	Returns

	out – out=[(ix0,xval0),(ix1,xval1),…]

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] of 2-tuple containing ix,x[ix]

	
pymodaq.utils.math_utils.ft(x, dim=-1)

	Process the 1D fast fourier transform and swaps the axis to get coorect results using ftAxis
:param x:
:type x: (ndarray) the array on which the FFT should be done
:param dim:
:type dim: the axis over which is done the FFT (default is the last of the array)

See also

ftAxis, ftAxis_time, ift, ft2, ift2

	
pymodaq.utils.math_utils.ft2(x, dim=(-2, -1))

	Process the 2D fast fourier transform and swaps the axis to get correct results using ftAxis
:param x:
:type x: (ndarray) the array on which the FFT should be done
:param dim:
:type dim: the axis over which is done the FFT (default is the last of the array)

See also

ftAxis, ftAxis_time, ift, ft2, ift2

	
pymodaq.utils.math_utils.ftAxis(Npts, omega_max)

	Given two numbers Npts,omega_max, return two vectors spanning the temporal
and spectral range. They are related by Fourier Transform

	Parameters

	
	Npts ((int [https://docs.python.org/3/library/functions.html#int])) – A number of points defining the length of both grids

	omega_max ((float [https://docs.python.org/3/library/functions.html#float])) – The maximum circular frequency in the spectral domain. its unit defines
the temporal units. ex: omega_max in rad/fs implies time_grid in fs

	Returns

	
	omega_grid ((ndarray)) – The spectral axis of the FFT

	time_grid ((ndarray))) – The temporal axis of the FFT

See also

ftAxis, ftAxis_time, ift, ft2, ift2

	
pymodaq.utils.math_utils.ftAxis_time(Npts, time_max)

	Given two numbers Npts,omega_max, return two vectors spanning the temporal
and spectral range. They are related by Fourier Transform

	Parameters

	
	Npts (number) – A number of points defining the length of both grids

	time_max (number) – The maximum tmporal window

	Returns

	
	omega_grid (vector) – The spectral axis of the FFT

	time_grid (vector) – The temporal axis of the FFT

See also

ftAxis, ftAxis_time, ift, ft2, ift2

	
pymodaq.utils.math_utils.gauss1D(x, x0, dx, n=1)

	compute the gaussian function along a vector x, centered in x0 and with a
FWHM i intensity of dx. n=1 is for the standart gaussian while n>1 defines
a hypergaussian

	Parameters

	
	x ((ndarray) first axis of the 2D gaussian) –

	x0 ((float [https://docs.python.org/3/library/functions.html#float]) the central position of the gaussian) –

	dx ((float [https://docs.python.org/3/library/functions.html#float]) :the FWHM of the gaussian) –

	n=1 (an integer to define hypergaussian, n=1 by default for regular gaussian) –

	Returns

	out – the value taken by the gaussian along x axis

	Return type

	vector

	
pymodaq.utils.math_utils.gauss2D(x, x0, dx, y, y0, dy, n=1, angle=0)

	compute the 2D gaussian function along a vector x, centered in x0 and with a
FWHM in intensity of dx and smae along y axis. n=1 is for the standard gaussian while n>1 defines
a hypergaussian. optionally rotate it by an angle in degree

	Parameters

	
	x ((ndarray) first axis of the 2D gaussian) –

	x0 ((float [https://docs.python.org/3/library/functions.html#float]) the central position of the gaussian) –

	dx ((float [https://docs.python.org/3/library/functions.html#float]) :the FWHM of the gaussian) –

	y ((ndarray) second axis of the 2D gaussian) –

	y0 ((float [https://docs.python.org/3/library/functions.html#float]) the central position of the gaussian) –

	dy ((float [https://docs.python.org/3/library/functions.html#float]) :the FWHM of the gaussian) –

	n=1 (an integer to define hypergaussian, n=1 by default for regular gaussian) –

	angle ((float [https://docs.python.org/3/library/functions.html#float]) a float to rotate main axes, in degree) –

	Returns

	out

	Return type

	ndarray 2 dimensions

	
pymodaq.utils.math_utils.ift(x, dim=0)

	Process the inverse 1D fast fourier transform and swaps the axis to get correct results using ftAxis
:param x:
:type x: (ndarray) the array on which the FFT should be done
:param dim:
:type dim: the axis over which is done the FFT (default is the last of the array)

See also

ftAxis, ftAxis_time, ift, ft2, ift2

	
pymodaq.utils.math_utils.ift2(x, dim=(-2, -1))

	Process the inverse 2D fast fourier transform and swaps the axis to get correct results using ftAxis
:param x:
:type x: (ndarray) the array on which the FFT should be done
:param dim:
:type dim: the axis (or a tuple of axes) over which is done the FFT (default is the last of the array)

See also

ftAxis, ftAxis_time, ift, ft2, ift2

	
pymodaq.utils.math_utils.linspace_step(start, stop, step)

	Compute a regular linspace_step distribution from start to stop values.

	Parameters

	Type

	Description

	start

	scalar

	the starting value of distribution

	stop

	scalar

	the stopping value of distribution

	step

	scalar

	the length of a distribution step

	Returns

	The computed distribution axis as an array.

	Return type

	scalar array

	
pymodaq.utils.math_utils.my_moment(x, y)

	Returns the moments of a distribution y over an axe x

	Parameters

	
	x (list [https://docs.python.org/3/library/stdtypes.html#list] or ndarray) – vector of floats

	y (list [https://docs.python.org/3/library/stdtypes.html#list] or ndarray) – vector of floats corresponding to the x axis

	Returns

	m – Contains moment of order 0 (mean) and of order 1 (std) of the distribution y

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pymodaq.utils.math_utils.odd_even(x)

	odd_even tells if a number is odd (return True) or even (return False)

	Parameters

	x (the integer number to test) –

	Returns

	bool

	Return type

	boolean

 8.4.5. Scan utilities

8.4.5. Scan utilities

 8.4.6. File management

8.4.6. File management

	
pymodaq.utils.gui_utils.select_file(start_path='C:\\Data', save=True, ext=None, filter=None, force_save_extension=False)

	Opens a selection file popup for loading or saving a file

	Parameters

	
	start_path (str [https://docs.python.org/3/library/stdtypes.html#str] or Path) – The strating point in the file/folder system to open the popup from

	save (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, ask you to enter a filename (with or without extension)

	ext (str [https://docs.python.org/3/library/stdtypes.html#str]) – the extension string, e.g. xml, h5, png …

	filter (string) – list of possible extensions, if you need several you can separate them by ;;
for example: “Images (.png *.xpm *.jpg);;Text files (.txt);;XML files (*.xml)”

	force_save_extension (bool [https://docs.python.org/3/library/functions.html#bool]) – if True force the extension of the saved file to be set to ext

	Returns

	Path

	Return type

	the Path object of the file to save or load

 8.4.7. Data Management

8.4.7. Data Management

	DataDim(value)

	Enum for dimensionality representation of data

	DataSource(value)

	Enum for source of data

	DataDistribution(value)

	Enum for distribution of data

	Axis([label, units, data, index, scaling, ...])

	Object holding info and data about physical axis of some data

	DataBase(name[, source, dim, distribution, ...])

	Base object to store homogeneous data and metadata generated by pymodaq's objects.

	DataRaw(*args, **kwargs)

	Specialized DataWithAxes set with source as 'raw'.

	DataCalculated(*args[, axes])

	Specialized DataWithAxes set with source as 'calculated'.

	DataFromPlugins(*args, **kwargs)

	Specialized DataWithAxes set with source as 'raw'.

	DataFromRoi(*args[, axes])

	Specialized DataWithAxes set with source as 'calculated'.To be used for processed data from region of interest

	DataToExport(name[, data])

	Object to store all raw and calculated DataWithAxes data for later exporting, saving, sending signal...

8.4.7.1. Axes

Created the 28/10/2022

@author: Sebastien Weber

	
class pymodaq.utils.data.Axis(label: str [https://docs.python.org/3/library/stdtypes.html#str] = '', units: str [https://docs.python.org/3/library/stdtypes.html#str] = '', data: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ndarray] = None, index: int [https://docs.python.org/3/library/functions.html#int] = 0, scaling=None, offset=None, size=None, spread_order: int [https://docs.python.org/3/library/functions.html#int] = 0)

	Object holding info and data about physical axis of some data

In case the axis’s data is linear, store the info as a scale and offset else store the data

	Parameters

	
	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – The label of the axis, for instance ‘time’ for a temporal axis

	units (str [https://docs.python.org/3/library/stdtypes.html#str]) – The units of the data in the object, for instance ‘s’ for seconds

	data (ndarray) – A 1D ndarray holding the data of the axis

	index (int [https://docs.python.org/3/library/functions.html#int]) – an integer representing the index of the Data object this axis is related to

	scaling (float [https://docs.python.org/3/library/functions.html#float]) – The scaling to apply to a linspace version in order to obtain the proper scaling

	offset (float [https://docs.python.org/3/library/functions.html#float]) – The offset to apply to a linspace/scaled version in order to obtain the proper axis

	size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the axis array (to be specified if data is None)

	spread_order (int [https://docs.python.org/3/library/functions.html#int]) – An integer needed in the case where data has a spread DataDistribution. It refers to the index along the data’s
spread_index dimension

Examples

>>> axis = Axis('myaxis', units='seconds', data=np.array([1,2,3,4,5]), index=0)

	
create_linear_data(nsteps: int [https://docs.python.org/3/library/functions.html#int])

	replace the axis data with a linear version using scaling and offset

	
find_index(threshold: float [https://docs.python.org/3/library/functions.html#float]) → int [https://docs.python.org/3/library/functions.html#int]

	find the index of the threshold value within the axis

	
get_data() → ndarray

	Convenience method to obtain the axis data (usually None because scaling and offset are used)

	
get_data_at(indexes: Union [https://docs.python.org/3/library/typing.html#typing.Union][int [https://docs.python.org/3/library/functions.html#int], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable], slice [https://docs.python.org/3/library/functions.html#slice]]) → ndarray

	Get data at specified indexes

	Parameters

	indexes –

	
get_scale_offset_from_data(data: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ndarray] = None)

	Get the scaling and offset from the axis’s data

If data is not None, extract the scaling and offset

	Parameters

	data (ndarray) –

	
property data

	get/set the data of Axis

	Type

	np.ndarray

	
property index: int [https://docs.python.org/3/library/functions.html#int]

	get/set the index this axis corresponds to in a DataWithAxis object

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
property label: str [https://docs.python.org/3/library/stdtypes.html#str]

	get/set the label of this axis

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property size: int [https://docs.python.org/3/library/functions.html#int]

	get/set the size/length of the 1D ndarray

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
property units: str [https://docs.python.org/3/library/stdtypes.html#str]

	get/set the units for this axis

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

8.4.7.2. DataObjects

Created the 28/10/2022

@author: Sebastien Weber

	
class pymodaq.utils.data.DataBase(name: str [https://docs.python.org/3/library/stdtypes.html#str], source: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataSource] = None, dim: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataDim] = None, distribution: DataDistribution = DataDistribution.uniform, data: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][ndarray]] = None, labels: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]] = None, origin: str [https://docs.python.org/3/library/stdtypes.html#str] = '', **kwargs)

	Base object to store homogeneous data and metadata generated by pymodaq’s objects.

To be inherited for real data

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the identifier of these data

	source (DataSource or str [https://docs.python.org/3/library/stdtypes.html#str]) – Enum specifying if data are raw or processed (for instance from roi)

	dim (DataDim or str [https://docs.python.org/3/library/stdtypes.html#str]) – The identifier of the data type

	distribution (DataDistribution or str [https://docs.python.org/3/library/stdtypes.html#str]) – The distribution type of the data: uniform if distributed on a regular grid or spread if on specific
unordered points

	data (list [https://docs.python.org/3/library/stdtypes.html#list] of ndarray) – The data the object is storing

	labels (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – The labels of the data nd-arrays

	origin (str [https://docs.python.org/3/library/stdtypes.html#str]) – An identifier of the element where the data originated, for instance the DAQ_Viewer’s name. Used when appending
DataToExport in DAQ_Scan to disintricate from which origin data comes from when scanning multiple detectors.

	kwargs (named parameters) – All other parameters are stored dynamically using the name/value pair. The name of these extra parameters are
added into the extra_attributes attribute

	
name

	the identifier of these data

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
source

	Enum specifying if data are raw or processed (for instance from roi)

	Type

	DataSource or str [https://docs.python.org/3/library/stdtypes.html#str]

	
dim

	The identifier of the data type

	Type

	DataDim or str [https://docs.python.org/3/library/stdtypes.html#str]

	
distribution

	The distribution type of the data: uniform if distributed on a regular grid or spread if on specific
unordered points

	Type

	DataDistribution or str [https://docs.python.org/3/library/stdtypes.html#str]

	
data

	The data the object is storing

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list] of ndarray

	
labels

	The labels of the data nd-arrays

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

	
origin

	An identifier of the element where the data originated, for instance the DAQ_Viewer’s name. Used when appending
DataToExport in DAQ_Scan to disintricate from which origin data comes from when scanning multiple detectors.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
shape

	The shape of the underlying data

	Type

	Tuple[int [https://docs.python.org/3/library/functions.html#int]]

	
size

	The size of the ndarrays stored in the object

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
length

	The number of ndarrays stored in the object

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
extra_attributes

	list of string giving identifiers of the attributes added dynamically at the initialization (for instance
to save extra metadata using the DataSaverLoader

	Type

	List[str [https://docs.python.org/3/library/stdtypes.html#str]]

See also

DataWithAxes, DataFromPlugins, DataRaw, DataSaverLoader

Examples

>>> import numpy as np
>>> from pymodaq.utils.data import DataBase, DataSource, DataDim, DataDistribution
>>> data = DataBase('mydata', source=DataSource['raw'], dim=DataDim['Data1D'], distribution=DataDistribution['uniform'], data=[np.array([1.,2.,3.]), np.array([4.,5.,6.])], labels=['channel1', 'channel2'], origin='docutils code')
>>> data.dim
<DataDim.Data1D: 1>
>>> data.source
<DataSource.raw: 0>
>>> data.shape
(3,)
>>> data.length
2
>>> data.size
3

	
abs()

	Take the absolute value of itself

	
as_dte(name: str [https://docs.python.org/3/library/stdtypes.html#str] = 'mydte') → DataToExport

	Convenience method to wrap the DataWithAxes object into a DataToExport

	
average(other: DataBase, weight: int [https://docs.python.org/3/library/functions.html#int]) → DataBase

	Compute the weighted average between self and other DataBase

	Parameters

	
	other_data (DataBase) –

	weight (int [https://docs.python.org/3/library/functions.html#int]) – The weight the ‘other’ holds with respect to self

	Returns

	DataBase

	Return type

	the averaged DataBase object

	
fliplr()

	Reverse the order of elements along axis 1 (left/right)

	
flipud()

	Reverse the order of elements along axis 0 (up/down)

	
get_data_index(index: int [https://docs.python.org/3/library/functions.html#int] = 0) → ndarray

	Get the data by its index in the list, same as self[index]

	
get_dim_from_data(data: List [https://docs.python.org/3/library/typing.html#typing.List][ndarray])

	Get the dimensionality DataDim from data

	
get_full_name() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Get the data ful name including the origin attribute into the returned value

	Returns

	str

	Return type

	the name of the ataWithAxes data constructed as : origin/name

Examples

d0 = DataBase(name=’datafromdet0’, origin=’det0’)

	
imag()

	Take the imaginary part of itself

	
pop(index: int [https://docs.python.org/3/library/functions.html#int]) → DataBase

	Returns a copy of self but with data taken at the specified index

	
real()

	Take the real part of itself

	
set_dim(dim: Union [https://docs.python.org/3/library/typing.html#typing.Union][DataDim, str [https://docs.python.org/3/library/stdtypes.html#str]])

	Addhoc modification of dim independantly of the real data shape, should be used with extra care

	
stack_as_array(axis=0, dtype=None) → ndarray

	Stack all data arrays in a single numpy array

	Parameters

	
	axis (int [https://docs.python.org/3/library/functions.html#int]) – The new stack axis index, default 0

	dtype (str [https://docs.python.org/3/library/stdtypes.html#str] or np.dtype) – the dtype of the stacked array

	Return type

	np.ndarray

See also

np.stack()

	
property data: List [https://docs.python.org/3/library/typing.html#typing.List][ndarray]

	get/set (and check) the data the object is storing

	Type

	List[np.ndarray]

	
property dim

	the enum representing the dimensionality of the stored data

	Type

	DataDim

	
property distribution

	the enum representing the distribution of the stored data

	Type

	DataDistribution

	
property length

	The length of data. This is the length of the list containing the nd-arrays

	
property shape

	The shape of the nd-arrays

	
property size

	The size of the nd-arrays

	
property source

	the enum representing the source of the data

	Type

	DataSource

	
class pymodaq.utils.data.DataCalculated(*args, axes=[], **kwargs)

	Specialized DataWithAxes set with source as ‘calculated’. To be used for processed/calculated data

	
class pymodaq.utils.data.DataFromPlugins(*args, **kwargs)

	Specialized DataWithAxes set with source as ‘raw’. To be used for raw data generated by Detector plugins

It introduces by default to extra attributes, do_plot and do_save. Their presence can be checked in the
extra_attributes list.

	Parameters

	
	do_plot (bool [https://docs.python.org/3/library/functions.html#bool]) – If True the underlying data will be plotted in the DAQViewer

	do_save (bool [https://docs.python.org/3/library/functions.html#bool]) – If True the underlying data will be saved

	
do_plot

	If True the underlying data will be plotted in the DAQViewer

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
do_save

	If True the underlying data will be saved

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class pymodaq.utils.data.DataFromRoi(*args, axes=[], **kwargs)

	Specialized DataWithAxes set with source as ‘calculated’.To be used for processed data from region of interest

	
class pymodaq.utils.data.DataRaw(*args, **kwargs)

	Specialized DataWithAxes set with source as ‘raw’. To be used for raw data

8.4.7.3. Data Characteristics

Created the 28/10/2022

@author: Sebastien Weber

	
class pymodaq.utils.data.DataDim(value)

	Enum for dimensionality representation of data

	
class pymodaq.utils.data.DataDistribution(value)

	Enum for distribution of data

	
class pymodaq.utils.data.DataSource(value)

	Enum for source of data

8.4.7.4. Union of Data

When exporting multiple set of Data objects, one should use a DataToExport

Created the 28/10/2022

@author: Sebastien Weber

	
class pymodaq.utils.data.DataToExport(name: str [https://docs.python.org/3/library/stdtypes.html#str], data: List [https://docs.python.org/3/library/typing.html#typing.List][DataWithAxes] = [], **kwargs)

	Object to store all raw and calculated DataWithAxes data for later exporting, saving, sending signal…

Includes methods to retrieve data from dim, source…
Stored data have a unique identifier their name. If some data is appended with an existing name, it will replace
the existing data. So if you want to append data that has the same name

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The identifier of the exporting object

	data (list [https://docs.python.org/3/library/stdtypes.html#list] of DataWithAxes) – All the raw and calculated data to be exported

	
name

	

	
timestamp

	

	
data

	

	
affect_name_to_origin_if_none()

	Affect self.name to all DataWithAxes children’s attribute origin if this origin is not defined

	
average(other: DataToExport, weight: int [https://docs.python.org/3/library/functions.html#int]) → DataToExport

	Compute the weighted average between self and other DataToExport and attributes it to self

	Parameters

	
	other (DataToExport) –

	weight (int [https://docs.python.org/3/library/functions.html#int]) – The weight the ‘other_data’ holds with respect to self

	
get_data_from_Naxes(Naxes: int [https://docs.python.org/3/library/functions.html#int], deepcopy: bool [https://docs.python.org/3/library/functions.html#bool] = False) → DataToExport

	Get the data matching the given number of axes

	Parameters

	Naxes (int [https://docs.python.org/3/library/functions.html#int]) – Number of axes in the DataWithAxes objects

	Returns

	DataToExport

	Return type

	filtered with data matching the number of axes

	
get_data_from_attribute(attribute: str [https://docs.python.org/3/library/stdtypes.html#str], attribute_value: Any [https://docs.python.org/3/library/typing.html#typing.Any], deepcopy=False) → DataToExport

	Get the data matching a given attribute value

	Returns

	DataToExport

	Return type

	filtered with data matching the attribute presence and value

	
get_data_from_dim(dim: DataDim, deepcopy=False) → DataToExport

	Get the data matching the given DataDim

	Returns

	DataToExport

	Return type

	filtered with data matching the dimensionality

	
get_data_from_dims(dims: List [https://docs.python.org/3/library/typing.html#typing.List][DataDim], deepcopy=False) → DataToExport

	Get the data matching the given DataDim

	Returns

	DataToExport

	Return type

	filtered with data matching the dimensionality

	
get_data_from_full_name(full_name: str [https://docs.python.org/3/library/stdtypes.html#str], deepcopy=False) → DataWithAxes

	Get the DataWithAxes with matching full name

	
get_data_from_missing_attribute(attribute: str [https://docs.python.org/3/library/stdtypes.html#str], deepcopy=False) → DataToExport

	Get the data matching a given attribute value

	Parameters

	
	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string of a possible attribute

	deepcopy (bool [https://docs.python.org/3/library/functions.html#bool]) – if True the returned DataToExport will contain deepcopies of the DataWithAxes

	Returns

	DataToExport

	Return type

	filtered with data missing the given attribute

	
get_data_from_name(name: str [https://docs.python.org/3/library/stdtypes.html#str]) → DataWithAxes

	Get the data matching the given name

	
get_data_from_name_origin(name: str [https://docs.python.org/3/library/stdtypes.html#str], origin: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → DataWithAxes

	Get the data matching the given name and the given origin

	
get_data_from_sig_axes(Naxes: int [https://docs.python.org/3/library/functions.html#int], deepcopy: bool [https://docs.python.org/3/library/functions.html#bool] = False) → DataToExport

	Get the data matching the given number of signal axes

	Parameters

	Naxes (int [https://docs.python.org/3/library/functions.html#int]) – Number of signal axes in the DataWithAxes objects

	Returns

	DataToExport

	Return type

	filtered with data matching the number of signal axes

	
get_data_from_source(source: DataSource, deepcopy=False) → DataToExport

	Get the data matching the given DataSource

	Returns

	DataToExport

	Return type

	filtered with data matching the dimensionality

	
get_data_with_naxes_lower_than(n_axes=2, deepcopy: bool [https://docs.python.org/3/library/functions.html#bool] = False) → DataToExport

	Get the data with n axes lower than the given number

	Parameters

	Naxes (int [https://docs.python.org/3/library/functions.html#int]) – Number of axes in the DataWithAxes objects

	Returns

	DataToExport

	Return type

	filtered with data matching the number of axes

	
get_full_names(dim: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataDim] = None)

	Get the ful names including the origin attribute into the returned value, eventually filtered by dim

	Parameters

	dim (DataDim or str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	list of str

	Return type

	the names of the (filtered) DataWithAxes data constructed as : origin/name

Examples

d0 = DataWithAxes(name=’datafromdet0’, origin=’det0’)

	
get_names(dim: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataDim] = None) → List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Get the names of the stored DataWithAxes, eventually filtered by dim

	Parameters

	dim (DataDim or str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	list of str

	Return type

	the names of the (filtered) DataWithAxes data

	
get_origins(dim: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][DataDim] = None)

	Get the origins of the underlying data into the returned value, eventually filtered by dim

	Parameters

	dim (DataDim or str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Returns

	list of str

	Return type

	the origins of the (filtered) DataWithAxes data

Examples

d0 = DataWithAxes(name=’datafromdet0’, origin=’det0’)

	
index_from_name_origin(name: str [https://docs.python.org/3/library/stdtypes.html#str], origin: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → List [https://docs.python.org/3/library/typing.html#typing.List][DataWithAxes]

	Get the index of a given DataWithAxes within the list of data

	
merge_as_dwa(dim: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], DataDim], name: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → DataRaw

	attempt to merge filtered dwa into one

Only possible if all filtered dwa and underlying data have same shape

	Parameters

	
	dim (DataDim or str [https://docs.python.org/3/library/stdtypes.html#str]) – will only try to merge dwa having this dimensionality

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name of the returned dwa

	
plot(plotter_backend: str [https://docs.python.org/3/library/stdtypes.html#str] = 'matplotlib', *args, **kwargs)

	Call a plotter factory and its plot method over the actual data

	
pop(index: int [https://docs.python.org/3/library/functions.html#int]) → DataWithAxes

	return and remove the DataWithAxes referred by its index

	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – index as returned by self.index_from_name_origin

See also

index_from_name_origin

	
property data: List [https://docs.python.org/3/library/typing.html#typing.List][DataWithAxes]

	get the data contained in the object

	Type

	List[DataWithAxes]

 8.4.8.1. New Tree items

8.4.8.1. New Tree items

Documentation on the added or modified ParameterItem types compared to pyqtgraph.parametertree.parameterTypes module.

WidgetParameterItem and SimpleParameter have been subclassed to define more options:

	int and float: represented by a custom Spinbox, see Spinbox

	bool, led, bool_push are represented respectively by a QCheckBox,
a QLED, QPushButton

	str displays a QLineEdit widget

	date_time displays a QDateTime widget

	date displays a QDate widget

	time displays a QTimeCustom widget

	pixmap displays a QPixmap in a QLabel

	pixmap_check displays a custom PixmapCheckWidget widget

Other widgets for ParameterTree have been introduced:

	group: subclassed group parameter, see GroupParameterCustom
and GroupParameterItemCustom

	slide: displays a custom Spinbox and a QSlider to set floats and ints,
see SliderSpinBox

	list: subclassed pyqtgraph list that displays a list and a pushbutton to let the user add entries in the list,
see ListParameter and
ListParameterItem and
Combo_pb

	table: subclassed pyqtgraph table, see TableParameterItem,
TableParameter and
TableWidget

	table_view : displaying a QTableView with custom model to be user defined, see Qt5 documentation, see
TableViewParameterItem,
TableViewCustom and
TableViewParameter

	ìtemselect: displays a QListWidget with selectable elements, see
ItemSelectParameterItem,
ItemSelect_pb,
ItemSelect and
ItemSelectParameter

	browsepath: displays an edit line and a push button to select files or folders, see
FileDirParameterItem,
FileDirWidget and
FileDirParameter

	text`: subclassed plain text area text from pyqtgraph with limited height, see
TextParameterItemCustom and
TextParameter

	text_pb: displays a plain text area and a visible button to add data into it, see
PlainTextParameterItem,
PlainTextWidget and
PlainTextPbParameter

 8.4.8.2. Parameter and XML

8.4.8.2. Parameter and XML

Within PyMoDAQ, Parameter state are often saved or transferred (for instance when using TCP/IP) as a XML string whose
Tree structure is well adapted to represent the Parameter tree structure. Below are all the functions used to convert
from a Parameter to a XML string (or file) and vice-versa.

	
pymodaq.utils.parameter.ioxml.XML_file_to_parameter(file_name: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) → list [https://docs.python.org/3/library/stdtypes.html#list]

	Convert a xml file into pyqtgraph parameter object.

	Returns

	params – a list of dictionary defining a Parameter object and its children

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] of dictionary

See also

walk_parameters_to_xml

Examples

	
pymodaq.utils.parameter.ioxml.XML_string_to_parameter(xml_string)

	Convert a xml string into a list of dict for initialize pyqtgraph parameter object.

	Parameters

	Type

	Description

	xml_string

	string

	the xml string to be converted

	Returns

	params

	Return type

	a parameter list of dict to init a parameter

See also

walk_parameters_to_xml

Examples

	
pymodaq.utils.parameter.ioxml.add_text_to_elt(elt, param)

	Add a text filed in a xml element corresponding to the parameter value

	Parameters

	
	elt (XML elt) –

	param (Parameter) –

See also

add_text_to_elt, walk_parameters_to_xml, dict_from_param

	
pymodaq.utils.parameter.ioxml.dict_from_param(param)

	Get Parameter properties as a dictionary

	Parameters

	param (Parameter) –

	Returns

	opts

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

See also

add_text_to_elt, walk_parameters_to_xml, dict_from_param

	
pymodaq.utils.parameter.ioxml.elt_to_dict(el)

	Convert xml element attributes to a dictionnary

	Parameters

	el –

	
pymodaq.utils.parameter.ioxml.parameter_to_xml_file(param, filename: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]])

	Convert the given parameter to XML element and update the given XML file.

	Parameters

	Type

	Description

	param

	instance of pyqtgraph parameter

	the parameter to be added

	filename

	string

	the filename of the XML file

See also

walk_parameters_to_xml

Examples

	
pymodaq.utils.parameter.ioxml.parameter_to_xml_string(param)

	Convert a Parameter to a XML string.

	Parameters

	param (Parameter) –

	Returns

	str

	Return type

	XMl string

See also

add_text_to_elt, walk_parameters_to_xml, dict_from_param

Examples

>>> from pyqtgraph.parametertree import Parameter
>>> #Create an instance of Parameter
>>> settings=Parameter(name='settings')
>>> converted_xml=parameter_to_xml_string(settings)
>>> # The converted Parameter
>>> print(converted_xml)
b'<settings title="settings" type="None" />'

	
pymodaq.utils.parameter.ioxml.set_txt_from_elt(el, param_dict)

	get the value of the parameter from the text value of the xml element
:param el:
:type el: xml element
:param param_dict:
:type param_dict: dictionnary from which the parameter will be constructed

	
pymodaq.utils.parameter.ioxml.walk_parameters_to_xml(parent_elt=None, param=None)

	To convert a parameter object (and children) to xml data tree.

	Parameters

	Type

	Description

	parent_elt

	XML element

	the root element

	param

	instance of pyqtgraph parameter

	Parameter object to be converted

	Returns

	XML element – XML element with subelements from Parameter object

	Return type

	parent_elt

See also

add_text_to_elt, walk_parameters_to_xml, dict_from_param

	
pymodaq.utils.parameter.ioxml.walk_xml_to_parameter(params=[], XML_elt=None)

	To convert an XML element (and children) to list of dict enabling creation of parameter object.

	Parameters

	Type

	Description

	params

	dictionnary list

	the list to create parameter object

	XML_elt

	XML object

	the XML object to be converted

	Returns

	params – list of dict to create parameter object

	Return type

	dictionnary list

Examples

>>> from pyqtgraph.parametertree import Parameter, ParameterItem
>>> import xml.etree.ElementTree as ET
>>> tree = ET.parse('text_bis.xml')
>>> root = tree.getroot()
>>> params=walk_xml_to_parameter(XML_elt=root)
>>> settings_xml=Parameter.create(name='Settings XML', type='group', children=params)
>>> settings=Parameter.create(name='Settings', type='group', children=params)

See also

walk_parameters_to_xml

 8.4.8.3. Parameter management

8.4.8.3. Parameter management

Utility functions to work with Parameter object

	
pymodaq.utils.parameter.utils.get_param_from_name(parent, name) → Parameter

	Get Parameter under parent whose name is name

	Parameters

	
	parent (Parameter) –

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	Return type

	Parameter

	
pymodaq.utils.parameter.utils.get_param_path(param)

	
	Parameters

	param –

	
pymodaq.utils.parameter.utils.iter_children(param, childlist=[])

	Get a list of parameters name under a given Parameter
| Returns all childrens names.

	Parameters

	Type

	Description

	param

	instance of pyqtgraph parameter

	the root node to be coursed

	childlist

	list

	the child list recetion structure

	Returns

	childlist – The list of the children from the given node.

	Return type

	parameter list

	
pymodaq.utils.parameter.utils.iter_children_params(param, childlist=[])

	Get a list of parameters under a given Parameter

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pymodaq	

 	
 	
 pymodaq.utils.daq_utils	

 	
 	
 pymodaq.utils.data	

 	
 	
 pymodaq.utils.gui_utils	

 	
 	
 pymodaq.utils.h5modules.browsing	

 	
 	
 pymodaq.utils.h5modules.data_saving	

 	
 	
 pymodaq.utils.h5modules.module_saving	

 	
 	
 pymodaq.utils.h5modules.saving	

 	
 	
 pymodaq.utils.math_utils	

 	
 	
 pymodaq.utils.parameter.ioxml	

 	
 	
 pymodaq.utils.parameter.pymodaq_ptypes	

 	
 	
 pymodaq.utils.parameter.utils	

 	
 	
 pymodaq.utils.scanner	

 	
 	
 pymodaq.utils.tcp_ip.mysocket	

 	
 	
 pymodaq.utils.tcp_ip.serializer	

 	
 	
 pymodaq.utils.tcp_ip.tcp_server_client	

 	
 	
 pymodaq.utils.units	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

A

 	
 	abs() (pymodaq.utils.data.DataBase method)

 	ActionManager (class in pymodaq.utils.managers.action_manager)

 	activate_roi() (pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D method)

 	(pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D method)

 	Actuator

 	actuator (pymodaq.control_modules.daq_move.DAQ_Move property)

 	actuator_init (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI property)

 	actuators (pymodaq.utils.managers.modules_manager.ModulesManager property)

 	(pymodaq.utils.scanner.Scanner property)

 	actuators_all (pymodaq.utils.managers.modules_manager.ModulesManager property)

 	actuators_name (pymodaq.utils.managers.modules_manager.ModulesManager property)

 	ActuatorSaver (class in pymodaq.utils.h5modules.module_saving)

 	add_action() (pymodaq.utils.managers.action_manager.ActionManager method)

 	add_axis() (pymodaq.utils.h5modules.data_saving.AxisSaverLoader method)

 	add_bkg() (pymodaq.utils.h5modules.module_saving.DetectorSaver method)

 	add_comments() (pymodaq.utils.h5modules.browsing.H5Browser method)

 	add_data() (pymodaq.utils.h5modules.data_saving.DataEnlargeableSaver method)

 	(pymodaq.utils.h5modules.data_saving.DataExtendedSaver method)

 	(pymodaq.utils.h5modules.data_saving.DataSaverLoader method)

 	(pymodaq.utils.h5modules.data_saving.DataToExportEnlargeableSaver method)

 	(pymodaq.utils.h5modules.data_saving.DataToExportExtendedSaver method)

 	(pymodaq.utils.h5modules.data_saving.DataToExportSaver method)

 	(pymodaq.utils.h5modules.data_saving.DataToExportTimedSaver method)

 	(pymodaq.utils.h5modules.module_saving.LoggerSaver method)

 	
 	add_group() (pymodaq.utils.h5modules.backends.H5Backend method)

 	add_nav_axes() (pymodaq.utils.h5modules.data_saving.DataToExportExtendedSaver method)

 	add_text_to_elt() (in module pymodaq.utils.parameter.ioxml)

 	add_widget() (pymodaq.utils.managers.action_manager.ActionManager method)

 	addaction() (in module pymodaq.utils.managers.action_manager)

 	affect_name_to_origin_if_none() (pymodaq.utils.data.DataToExport method)

 	affect_to() (pymodaq.utils.managers.action_manager.ActionManager method)

 	append_data() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	as_dte() (pymodaq.utils.data.DataBase method)

 	attribute (pymodaq.utils.daq_utils.ThreadCommand attribute)

 	average() (pymodaq.utils.data.DataBase method)

 	(pymodaq.utils.data.DataToExport method)

 	Axis (class in pymodaq.utils.data)

 	axis_deserialization() (pymodaq.utils.tcp_ip.serializer.DeSerializer method)

 	axis_name (pymodaq.control_modules.move_utility_classes.DAQ_Move_base property)

 	axis_names (pymodaq.control_modules.move_utility_classes.DAQ_Move_base property)

 	axis_serialization() (pymodaq.utils.tcp_ip.serializer.Serializer method)

 	axis_value (pymodaq.control_modules.move_utility_classes.DAQ_Move_base property)

 	AxisSaverLoader (class in pymodaq.utils.h5modules.data_saving)

B

 	
 	BayesianModelDefault (class in pymodaq.extensions)

 	BayesianModelGeneric (class in pymodaq.extensions)

 	BayesianOptimisation (class in pymodaq.extensions)

 	bkg (pymodaq.control_modules.daq_viewer.DAQ_Viewer property)

 	BkgSaver (class in pymodaq.utils.h5modules.data_saving)

 	
 	boolean_deserialization() (pymodaq.utils.tcp_ip.serializer.DeSerializer method)

 	bounds_signal (pymodaq.control_modules.daq_move.DAQ_Move attribute)

 	bytes_to_int() (pymodaq.utils.tcp_ip.serializer.DeSerializer static method)

 	bytes_to_nd_array() (pymodaq.utils.tcp_ip.serializer.DeSerializer static method)

 	bytes_to_scalar() (pymodaq.utils.tcp_ip.serializer.DeSerializer static method)

C

 	
 	channel_formatter() (pymodaq.utils.h5modules.data_saving.DataToExportSaver static method)

 	check_bound() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	check_received_length() (pymodaq.utils.tcp_ip.mysocket.Socket method)

 	(pymodaq.utils.tcp_ip.serializer.SocketString method)

 	check_sended() (pymodaq.utils.tcp_ip.mysocket.Socket method)

 	check_sended_with_serializer() (pymodaq.utils.tcp_ip.mysocket.Socket method)

 	check_version() (pymodaq.utils.h5modules.browsing.H5Browser method)

 	child_added() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	(pymodaq.utils.managers.parameter_manager.ParameterManager method)

 	close() (pymodaq.control_modules.daq_viewer.DAQ_Detector method)

 	close_file() (pymodaq.utils.h5modules.backends.H5Backend method)

 	close_server() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer method)

 	cm2nm() (in module pymodaq.utils.units)

 	command (pymodaq.utils.daq_utils.ThreadCommand attribute)

 	command_hardware (pymodaq.control_modules.utils.ControlModule attribute)

 	command_sig (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI attribute)

 	(pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI attribute)

 	(pymodaq.control_modules.utils.ControlModuleUI attribute)

 	command_tcpip (pymodaq.control_modules.utils.ControlModule attribute)

 	commit_settings() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	connect_action() (pymodaq.utils.managers.action_manager.ActionManager method)

 	connect_actuators() (pymodaq.utils.managers.modules_manager.ModulesManager method)

 	connect_detectors() (pymodaq.utils.managers.modules_manager.ModulesManager method)

 	connect_tcp_ip() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	
 	connect_things() (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI method)

 	(pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI method)

 	(pymodaq.extensions.BayesianOptimisation method)

 	(pymodaq.utils.gui_utils.CustomApp method)

 	Control Modules

 	controller (pymodaq.control_modules.daq_viewer.DAQ_Detector attribute)

 	(pymodaq.control_modules.move_utility_classes.DAQ_Move_base attribute)

 	controller_adress (pymodaq.control_modules.daq_viewer.DAQ_Detector attribute)

 	controller_units (pymodaq.control_modules.move_utility_classes.DAQ_Move_base property)

 	ControlModule (class in pymodaq.control_modules.utils)

 	ControlModuleUI (class in pymodaq.control_modules.utils)

 	convert_input() (pymodaq.extensions.BayesianModelDefault method)

 	(pymodaq.extensions.BayesianModelGeneric method)

 	convert_output() (pymodaq.extensions.BayesianModelDefault method)

 	(pymodaq.extensions.BayesianModelGeneric method)

 	create_earray() (pymodaq.utils.h5modules.backends.H5Backend method)

 	create_linear_data() (pymodaq.utils.data.Axis method)

 	create_vlarray() (pymodaq.utils.h5modules.backends.H5Backend method)

 	crosshair (pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D property)

 	(pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D property)

 	current_data (pymodaq.control_modules.daq_viewer.DAQ_Viewer property)

 	current_value (pymodaq.control_modules.move_utility_classes.DAQ_Move_base attribute)

 	custom_sig (pymodaq.control_modules.daq_viewer.DAQ_Viewer attribute)

 	CustomApp (class in pymodaq.utils.gui_utils)

D

 	
 	DAQ_Detector (class in pymodaq.control_modules.daq_viewer)

 	DAQ_Move (class in pymodaq.control_modules.daq_move)

 	DAQ_Move_base (class in pymodaq.control_modules.move_utility_classes)

 	DAQ_Move_UI (class in pymodaq.control_modules.daq_move_ui)

 	daq_type (pymodaq.control_modules.daq_viewer.DAQ_Viewer property)

 	daq_type_changed_from_ui() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	daq_types (pymodaq.control_modules.daq_viewer.DAQ_Viewer property)

 	DAQ_Viewer (class in pymodaq.control_modules.daq_viewer)

 	DAQ_Viewer_UI (class in pymodaq.control_modules.daq_viewer_ui)

 	DashBoard

 	data (pymodaq.utils.data.Axis property)

 	(pymodaq.utils.data.DataBase attribute)

 	(pymodaq.utils.data.DataBase property)

 	(pymodaq.utils.data.DataToExport attribute)

 	(pymodaq.utils.data.DataToExport property)

 	data_ready() (pymodaq.control_modules.daq_viewer.DAQ_Detector method)

 	data_type (pymodaq.utils.h5modules.data_saving.AxisSaverLoader attribute)

 	(pymodaq.utils.h5modules.data_saving.BkgSaver attribute)

 	(pymodaq.utils.h5modules.data_saving.DataEnlargeableSaver attribute)

 	(pymodaq.utils.h5modules.data_saving.DataExtendedSaver attribute)

 	(pymodaq.utils.h5modules.data_saving.DataManagement attribute)

 	(pymodaq.utils.h5modules.data_saving.DataSaverLoader attribute)

 	DataBase (class in pymodaq.utils.data)

 	DataCalculated (class in pymodaq.utils.data)

 	DataDim

 	(class in pymodaq.utils.data)

 	DataDistribution

 	(class in pymodaq.utils.data)

 	DataEnlargeableSaver (class in pymodaq.utils.h5modules.data_saving)

 	DataExtendedSaver (class in pymodaq.utils.h5modules.data_saving)

 	DataFromPlugins (class in pymodaq.utils.data)

 	DataFromRoi (class in pymodaq.utils.data)

 	DataLoader (class in pymodaq.utils.h5modules.data_saving)

 	DataManagement (class in pymodaq.utils.h5modules.data_saving)

 	DataRaw (class in pymodaq.utils.data)

 	DataSaverLoader (class in pymodaq.utils.h5modules.data_saving)

 	DataSource

 	(class in pymodaq.utils.data)

 	DataToExport (class in pymodaq.utils.data)

 	
 	DataToExportEnlargeableSaver (class in pymodaq.utils.h5modules.data_saving)

 	DataToExportExtendedSaver (class in pymodaq.utils.h5modules.data_saving)

 	DataToExportSaver (class in pymodaq.utils.h5modules.data_saving)

 	DataToExportTimedSaver (class in pymodaq.utils.h5modules.data_saving)

 	define_compression() (pymodaq.utils.h5modules.backends.H5Backend method)

 	DeSerializer (class in pymodaq.utils.tcp_ip.serializer)

 	Detector

 	detector (pymodaq.control_modules.daq_viewer.DAQ_Detector attribute)

 	(pymodaq.control_modules.daq_viewer.DAQ_Viewer property)

 	detector_init (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI property)

 	DetectorEnlargeableSaver (class in pymodaq.utils.h5modules.module_saving)

 	DetectorExtendedSaver (class in pymodaq.utils.h5modules.module_saving)

 	detectors (pymodaq.control_modules.daq_viewer.DAQ_Viewer property)

 	(pymodaq.utils.managers.modules_manager.ModulesManager property)

 	detectors_all (pymodaq.utils.managers.modules_manager.ModulesManager property)

 	detectors_name (pymodaq.utils.managers.modules_manager.ModulesManager property)

 	DetectorSaver (class in pymodaq.utils.h5modules.module_saving)

 	dict_from_param() (in module pymodaq.utils.parameter.ioxml)

 	dim (pymodaq.utils.data.DataBase attribute)

 	(pymodaq.utils.data.DataBase property)

 	display_value() (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI method)

 	(pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI method)

 	distribution (pymodaq.utils.data.DataBase attribute)

 	(pymodaq.utils.data.DataBase property)

 	do_bkg (pymodaq.control_modules.daq_viewer.DAQ_Viewer property)

 	do_grab() (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI method)

 	do_init() (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI method), [1]

 	(pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI method), [1]

 	(pymodaq.control_modules.utils.ControlModuleUI method)

 	do_plot (pymodaq.utils.data.DataFromPlugins attribute)

 	do_save (pymodaq.utils.data.DataFromPlugins attribute)

 	do_snap() (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI method)

 	do_stop() (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI method)

 	dte

 	dte_deserialization() (pymodaq.utils.tcp_ip.serializer.DeSerializer method)

 	dte_serialization() (pymodaq.utils.tcp_ip.serializer.Serializer method)

 	dwa

 	dwa_deserialization() (pymodaq.utils.tcp_ip.serializer.DeSerializer method)

 	dwa_serialization() (pymodaq.utils.tcp_ip.serializer.Serializer method)

E

 	
 	Ecmrel2Enm() (in module pymodaq.utils.units)

 	elt_to_dict() (in module pymodaq.utils.parameter.ioxml)

 	emit_new_file() (pymodaq.utils.h5modules.saving.H5Saver method)

 	emit_status() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	emit_temp_data() (pymodaq.control_modules.daq_viewer.DAQ_Detector method)

 	emit_value() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	
 	Enm2cmrel() (in module pymodaq.utils.units)

 	eV2cm() (in module pymodaq.utils.units)

 	eV2nm() (in module pymodaq.utils.units)

 	export_data() (pymodaq.utils.h5modules.browsing.H5Browser method)

 	(pymodaq.utils.h5modules.browsing.H5BrowserUtil method)

 	extra_attributes (pymodaq.utils.data.DataBase attribute)

F

 	
 	find_index() (in module pymodaq.utils.math_utils)

 	(pymodaq.utils.data.Axis method)

 	find_part_in_path_and_subpath() (pymodaq.utils.h5modules.saving.H5SaverBase class method)

 	find_socket_type_within_connected_clients() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer method)

 	find_socket_within_connected_clients() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer method)

 	fliplr() (pymodaq.utils.data.DataBase method)

 	
 	flipud() (pymodaq.utils.data.DataBase method)

 	flush() (pymodaq.utils.h5modules.module_saving.ModuleSaver method)

 	ft() (in module pymodaq.utils.math_utils)

 	ft2() (in module pymodaq.utils.math_utils)

 	ftAxis() (in module pymodaq.utils.math_utils)

 	ftAxis_time() (in module pymodaq.utils.math_utils)

G

 	
 	gauss1D() (in module pymodaq.utils.math_utils)

 	gauss2D() (in module pymodaq.utils.math_utils)

 	get_action() (pymodaq.utils.managers.action_manager.ActionManager method)

 	get_actuator_value() (pymodaq.control_modules.daq_move.DAQ_Move method)

 	get_axes() (pymodaq.utils.h5modules.data_saving.AxisSaverLoader method)

 	(pymodaq.utils.h5modules.data_saving.DataSaverLoader method)

 	get_axes_from_view() (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D method)

 	get_children() (pymodaq.utils.h5modules.backends.H5Backend method)

 	get_continuous_actuator_value() (pymodaq.control_modules.daq_move.DAQ_Move method)

 	get_data() (pymodaq.utils.data.Axis method)

 	(pymodaq.utils.tcp_ip.tcp_server_client.TCPClient method)

 	get_data_arrays() (pymodaq.utils.h5modules.data_saving.DataSaverLoader method)

 	get_data_at() (pymodaq.utils.data.Axis method)

 	(pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D method)

 	get_data_from_attribute() (pymodaq.utils.data.DataToExport method)

 	get_data_from_dim() (pymodaq.utils.data.DataToExport method)

 	get_data_from_dims() (pymodaq.utils.data.DataToExport method)

 	get_data_from_full_name() (pymodaq.utils.data.DataToExport method)

 	get_data_from_missing_attribute() (pymodaq.utils.data.DataToExport method)

 	get_data_from_name() (pymodaq.utils.data.DataToExport method)

 	get_data_from_name_origin() (pymodaq.utils.data.DataToExport method)

 	get_data_from_Naxes() (pymodaq.utils.data.DataToExport method)

 	get_data_from_sig_axes() (pymodaq.utils.data.DataToExport method)

 	get_data_from_source() (pymodaq.utils.data.DataToExport method)

 	get_data_index() (pymodaq.utils.data.DataBase method)

 	get_data_with_naxes_lower_than() (pymodaq.utils.data.DataToExport method)

 	get_det_data_list() (pymodaq.utils.managers.modules_manager.ModulesManager method)

 	get_dim_from_data() (pymodaq.utils.data.DataBase method)

 	get_first_nbytes() (pymodaq.utils.tcp_ip.mysocket.Socket method)

 	(pymodaq.utils.tcp_ip.serializer.SocketString method)

 	get_full_name() (pymodaq.utils.data.DataBase method)

 	get_full_names() (pymodaq.utils.data.DataToExport method)

 	get_h5_attributes() (pymodaq.utils.h5modules.browsing.H5BrowserUtil method)

 	get_h5file_scans() (pymodaq.utils.h5modules.browsing.H5BrowserUtil method)

 	get_indexes_from_scan_index() (pymodaq.utils.scanner.Scanner method)

 	
 	get_last_node() (pymodaq.utils.h5modules.module_saving.ModuleSaver method)

 	get_last_node_name() (pymodaq.utils.h5modules.data_saving.DataManagement method)

 	get_last_scan() (pymodaq.utils.h5modules.saving.H5SaverBase method)

 	get_mod_from_name() (pymodaq.utils.managers.modules_manager.ModulesManager method)

 	get_mods_from_names() (pymodaq.utils.managers.modules_manager.ModulesManager method)

 	get_names() (pymodaq.utils.data.DataToExport method)

 	(pymodaq.utils.managers.modules_manager.ModulesManager class method)

 	get_nav_group() (pymodaq.utils.h5modules.data_saving.DataLoader method)

 	get_node() (pymodaq.utils.h5modules.data_saving.DataLoader method)

 	get_node_name() (pymodaq.utils.h5modules.backends.H5Backend method)

 	get_node_path() (pymodaq.utils.h5modules.backends.H5Backend method)

 	get_origins() (pymodaq.utils.data.DataToExport method)

 	get_param_from_name() (in module pymodaq.utils.parameter.utils)

 	get_param_path() (in module pymodaq.utils.parameter.utils)

 	get_position_with_scaling() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	get_scale_offset_from_data() (pymodaq.utils.data.Axis method)

 	get_scaling_options() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	get_scan_index() (pymodaq.utils.h5modules.saving.H5SaverBase method)

 	get_scan_info() (pymodaq.utils.scanner.Scanner method)

 	get_scanner_sub_settings() (pymodaq.utils.scanner.Scanner method)

 	get_selected_probed_data() (pymodaq.utils.managers.modules_manager.ModulesManager method)

 	get_set_group() (pymodaq.utils.h5modules.backends.H5Backend method)

 	get_set_node() (pymodaq.utils.h5modules.module_saving.ModuleSaver method)

 	(pymodaq.utils.h5modules.module_saving.ScanSaver method)

 	get_tree_node_path() (pymodaq.utils.h5modules.browsing.H5Browser method)

 	grab() (pymodaq.control_modules.daq_move.DAQ_Move method)

 	(pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	(pymodaq.control_modules.utils.ControlModule method)

 	grab_data() (pymodaq.control_modules.daq_viewer.DAQ_Detector method)

 	(pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	(pymodaq.utils.tcp_ip.tcp_server_client.Grabber method)

 	grab_datas() (pymodaq.utils.managers.modules_manager.ModulesManager method)

 	grab_done_signal (pymodaq.control_modules.daq_viewer.DAQ_Viewer attribute)

 	grab_state (pymodaq.control_modules.daq_viewer.DAQ_Viewer property)

 	Grabber (class in pymodaq.utils.tcp_ip.tcp_server_client)

H

 	
 	H5Backend (class in pymodaq.utils.h5modules.backends)

 	H5Browser (class in pymodaq.utils.h5modules.browsing)

 	H5BrowserUtil (class in pymodaq.utils.h5modules.browsing)

 	
 	H5Saver (class in pymodaq.utils.h5modules.saving)

 	H5SaverBase (class in pymodaq.utils.h5modules.saving)

 	has_action() (pymodaq.utils.managers.action_manager.ActionManager method)

I

 	
 	ift() (in module pymodaq.utils.math_utils)

 	ift2() (in module pymodaq.utils.math_utils)

 	imag() (pymodaq.utils.data.DataBase method)

 	image_widget (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D property)

 	index (pymodaq.utils.data.Axis property)

 	index_from_name_origin() (pymodaq.utils.data.DataToExport method)

 	ini_attributes() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	ini_detector() (pymodaq.control_modules.daq_viewer.DAQ_Detector method)

 	ini_model() (pymodaq.extensions.BayesianModelDefault method)

 	(pymodaq.extensions.BayesianModelGeneric method)

 	ini_stage_init() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	init_file() (pymodaq.utils.h5modules.saving.H5SaverBase method)

 	init_hardware() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	(pymodaq.control_modules.utils.ControlModule method)

 	
 	init_hardware_ui() (pymodaq.control_modules.daq_move.DAQ_Move method)

 	(pymodaq.control_modules.utils.ControlModule method)

 	init_signal (pymodaq.control_modules.daq_move.DAQ_Move attribute)

 	(pymodaq.control_modules.utils.ControlModule attribute)

 	initialized_state (pymodaq.control_modules.daq_move.DAQ_Move property)

 	(pymodaq.control_modules.utils.ControlModule property)

 	insert_data() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	int_to_bytes() (pymodaq.utils.tcp_ip.serializer.Serializer static method)

 	is_multiaxes (pymodaq.control_modules.move_utility_classes.DAQ_Move_base attribute)

 	is_node_in_group() (pymodaq.utils.h5modules.backends.H5Backend method)

 	isopen() (pymodaq.utils.h5modules.data_saving.DataSaverLoader method)

 	(pymodaq.utils.h5modules.data_saving.DataToExportSaver method)

 	ispolling (pymodaq.control_modules.move_utility_classes.DAQ_Move_base property)

 	iter_children() (in module pymodaq.utils.parameter.utils)

 	iter_children_params() (in module pymodaq.utils.parameter.utils)

L

 	
 	l2w() (in module pymodaq.utils.units)

 	label (pymodaq.utils.data.Axis property)

 	labels (pymodaq.utils.data.DataBase attribute)

 	LCD (class in pymodaq.utils.gui_utils.widgets.lcd)

 	length (pymodaq.utils.data.DataBase attribute)

 	(pymodaq.utils.data.DataBase property)

 	linspace_step() (in module pymodaq.utils.math_utils)

 	list_deserialization() (pymodaq.utils.tcp_ip.serializer.DeSerializer method)

 	
 	list_serialization() (pymodaq.utils.tcp_ip.serializer.Serializer method)

 	listen_client() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer method)

 	load_axis() (pymodaq.utils.h5modules.data_saving.AxisSaverLoader method)

 	load_data() (pymodaq.control_modules.daq_viewer.DAQ_Viewer static method)

 	(pymodaq.utils.h5modules.data_saving.DataLoader method)

 	(pymodaq.utils.h5modules.data_saving.DataSaverLoader method)

 	load_file() (pymodaq.utils.h5modules.saving.H5SaverBase method)

 	load_settings_slot() (pymodaq.utils.managers.parameter_manager.ParameterManager method)

 	LoggerSaver (class in pymodaq.utils.h5modules.module_saving)

M

 	
 	manage_ui_actions() (pymodaq.control_modules.utils.ControlModule method)

 	menu (pymodaq.utils.managers.action_manager.ActionManager property)

 	merge_as_dwa() (pymodaq.utils.data.DataToExport method)

 	MockServer (class in pymodaq.utils.tcp_ip.tcp_server_client)

 	Module

 	
 module

 	pymodaq.utils.daq_utils

 	pymodaq.utils.data, [1], [2], [3]

 	pymodaq.utils.gui_utils

 	pymodaq.utils.h5modules.browsing

 	pymodaq.utils.h5modules.data_saving, [1]

 	pymodaq.utils.h5modules.module_saving

 	pymodaq.utils.h5modules.saving

 	pymodaq.utils.math_utils

 	pymodaq.utils.parameter.ioxml

 	pymodaq.utils.parameter.pymodaq_ptypes

 	pymodaq.utils.parameter.utils

 	pymodaq.utils.scanner

 	pymodaq.utils.tcp_ip.mysocket

 	pymodaq.utils.tcp_ip.serializer

 	pymodaq.utils.tcp_ip.tcp_server_client

 	pymodaq.utils.units

 	
 	module_type (pymodaq.control_modules.utils.ControlModule property)

 	modules (pymodaq.utils.managers.modules_manager.ModulesManager property)

 	modules_all (pymodaq.utils.managers.modules_manager.ModulesManager property)

 	modules_manager (pymodaq.extensions.BayesianOptimisation property)

 	(pymodaq.utils.gui_utils.CustomApp property)

 	ModuleSaver (class in pymodaq.utils.h5modules.module_saving)

 	ModulesManager (class in pymodaq.utils.managers.modules_manager)

 	move() (pymodaq.control_modules.daq_move.DAQ_Move method)

 	move_abs() (pymodaq.control_modules.daq_move.DAQ_Move method)

 	move_actuators() (pymodaq.utils.managers.modules_manager.ModulesManager method)

 	move_done (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI property)

 	move_done() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	move_done_bool (pymodaq.control_modules.daq_move.DAQ_Move property)

 	move_done_signal (pymodaq.control_modules.daq_move.DAQ_Move attribute)

 	(pymodaq.control_modules.move_utility_classes.DAQ_Move_base attribute)

 	move_home() (pymodaq.control_modules.daq_move.DAQ_Move method)

 	move_rel() (pymodaq.control_modules.daq_move.DAQ_Move method)

 	move_roi_target() (pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D method)

 	(pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D method)

 	my_moment() (in module pymodaq.utils.math_utils)

N

 	
 	Nactuators (pymodaq.utils.managers.modules_manager.ModulesManager property)

 	name (pymodaq.utils.data.DataBase attribute)

 	(pymodaq.utils.data.DataToExport attribute)

 	Navigation

 	
 	ndarray_deserialization() (pymodaq.utils.tcp_ip.serializer.DeSerializer method)

 	ndarray_serialization() (pymodaq.utils.tcp_ip.serializer.Serializer method)

 	Ndetectors (pymodaq.utils.managers.modules_manager.ModulesManager property)

 	nm2cm() (in module pymodaq.utils.units)

 	nm2eV() (in module pymodaq.utils.units)

O

 	
 	object_type_serialization() (pymodaq.utils.tcp_ip.serializer.Serializer method)

 	odd_even() (in module pymodaq.utils.math_utils)

 	
 	order_positions() (pymodaq.utils.managers.modules_manager.ModulesManager method)

 	origin (pymodaq.utils.data.DataBase attribute)

 	overshoot_signal (pymodaq.control_modules.daq_viewer.DAQ_Viewer attribute)

P

 	
 	param_deleted() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	(pymodaq.utils.managers.parameter_manager.ParameterManager method)

 	parameter_to_xml_file() (in module pymodaq.utils.parameter.ioxml)

 	parameter_to_xml_string() (in module pymodaq.utils.parameter.ioxml)

 	ParameterManager (class in pymodaq.utils.managers.parameter_manager)

 	params (pymodaq.control_modules.move_utility_classes.DAQ_Move_base attribute)

 	(pymodaq.utils.managers.parameter_manager.ParameterManager attribute)

 	plot() (pymodaq.utils.data.DataToExport method)

 	Plugin

 	poll_moving() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	pop() (pymodaq.utils.data.DataBase method)

 	(pymodaq.utils.data.DataToExport method)

 	populate_tree() (pymodaq.utils.h5modules.browsing.H5Browser method)

 	positions_at() (pymodaq.utils.scanner.Scanner method)

 	post_init() (pymodaq.utils.tcp_ip.tcp_server_client.TCPClient method)

 	Preset

 	print_status() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer method)

 	process_cmds() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer method)

 	process_tcpip_cmds() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	process_ui_cmds() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	
 pymodaq.utils.daq_utils

 	module

 	
 pymodaq.utils.data

 	module, [1], [2], [3]

 	
 pymodaq.utils.gui_utils

 	module

 	
 	
 pymodaq.utils.h5modules.browsing

 	module

 	
 pymodaq.utils.h5modules.data_saving

 	module, [1]

 	
 pymodaq.utils.h5modules.module_saving

 	module

 	
 pymodaq.utils.h5modules.saving

 	module

 	
 pymodaq.utils.math_utils

 	module

 	
 pymodaq.utils.parameter.ioxml

 	module

 	
 pymodaq.utils.parameter.pymodaq_ptypes

 	module

 	
 pymodaq.utils.parameter.utils

 	module

 	
 pymodaq.utils.scanner

 	module

 	
 pymodaq.utils.tcp_ip.mysocket

 	module

 	
 pymodaq.utils.tcp_ip.serializer

 	module

 	
 pymodaq.utils.tcp_ip.tcp_server_client

 	module

 	
 pymodaq.utils.units

 	module

Q

 	
 	QAction (class in pymodaq.utils.managers.action_manager)

 	queue_command() (pymodaq.control_modules.daq_viewer.DAQ_Detector method)

 	(pymodaq.utils.tcp_ip.tcp_server_client.TCPClient method)

 	quit_fun() (pymodaq.control_modules.daq_move.DAQ_Move method)

 	(pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	(pymodaq.control_modules.utils.ControlModule method)

 	(pymodaq.utils.h5modules.browsing.H5Browser method)

 	
 	quit_signal (pymodaq.control_modules.utils.ControlModule attribute)

R

 	
 	read_info() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer method)

 	ready_to_read() (pymodaq.utils.tcp_ip.tcp_server_client.TCPClient method)

 	ready_to_write() (pymodaq.utils.tcp_ip.tcp_server_client.TCPClient method)

 	ready_with_error() (pymodaq.utils.tcp_ip.tcp_server_client.TCPClient method)

 	real() (pymodaq.utils.data.DataBase method)

 	
 	roi_manager (pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D property)

 	(pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D property)

 	roi_target (pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D property)

 	(pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D property)

 	runner_initialized() (pymodaq.extensions.BayesianModelGeneric method)

S

 	
 	save_current() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	save_new() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	save_settings_slot() (pymodaq.utils.managers.parameter_manager.ParameterManager method)

 	scalar_deserialization() (pymodaq.utils.tcp_ip.serializer.DeSerializer method)

 	scalar_serialization() (pymodaq.utils.tcp_ip.serializer.Serializer method)

 	Scanner (class in pymodaq.utils.scanner)

 	ScanSaver (class in pymodaq.utils.h5modules.module_saving)

 	ScanSelector (class in pymodaq.utils.plotting.scan_selector)

 	select() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer method)

 	select_file() (in module pymodaq.utils.gui_utils)

 	selected_actuators_name (pymodaq.utils.managers.modules_manager.ModulesManager property)

 	selected_detectors_name (pymodaq.utils.managers.modules_manager.ModulesManager property)

 	send_command() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer method)

 	send_init() (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI method)

 	(pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI method)

 	(pymodaq.control_modules.utils.ControlModuleUI method)

 	send_param_status() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	Serializer (class in pymodaq.utils.tcp_ip.serializer)

 	set_abs_spinbox_properties() (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI method)

 	set_action_text() (pymodaq.utils.managers.action_manager.ActionManager method)

 	set_actuators() (pymodaq.utils.managers.modules_manager.ModulesManager method)

 	set_connected_clients_table() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer method)

 	set_crosshair_position() (pymodaq.utils.plotting.data_viewers.viewer1D.Viewer1D method)

 	(pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D method)

 	set_current_scan_path() (pymodaq.utils.h5modules.saving.H5SaverBase class method)

 	set_data_to_viewers() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	set_detectors() (pymodaq.utils.managers.modules_manager.ModulesManager method)

 	set_dim() (pymodaq.utils.data.DataBase method)

 	set_gradient() (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D method)

 	set_image_transform() (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D method)

 	set_menu() (pymodaq.utils.managers.action_manager.ActionManager method)

 	set_position_relative_with_scaling() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	set_position_with_scaling() (pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	set_scan() (pymodaq.utils.scanner.Scanner method)

 	set_scan_type_and_subtypes() (pymodaq.utils.scanner.Scanner method)

 	set_toolbar() (pymodaq.utils.managers.action_manager.ActionManager method)

 	set_txt_from_elt() (in module pymodaq.utils.parameter.ioxml)

 	settings (pymodaq.control_modules.move_utility_classes.DAQ_Move_base attribute)

 	(pymodaq.utils.h5modules.saving.H5SaverBase attribute)

 	(pymodaq.utils.managers.parameter_manager.ParameterManager attribute)

 	settings_name (pymodaq.utils.managers.parameter_manager.ParameterManager attribute)

 	settings_tree (pymodaq.utils.h5modules.saving.H5SaverBase attribute)

 	(pymodaq.utils.managers.parameter_manager.ParameterManager attribute)

 	
 	setup_actions() (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI method)

 	(pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI method)

 	(pymodaq.extensions.BayesianOptimisation method)

 	(pymodaq.utils.h5modules.browsing.H5Browser method)

 	(pymodaq.utils.managers.action_manager.ActionManager method)

 	(pymodaq.utils.plotting.data_viewers.viewerND.ViewerND method)

 	setup_continuous_saving() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	setup_docks() (pymodaq.control_modules.daq_move_ui.DAQ_Move_UI method)

 	(pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI method)

 	(pymodaq.extensions.BayesianOptimisation method)

 	(pymodaq.utils.gui_utils.CustomApp method)

 	setup_menu() (pymodaq.extensions.BayesianOptimisation method)

 	(pymodaq.utils.gui_utils.CustomApp method)

 	setvalues() (pymodaq.utils.gui_utils.widgets.lcd.LCD method)

 	shape (pymodaq.utils.data.DataBase attribute)

 	(pymodaq.utils.data.DataBase property)

 	show_config() (pymodaq.control_modules.utils.ControlModule method)

 	show_data() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	show_h5_data() (pymodaq.utils.h5modules.browsing.H5Browser method)

 	show_log() (pymodaq.control_modules.utils.ControlModule method)

 	show_roi() (pymodaq.utils.plotting.data_viewers.viewer2D.Viewer2D method)

 	show_temp_data() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	Signal

 	single() (pymodaq.control_modules.daq_viewer.DAQ_Detector method)

 	size (pymodaq.utils.data.Axis property)

 	(pymodaq.utils.data.DataBase attribute)

 	(pymodaq.utils.data.DataBase property)

 	snap() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	snapshot() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	Socket (class in pymodaq.utils.tcp_ip.mysocket)

 	SocketString (class in pymodaq.utils.tcp_ip.serializer)

 	source (pymodaq.utils.data.DataBase attribute)

 	(pymodaq.utils.data.DataBase property)

 	stack_as_array() (pymodaq.utils.data.DataBase method)

 	stop() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	stop_grab() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	(pymodaq.control_modules.utils.ControlModule method)

 	stop_motion() (pymodaq.control_modules.daq_move.DAQ_Move method)

 	str_len_to_bytes() (pymodaq.utils.tcp_ip.serializer.Serializer class method)

 	string_deserialization() (pymodaq.utils.tcp_ip.serializer.DeSerializer method)

 	string_serialization() (pymodaq.utils.tcp_ip.serializer.Serializer method)

T

 	
 	take_bkg() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	target_value (pymodaq.control_modules.move_utility_classes.DAQ_Move_base attribute)

 	TCPClient (class in pymodaq.utils.tcp_ip.tcp_server_client)

 	TCPServer (class in pymodaq.utils.tcp_ip.tcp_server_client)

 	test_move_actuators() (pymodaq.utils.managers.modules_manager.ModulesManager method)

 	thread_status() (pymodaq.control_modules.daq_move.DAQ_Move method)

 	(pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	(pymodaq.control_modules.utils.ControlModule method)

 	
 	ThreadCommand (class in pymodaq.utils.daq_utils)

 	timerEvent() (pymodaq.utils.tcp_ip.tcp_server_client.TCPServer method)

 	timestamp (pymodaq.utils.data.DataToExport attribute)

 	title (pymodaq.control_modules.utils.ControlModule property)

 	to_bytes() (pymodaq.utils.tcp_ip.serializer.Serializer method)

 	toolbar (pymodaq.utils.managers.action_manager.ActionManager property)

 	tree (pymodaq.utils.managers.parameter_manager.ParameterManager attribute)

U

 	
 	units (pymodaq.utils.data.Axis property)

 	update_file_paths() (pymodaq.utils.h5modules.saving.H5SaverBase method)

 	update_plots() (pymodaq.extensions.BayesianModelGeneric method)

 	update_settings() (pymodaq.control_modules.daq_viewer.DAQ_Detector method)

 	(pymodaq.control_modules.move_utility_classes.DAQ_Move_base method)

 	(pymodaq.extensions.BayesianModelDefault method)

 	(pymodaq.extensions.BayesianModelGeneric method)

 	
 	update_settings_slot() (pymodaq.utils.managers.parameter_manager.ParameterManager method)

 	update_status() (pymodaq.control_modules.utils.ControlModule method)

 	update_viewers() (pymodaq.control_modules.daq_viewer_ui.DAQ_Viewer_UI method)

V

 	
 	value_changed() (pymodaq.control_modules.daq_viewer.DAQ_Viewer method)

 	(pymodaq.extensions.BayesianOptimisation method)

 	(pymodaq.utils.h5modules.saving.H5SaverBase method)

 	(pymodaq.utils.managers.modules_manager.ModulesManager method)

 	(pymodaq.utils.managers.parameter_manager.ParameterManager method)

 	(pymodaq.utils.plotting.scan_selector.ScanSelector method)

 	(pymodaq.utils.scanner.Scanner method)

 	
 	Viewer0D (class in pymodaq.utils.plotting.data_viewers.viewer0D)

 	Viewer1D (class in pymodaq.utils.plotting.data_viewers.viewer1D)

 	Viewer2D (class in pymodaq.utils.plotting.data_viewers.viewer2D)

 	viewer_docks (pymodaq.control_modules.daq_viewer.DAQ_Viewer property)

 	ViewerND (class in pymodaq.utils.plotting.data_viewers.viewerND)

 	viewers (pymodaq.control_modules.daq_viewer.DAQ_Viewer property)

 	viewers_docks (pymodaq.control_modules.daq_viewer.DAQ_Viewer property)

W

 	
 	walk_nodes() (pymodaq.utils.h5modules.data_saving.DataLoader method)

 	
 	walk_parameters_to_xml() (in module pymodaq.utils.parameter.ioxml)

 	walk_xml_to_parameter() (in module pymodaq.utils.parameter.ioxml)

X

 	
 	XML_file_to_parameter() (in module pymodaq.utils.parameter.ioxml)

 	
 	XML_string_to_parameter() (in module pymodaq.utils.parameter.ioxml)

 Changelog

Changelog

Next 3.x feature release

	[Support]: Implemented the src package layout to separate source code from packaging

	[Support]: Added continuous integration using Travis CI for automatic source code builds, linting and pytest
(coverage still very low…)

	[Support]: Moved continuous integration from Travis to Github actions

	[Support]: Fixed broken documentation build since new src layout

Next 2.x feature release

	[Feature]: The configuration file can be edited from a GUI (opened from the Dashboard menu)

	[Feature]: Multiple plugins repository was making installation of plugins tiresome. Introduction of the Plugin
Manager that contains/fetch information on available plugins for installation, update or removal.

Next 1.x feature release

	[Feature]: Added sending detector axis from tcp/ip back to tcp server for correct plotting

	[Feature] #13 [https://github.com/CEMES-CNRS/PyMoDAQ/issues/13]: Added axes labels and units within h5 browser when looking at live scan registered data

	[Support] #7 [https://github.com/CEMES-CNRS/PyMoDAQ/issues/7]: Changed Licence specification to CECILL-B

	[Support] #12 [https://github.com/CEMES-CNRS/PyMoDAQ/issues/12]: Changed the case to lower in the github repo (was done in windows who doesn’t care between lower or
upper so was not applying changes on github…

	[Support]: Changed the getLineInfo output for the logging to obtain exact location of the exception

Next 1.x bugfix release

	[Bug]: viewer1D displayed incorrectly the legend, now fixed

	[Bug]: Error in a tcp/ip communication (wrong signature of send_string method)

	[Bug]: pep8 related modification of variable names not taken into account in version 1.6.1 and producing errors in daq_scan module

	[Bug]: Small bugs cleaning for more stability of the code

	[Bug]: patch to allow the ‘values’ key in the def of a group Parameter so that scalable groups can have programmatic
entries, see DAQ_0DViewer_NIDAQmx params for instance

	[Bug]: NDViewers (within DAQ_Viewer) display correctly the axes as exported from the plugins

	[Bug]: ROIs saving as xml file and reloading patched

3.0.4 2021-01-12

	[Bug]: Wrong call to version in the dashboard

3.0.3 2021-01-08

	[Bug]: LCD widget displaying correct label

	[Bug]: python 3.8 included metadata module in standard library (importlib.metadata)

3.0.0 2020-11-25

	[Support]: Developer mistake in the versioning leading to version 2.2.6 to 3.0.2 without any real justification…
Mistake related to the new way of giving the version number to the source code, there’s been a copy paste with the
version file of the pymodaq_plugins repository… Anyhow this new main version reflects new compatibility with last
developments of the pyqtgraph package and compatibility with python >= 3.8

	[Support]: compatibility with python < 3.9 (was <3.8 before)

	[Support]: compatibility with pyqtgraph >= 0.11. This package development restarted

	[Support]: flake8 syntax checking and cleaning

2.2.0 2020-10-19

	[Feature]: A local configuration file is now available and editable as a toml file to pre-fill information on
default settings such as Author name, preset_file if DAQ_Scan started directly, log level, network IP/port …

	[Feature]: Plugins are now discoverable using entry points. Separated repository for the base plugins to ease
development of each and let other developers publish their own plugins

2.1.0 2020-10-10

	[Feature]: Introduction of the remote manager. Than let the user controls DAQ_Moves and DAQ_Viewers in the Dashboard
using keyboard shortcuts or gamepad joysticks and buttons

	[Support]: Added documentation and code example to write custom applications using PyMoDAQ modules

2.0.0 2020-06-21

	[Feature]: DAQ_Scan: possibility to load a dataset h5file in order to pursue scans within a given dataset (mostly in
case of program crashing, so preventing the automated new dataset file creation at program load)

	[Feature]: DAQ_Scan: Sequential Scan (no actuator limit) is introduced

	[Feature]: Plugins can emit a specific signal to modify UI general settings (of Daq_Move or DAQ_Viewer)

	[Feature]: Rotating logging file enabled with subnames from the script where the log entry comes from

	[Feature]: Plugins can save temporary data into h5files (if high throughput needed)

	[Feature]: ROI manager added to dashboard to configure ROIs for all detectors within the dashboard

	[Feature]: A Chrono/Timer UI is available in src/pymodaq/daq_utils/chrono_timer.py

	[Feature]: hdf5 saving and browsing is now a module wrapping various backends: pytable, h5py or h5pyd. This module
includes the H5Saver, H5Backends, H5Browser objects

	[Feature]: Separated DAQ_Scan and Dashboard as two objects and two graphical interfaces. Dashboard is now the main
start point for pymodaq enabling extensions to be written (such as the DAQ_Scan)

	[Feature]: New extension: DAQ_Logger to easily log data from multiple DAQ_Viewers towards SQL databases or h5 files

	[Feature]: Viewer2D can now plot a series of points not on grid using Triangulation

	[Feature]: Tabular Scans now available: List of discrete points for selected actuators

	[Feature]: Adaptive Scans now available. Needed the development of a module manager to select active actuators and
detectors.

	[Feature]: Specific plotting for tabular/adaptive scans included in DAQ_Scan live and H5Browser

	[Support]: Cleaned and documented the TCP/IP communication for DAQ_Move and Daq_Viewers

	[Support]: rewritten scan features inside a dedicated module to ease subsequent scan type development

1.6.4 2019-11-12

	[Bug]: Small bugs cleaning for more stability of the code

1.6.3 2019-10-14

	[Bug] #6 [https://github.com/CEMES-CNRS/PyMoDAQ/issues/6]: Removed dependance of unnecessary Dask package

	[Bug] #12 [https://github.com/CEMES-CNRS/PyMoDAQ/issues/12]: Removed too specific package requirements for plugins (win32com for instance)

	[Bug] #14 [https://github.com/CEMES-CNRS/PyMoDAQ/issues/14]: Logger node was not saved properly from daq_scan

1.6.2 2019-09-16

	[Bug]: pep8 related modification of variable names not taken into account in version 1.6.1 and producing errors in daq_scan module

1.6.1 2019-09-10

	[Bug]: Error in a tcp/ip communication (wrong signature of send_string method)

1.6.0 2019-09-04

	[Feature]: General use of PyMoDAQ Viewer and Move modules can now be done using TCP/IP. A TCP Server plugin is
available for each, to be loaded on the main computer. Then Any Module on distant computer can be linked to this server

1.5.1 2019-07-22

	[Bug] #3 [https://github.com/CEMES-CNRS/PyMoDAQ/issues/3]: PID models package installation added to pymodaq setup

1.5.0 2019-07-22

	[Feature]: added a field ‘acq_time_s’ in the exported data from each viewer. To be used to track at what time a
given dataset has been recorded

	[Feature]: creation of the H5Saver object: simplifies the data saving from pymodaq modules and adds all mandatory metadata

	[Feature]: Uniformity of the saved h5 files. Axes labels and units are added as metadata and displayed in H5Browser

	[Feature]: Viewers: exported data now contains axis information as a dict containing data (values of the axis),
label and units and type of data (raw or generated from a ROI)

	[Feature]: pid_controller module added in daq_utils module: enable a PID loop using pymodaq modules and custom
written PID models (see documentation)

	[Feature]: pid_controller module modified to work in a parallel thread

	[Feature]: DAQ_Scan module has now its acquisition loop within a parallel thread

	[Feature]: The pid_module can be used as an actuator within DAQ_Scan (using the preset_manager configuration)

	[Feature]: Viewer 1D and 2D share now the same object ROIManager to deal with their regions of interest

	[Feature]: DAQ_Scan module’s H5Saver object has now by default the option to not save the ROI generated data.
Only the live plots datas are still saved by default.

1.4.2 2019-04-22

	[Bug]: issue with ctypes imports in daq_utils on macos Now ok

1.4.1 2019-02-16

	[Bug]: cleaning up of a few bugs

1.4.0 2019-02-15

	[Feature]: module scanner (daq_utils.scanner) has been created. Deals with lines or area selections within any viewer2D modules. Used for DAQ_Scan
and some others plugins (for area selection if needed). Most of the scan type settings (of daq_scan) have been moved to scanner
that is now a subobject of daq_scan

	[Feature]: h5_browser: a right click on tree items shows a context menu. so far possibility to export current item (data)
in ascii text file (%.6e precision format).

	[Feature]: all modules: debug info contains now name of package, method and script line where the error has been generated

1.3.0 2019-02-15

	[Feature]: DAQ_Move_plugins: added the _controller_units parameter. Holds the native units used with the Move instance

	[Feature]: DAQ_Scan: added the navigator option. It is a 2D area-like object where to define scans. All 2D scans in the current h5file
are plotted in this area and at their corresponding position. Each scan plotability can be set.

1.2.0 2019-01-11

	[Feature]: DAQ_Scan updated with averaging possibility. Opens up a new dock showing the current scan average. All scan in the average are saved

	[Feature]: DAQ_Scan: Overshoot configuration is now available: set DAQ_Move actions depending on detected values

	[Feature]: DAQ_Scan: possibility to save all datas in independent files or not (default is not)

	[Feature]: DAQ_Scan: Huge modification related to the scanning. Now you can select an area in one of the opened 2DViewers
This viewer could for instance be a calibrated camera referring to the x and y positions of a XY stage. The Plot2D scan 2D viewer
can also be used. Say that you just did a 2D scan and now you want to scan a cross-section within!!
This area can be a 2D one (rectangle, 2D scan type) or a PolyLines (linked segments, 1D scan type). Random modes and
others are still available in this mode

1.1.2 2018-12-18

	[Bug]: Corrected the background substraction in DAQ_Viewer

1.1.1 2018-12-18

	[Bug]: Some wrong call to plugins in preset_manager

1.1.0 2018-12-18

	[Feature]: Tested entry-points after installation.*.exe files created successfully with manual setup install.
But the link to working python is missing with pip install (python.exe and pythonw.exe) must be on the PATH

	[Feature]: Moved the preset_mode folder out the pymodaq tree, but relative to HOMEPATH (windows) or HOME (linux & OSX) environment variable

	[Feature]: When started from DAQ_scan, all Quit pushbutton are disabled within individual Move and Viewer modules.

	[Feature]: removed plugins from tree structure. May be installed from github or pypi as external library

1.0.1 2018-12-16

	[Bug]: Some wrong path to save/get preset modes

1.0.0 2018-12-10

	[Feature]: Renamed all modules with lowercase. Renamed image viewer_multicolor as viewer2D

_images/git_revert.png
dbresteatiran-Fh-004873 INGW64 ~/MyLocalRepository (main)
$ git revert 604sfb4

[main ed7e909] Revert “The funny monkey has been added.”
1 file changed, 1 insertion(s), 18 deletions(-)

_images/git_revert_notepad.png
& Ci\Users\dbrestea\MyLocalRepositon\ git\COMMIT_EDITMISG - Notepads+

Elle Edit Seorch View Encoding Language Seftings Tools Mocro Run Plugins Window 2

cHHERGS shbloeiny as | BEIE1EIEGAE

T Revert "The funny monkey has been added.”
2

5 Tnis reverts commit G045fb4019£117b08a2e7d946bbacdc2d0l78367.

.

S # Please enter the commit message for your changes. Lines starting
© % with '#' will be ignored, and an empty message aborts the commit.
7

5 # On branch main

S # Changes to be committed:

10 # modified: my first_amazing file.txc

u ¢

_images/git_remote.png
dbrestealiran-Fb-004573 MINGH64 ~/MyLocalRepository (maim)
S git renote add origin https://github. con/quanturm/monkey_repository. git

dbresteatiran-Fb-004873 INGH64 ~/MyLocalRepository (main)
5 git remote -v

origin https://github. con/quantunm/monkey_repository.git (Fetch)
origin https://github. con/quantunm/monkey_repository.git (push)

_static/file.png

_images/git_status.png
lbrestea@iran-fb-004873 MINGW64 ~/MyLocalRepository (main)
s git status
on branch main

No commits yet
Untracked Files:

(use "git add <File>..." to include in what will be committed)
my_first_amazing_file. txt

nothing added to commit but untracked Files present (use "

t add” to track)

_static/plus.png

_images/pi_existing_plugin_in_list.png
Physik Instrumente Stages

« Sebastien J. Weber

1.00

Actuators
« PI: All stages compatible with the GCS2 library.
Tested on E-816, C-863 (mercury DC/Stepper),
C-663, E-545
« PLMMC: old controller and stages using the 32
bits MMC dil (requires 32bit python) C-862
controller

_static/minus.png

_images/pid_kp_change_v2.png
Trgetvalve: 128

Parameter

Models class:
B4 Model params:
Threshold

Acquisition Timeout (ms):
I~ epsilon
Sample time (ms):
Refresh plot time (ms):

Output limit (min):

curentvaive: | 127.998

Value

PIDModelBeamsteering

<

5 9

10000
1

200
200

53 353

-Output limit (min): -le+03

Output limit (max): &

Creririn e
Prop. on measurement: [

Kp: 100

127.998

|

3|

LR

35

PID Controller
I

. 3 I

- o .

200 &\

- —— CH1

)

d (AR AANA e
)

- L
200 Z1

_static/splash.png
PyMoDAQ

Modular Data Acquisition with Python

—_——

_images/pid_get_models_method.png
v B daq_utils 1018 def get_models(model_name=None):

> BN abstract 1611 e
> eudb 1012 Get PID Models as a list to instantiate Control Actuators per degree of liberty in the model
> B gui_utils 1013
> BN managers 1014 Returns
> BN parameter 1015 B
> Buplotting 1016 ist: list of disct containting the name and python module of the found models
> Emtree_layout 1017 o
> M Tuto innosetup 1018 from pynodag.pid.utils inport PIDHodelGeneric
% __init_.py 1019 models_import = []
% array_manipulation.py 1020 entry_points = metadata.entry_points()
% calibration_camera.py 1621 if 'pymodag.pid_models' in entry_point:
i chrono_timer.py 1622 discovered_models = entry_points['pymodag.pid_nodels']
% config.py 1623 for pkg in discovered_models:
% conftests.py 1624 try:
% custom_parameter_tree.py 1025 module = importlib.import_module(pkg.value)
% daq_enums.py 1026 RN & ML

1027

_images/pid_model_methods.png
v b pymodaq_plugins_pid
> Budag_move_plugins
> Budaq_viewer_plugins
> Bmhardware
~ B models
#_init_.py
~ EPiDModelBeamsteeringpy.
% PIDModelBoiler.py
% __init_.py
& VERSION
> M pymodaq_plugins_pid.egg-info
& .gitattributes
i .gitignore
% __init_.py
@ icon.ico
& LICENSE
& MANIFEST.in
plugin_info.toml
README.rst
% setup.py
> 1l External Libraries
P Scratches and Consoles

35
36
37
8
39
o
a
w2
a
“
I
4
a
@
4
50
51
52
55
54

55
56
57
58
59
60
61
62
5
64
65
66
o7
68

2 Sébastien Weber
of def convert_input(self, measurements):
Convert the measurements in the units to be fed to the PID (sar
Paraneters

measurements: (Ordereddict) Ordereded dict of object from which

Returns

float: the converted input

key = list(measurements['Camera']['data2D'].keys())[6] # so it
image = measurements['Camera’]['data2D’J[key][data’]

inage = image - self.settings.child('threshold’).value()
image[inage < 0] = ©

X, y = center_of_nass(inage)

self.curr_input = [y, x]

return InputFrombetector(ly, x1)

ébastien Weber

of def convert_output(sclf, outputs, dt, stab=True):

Convert the output of the PID in units to be fed into the actuz
Parameters

output: (float) output value from the PID from which the model

Returns

list: the converted output as a list (if there are a few actuat

self.curr_output = outputs

return OutputToActuator(iodes'rel’, valuessoutputs)

_images/pid_model_configuration.png
~ M pymodaq_plugins_pid ~/local_reposi
v msrc
~ BH pymodaq_plugins_pid
> Budag_move_plugins
> Budaq_viewer_plugins
> Bmhardware
~ B models
% __init_.py
| ApModelseamsteeringpy.
% PIDModelBoiler.py
% _init_py
& VERSION
> M pymodaq_plugins_pid.egg-info
& .gitattributes

2

10
1
12

1
15
16
7

ol

ol

ol
ol

ol
ol

ol
ol

from scipy.ndimage import center_of_mass

2 Sébastien Weber
class PIDModelBeamSteering(PIDHodelGeneric):
lmits = dict(naxsdict(stat

rue, valu
minsdict(statesTrue, values:
konstants = dict(«p=16, «i=0.860, k:=0.1808)

setpoint_ini = [128, 128]
setpoints_names = [Xaxi:

. 'Yaxis']

actuators_name = ["Xpiezo",
detectors_name = ['Canmera’]

“Ypiezo"])

Nsetpoints = 2
params = [{'title

‘Threshold', 'name’: 'threshold’, 'type

*float’,

‘valve

16.1

_images/pid_package_structure.png
I pymodaq plugins pid C:\Users\weber\Labo\ Prograry
v M
~ BN pymodaq plugins pid
> BN dag_move_plug
> BN daq viewer_plugins
> BN hardware
B _init_py
% PIDModelBeamsteering.py
 PIDModelBoilerpy
% _init_py
& VERSION
> I pymodaq plugins pid.egg-info
i gitatributes

_images/phonons_interpolated.png
python

@+

_images/git_monkey_dissapear.png
[> BRESTEAUDavid » MyLocaRepositor

Name Date modiied
gt 03/01/2024 15:41
7] my frst amazing filest 03012024 1541

2] my_firt_amaing_fil.xt - Notepad
File Edit Fomat View Help
Hello world!

_images/git_push.png
dbresteatiran-Fh-004873 WINGWE4 ~/MyLocalRepository (main)
$ git push -u origin main

Enumerating objects: 7, done.

Counting objects: 100% (7/7), done.

Delta compression using up to 4 threads

Compressing objects: 100% (6/6), done.

Writing objects: 1005 (7/7), 938 bytes | 312.00 KiB/s, done.
Total 7 (delta 0), reused 0 (delta 0), pack-reused 0

To https://github. con/quantumm/monkey_repository. git

* [new branch] main - main

branch 'main’ set up to track 'origin/main’.

_images/git_log_oneline.png
dbresteagiran-fb-004873 MINGN64 ~/MyLocalRepository (main)
$ git log ——oneline 3
3378584 (HEAD —> main) Initial commit of my amazing project. Add my first amazing file and say Hello world!

_images/git_logo.png

_images/viewerND_4D_3D_1D.png
7 python

. [mean

Navigation

Scan index

Scan index

_images/my_first_amazing_file.png
Clipboard Organize New

[> BRESTEAUDavid » MyLocaRepositor

Name Date modified

gt o3/0v/2024 1455
my_fist amzing filesst o3/0v/2024 1455

Open

Type

File folder
Text Document

Seled

£ searchMyloc

Size

1KB

71 . fst amazing file et - Notepad
File Edit Format View Help

_images/viewerND_brain.png
%1 python

Parameter

 Signal shape
Inital Data shape
Axes shape:
Data shape:
~ Navigator axes
2

0
1

Set Nav axes:

- B

Value
(157, 189, 68)

(681157, 189)

= -

1207001 y=3531401 |

B4 %@

_images/multiaxes_xyz.png
~ Actuator Settings:
~ MultiAxes:

is Multia...

Status:

> Grouping
Units:
Epsilon:
Timeout (s): 20 L)

_images/viewerND_4D_spread.png
7 python

. [mean

Navigation

_images/output_40_2.png
peak position

1e11peak position taken the 2024-02-23 16:28:30.989901

—e— peak position_2pi/s

0.0 05 10

4.0

_images/viewerND_integrate.png

_images/output_40_1.png
MAG

3.0

2.5

2.0

15

10

05

le-5

MAG taken the 2024-02-23 16:28:30.987825

—e— peak value

-2 o
peak position (2pi/s)

2

lell

_images/viewerND_indexes.png

_images/overshoot_fig.png
e
e e
R
-
s
ezt

4 Triggered Moves:

_images/viewerND_simple.png
python

Navigation

_images/output_7_0.png
MAG taken the 20249Rc)fAd:50:38.079474

102 104
delay (mm)

_images/viewerND_math.png

_images/package_hierarchy.png
v Msic
~ BN pymodsq
> BN control_modules
BN examples

>
> M extensions

> BN post treatment
> DM resources

>

_images/zoology.png
DatalLowLevel: ~timestamp
3D anay
DataBase: sy
-Dimensionality: 0D, 1D, 2D, ND 1D anay .
-Source: Raw or calculated EEE EEE

«Distribution: Uniform or Spread . e
«Data: list of numpy arrays with same shape

DataWithAxes:

-axes: list of Axis objects

Axis

-DataRaw

-DataCalculated
-DataFromPlugins
-DataActuator

DataToExport:
-Data: list of DataWithAxes

= .label _= N

- .- eUnits

-Data: numpy array
«index: with respect to its data shape

Axis:

_images/overview.png
An experimental setu

[AXY stage:
JActuators 1 & 2.

Dashboard's preset
configuration

DAQ_Move:
Actuator 1

DAQ_Move:
Actuator 2

_images/viewer_dte.png
MyDte Viewer 1

C, 5 Navigation Signal

MyDte_Viewer 2

_images/monkey_in_remote_repository.png
onies [5 years g0

Languag:
D pypriectiom Mating sure nesed dict i the confg e prapary updatad 5 morss 3g0
D resdthedocsym remove s withcresing 3 fokde using asmin ights Smontsago | @ Pwen
READMErst

/TN khe
~/~/TN\\\F-Knee knee

S/ TN
F VTN TN R
C BN REES

NN

PyMoDAQ
e, e
Pytron atsadend | 05
8 as s

39 as Linux

_images/viewerND_4D_2D_2D.png
python

v

X s (units)

420024

Crosshair/CHO!

20 2

x_auds (aunits)

_images/model.png
~ [3 pymodaq_plugins_mockexamples import numpy as np.

O e e e s (L #ron gtpy.Qtiidgets inport QWidget, QApplication

A fron typing import List

> Do | #ron pymodag.utils.paraneter inport Parameter

v Oe@ fron pymodag. extensions.bayesian.utils inport BayesianftodelDefault

~ B3 pymodaq_plugins_mockexamples. from pymodag.utils inport gui_utils as gutils

> B3 daq_move_plugins #ron pymodag.utils.plotting. data_viewers inport Viewerid, Viewer2
> B dag_viewer_plugins | from pymodag.utils.data import DataActuator, DataToActuators, DataRaw
> Bexporters

> Bl extensions

class BayesianModeltock (BayesiantodelDefault) :
> B3 hardware

e parans = BayesianModelDefault.parans + [

~ Bimodels {title’: 'Update data’, 'name': 'update_data’, 'type's 'bool_push’, 'label': 'Update Data'}
@ _init_py 1
@ lextab.py @ def ini_model(self]

@ OptimisationModelPyMooCom| eI S DT = L
@ PIDModelBeamSteering.py

@ > def rumner_initialized(self)
@ yacctab.py
> DeEmiEs © > def update_settings(self, paran: Paraneter):
> B3 scanners
@ _init_py @ > def convert_output(self, outputs: Listlnp.ndarrayl, best_individual=None) -> DataToActuators:...
@ utils.py L]
[}

> def update_plots(self):

> B pymodaq_plugins_mockexamples.efl

_images/viewer2D_uniform.png
Xaxis (xunits)

20 -18 16 14 12 -0 8 2 0 2

— red gaussian

green gaussian

_images/pmd_repository_open_issue.png
« c O B httpsy/github.com/PyMoDAQ/PyMoDAQ/ssues P o v &

o
=) mopaa/ pymoaa Q Type (g to search | +- 0 nl '@

<> Code @ Issues 5 19 Pullrequests) Discussions @ Actions [Projets 2 M wiki @ Seaurity | Insights

Fiters = | Q isissue isopen ©Labels & > Miestones 0

50pen 48 Closed Author~ Labelv Projectsw Miestones~ Assignee~ Sortw
per

© Mac compatibility: dashboard
#153 opened 5 days ago by Atmos-spire

© Dashboard fails to recognize plt =k
#140 opened on Ju 27 by Nanjecfkro
© A question about data acquisition rate of pymodaq. o

2119 opened on Jun 21 by rickwubulabudsbuda

_images/preset_camera.png
Fill in information about this manager ®

Parameter Value

Filename:
Use PID as actuator: [m]

preset_mock_pid_beam_steering)
-

Y Actuator 00
Bl Actuator 01

Add
M petectors:
M oet 00
Name Camera
Init?:
M settings:
[Main Settings:
DAQ type: DAQ2D
Detector type: Beamsteering
Nviewers: 1
Controller ID: 5166 -
Show data and process:)
Refresh time (ms): 200 -
Naverage 1 -
Show averaging: o -
Live averaging o -
Wait time (ms): J -
Continuous saving: 0 -

Rl TCP/IP options

Bl overshoot options:

il Axis options:
B9 etector settings

Controller Status: Slave B
Amplitude: 20 o
dx 20 o
dy: 20 o
Noise level 4 o
Threshold 2 o
Drift u} L)

Add

Cancel save

_images/preset_actuators_config.png
Fill in information about this manager

Parameter Value

Filename preset mock_pid_beam steering ¥

Use PID as actuator.])
)

M Moves:
B Actuator 00
Name: Xpiezo
Init?: o

M settings:
B Main setting
Actuator type: Beamsteering
Controller ID: 5166)

bl TcP/1P option:
B9 Actuator settings:

is Multiaxes -
status Master -
Axis H -

Units:

Epsilon 1 -

Timeout (s): -

Ypiezo -
Init? -
M settings:
B Main settings:
Actuator type Beamsteering
Controller ID: 5166

bl TCP/1P options:
B9 Actuator settings:

is Multiaxes
status
Axis
Units:
Epsilon
Timeout (s):

Add

M petectors:
B oet 00

Cancel save

_images/preset_pid_as_actuator.png
Parameter Value

Filename: preset_mock_pid_beam_steering_as_actuator -
Use PID as actuator: @)
M Foves:
Pl Actuator 00

| > Actuator 01
nd

B petectors:
Y oet 00

Add

_images/preset_fig.png
Filln information about this managers ? X
e e :
Use PID as actuator:] =

.

- :
© S
e e
.
CAData Q
—
. —

Compression level: 5 &

-
-
y
y

ot
-
y
§
{
o

DAQUD/Mock
DAQUD/Keithley2110
DAQUD/Keithley Pico
DAQUD/Kinesis_KPATOT
DAQUD/Lockin7270
DAQUD/LockinSRa30
DAQUD/MockAdaptive
DAQUD/NIDAQMX
DAQUD/TCPServer v

_images/pull_request_the_monkey.png
@ PyMoDAQ Fuoic £ Pn | ©watc 1 -

forked from PyMoDAQAYMODAQ

¥ monkey-branch had recent pushes 4 minutes ago

oyt < B s S aoone | scie (NI ¢
0
This branch is 12 commits ahead, 1 commit behind 1 Contribute + Qsyncfork ~ 4
PyMoDAQmain. p
E
@ quantumm Add the monkey in the README. X 2622137 20 minutes ago 1,308 commits
%
W github/workflows Update Testbaseyml 2 months ago
docs Update data_objects st 2 weeks ago
P b L
- s Update viewer.py e o
oot axis slcing tests and slce with an integer stweek |

M atattribgtec il comma P

_images/pycharm_clone.png
[Get from Version Control

P Repository URL Q
© Gt Enenlum/memorything-deployment
quantumm Einenlum/memorything-production
Einenlum/python-straight-to-the-point
©) GitHub Enterprise computing
No accounts dl_deployment

monkey_repository
monkey_repository_v2

pymodad_plugins_pid
pymoda_plugins_smaract
python_work

work

work_micmac
quantummBackup/dL_backup

Directory: [\User\dbrestea\PyCharmProect\PyMoDAQ

Cancel

_images/pycharm_add_monkey_in_readme.png
README st (C: dbrestea\PycharmProject\PyMaDAQ) [Default Changelist x
£ | Sideby-sideviewer ¥ | | Donotignore v | | Highlight words v | < [% [Includeinto commit | 2 1 difference
8 807fa45d9204ec6e5e209cc21 bcd3ffcesbbf1T Your version
PyMHoDAQ » —/~\—kh khe
]

~/—/"\\\ —*nee khee
N\ —
[HAAY 1 ==
7=
=V T A\—

. image:: https://img.shields.io/pypi/v/pymodag.svg
:target: https://pypi.org/project/pymodag/ Va
:alt: Latest Version

. image:: https://readthedocs.org/projects/pymodag/bad
:target: https://pymodag.readthedocs.io/en/stable/?b =141
:alt: Documentation Status

. inage:: https://codecov.io/gh/PyNoDAQ/PyHoDAQ/branch
:target: https://codecov.io/gh/PyHoDAQ/PyHoDAQ AN — |

A\ //—

Python Qt Backend 0S Passed

8 Qs Linux |38t5|
9 Qs Linux |39qt5|
.10 Qs Linux |310Qt5]
qQts Linux |311Qt5]
8 Qs Windous |38Qtsuin|
.8 PySide2 Linux |38pysidel
9 Qe Linux |39qt6|

138t5] image:: https://github.con/PyHoDAQ/PyNoDAQ/a
starget: https://github.con/PyHoDAQ/PyNoDAQ/actions PYMoDAQ
fai

Commit Message o
Add a monkey in the README file.

_images/pycharm_clone1.png
B Get from Version Control
P Repository URL
© citn

quantumm

©) it Enterprine

No accounts

Einenlum/memorything-deployment
Einenlum/memorything-production
Einenlum/python-straight-to-the-point
computing

dl_deployment

monkey_repositoryv2
physics

PyMaDAQ

pymodag_pid_models LIZARD.
pymodag plugins_arduino

pymodag plugins_dev

pymodaq_plugins ferto
pymodag_plugins_physik instrumente
pymodag plugins_pid

pymodagplugins smaract

python work

work

work micmac
quantummBackup/dL_backup

Direcory | C\User\dbreste\PycharmProjectimontkey_epositon]

Cancel

_images/plugin_greateyes_V2.png
O B https//pypi.org/project/pymodag-plugins-greateyes/

pymodagq-plugins-greateyes 1.0.0

pip install pymodag-plugins-greateyes & Released: Jan 20,2023

some word about your plugin

Navigation Project description

https://github.com/CEMES-CNRS/pymodaq_plugins_greateyes/workflows
Upload%20Python%20Package/badge.svg.

"D Release history

PyMoDAQ plugin for instruments from Greateyes (ALEX, ELSE, GE XXXX)
& Download files
Authors

Project links « Romain Geneaux

A Homepage Instruments
statistice Below s the list of instruments included in this plugir
GitHub statistics Viewer2D

* stars:0

es CCD cameras using the SDK

» * GreateyesCCD: Gre:
Forks: 1

_images/pipython_github_page.png
github.com

2 PI-Physikinstrumente / PIPython puic

¢ Code (@ lIssues &

¥ master ~

[]
[]
[]
s}
s}
s}
s}
s}
s}
s}
s}

“I* JensKappPI Linuxversion 2.10.0.2

Oldversions
PIPython

samples

site
PIPython-2.10.0.2-INSTAL L tarbz2
changelog.md

eulamd

index.html
pi_make_install_package
pi_set_install_fle_settings
readme.md

readme.rst

readme.md

PIPython

P 1banch ©12tags

11 Pulrequests © Actons [H Projects @ Securty | Insights

Linux releas 1.10.0.1

Release 2.10.0.2

Release 2.9.0.3

Release 2.10.0.2

Linuxversion 2.10.0.2

Release 2.10.0.1

Release 2.3.0.2 Windows Version

Release 2.0.0.5

SW-9001: zu OldVersions Kopieren hinzugefugt
Release Verzeichnisstrukiur geéindert

Release 2.7.0.8 mit geandertem Setup (SW-9809)

Verskionsnummer angepasst

Go to file

78faged on Feb 14 D) 80 commits

2months ago
2months ago
6 months ago
2months ago
2months ago
2months ago
3 years ago
4years ago
2 years ago
4years ago
last year

last year

PIPython is a collection of Python modules to access a Pl device and process GCS data. It can be used with Python
3.6+ on Windows, Linux and OS X and without the GCS DLL also on any other platform.

About

Python Library for using Pl controllers
with GCS command language

O Readme
v 12stars
® 1watching
¥ 1ok
Report repository

©121ags

Packages

No packages published

Contributors 2

“1 JensKappP!

PI Software-Physikinstrumente Physik

Languages

———————————
® HTML900% o JavaScript 9.0%

_images/plugin_manager.png
PyMoDAQ Plugin Manager

(Avalable +.

Search:

Plugin
) Amplitude Lssers

Orm
0 Holosye
0 Horibs

1 Newport Instruments
] Ocean nsight (Opics)

] OrsaySTEM and Cameras

002

001

001

002

001

002

001

001

1 Physical Messurements Hardware 0.03

Version

Authors:
*Sebastien Weber

Viewer D:

ViewerzD:

* Andor CCD camera using the SDK2

‘Set of PyMADAQ plugins for Andor Camera (CCD camera using SDK2, SCMOS cameras using SDKS...)

Thispackage indude plugins for the instruments fisted belo:

*Shamrock series of spectrometer using the Andor CCD cameras

_images/pmd_branches.png
c QO 8 n

o PyMoDAQ / PyMoDAQ

<> Code O Issues 5 1% Pullrequests

@ PyMoDAQ i

Switch branches/tags x

Fiter branche

Branches

Togs

v main default

master

[u]

™ MANIEEST in

LICENSE License MIT

/github.com/Py

Undate MANIEEST in

#0DAQ/PyMoD 6]
@ Frelnfme—1

@ Discussions ® Actions [Projects 2 O wik
£ EditPins ~ | OUnwatch 16 ~ | ¥
Go'tofile Add file Abo
Mod

X 265cb68 2 weeks ago D) 1297 commits
@ b
seyml 2monthsago | [
st 2weeksago | B N
»

average of data 2weeksago | ¥

w7

average of data 2 weeks ago
Geere “ e
Syersago | ¢ g
2yearsago | Repor

2 years ago
Rele:

2 veare ann

_images/plugin_template_repository.png
¥ main -

@ sebsg Update dag move Template.py

coErER

daq move plugins
daq viewer plugins
hardware

VERSION

it_py

pymodaq_plugins_template / src / pymodaq_plugins_template /

Update daq move Template.py

simplifies hiden dependencies on daq utils
implemented the src layout

Update VERSION

simplifies hiden dependencies on daq utils

Goto file

caasest onFeb 6 (D History

3 months ago
3 months ago
3 years ago
last year

3 months ago

_images/pmd_github_account.png
<« @ O B hitps//github.com/PyMoDAQ ’ [

E O PyMoDAQ Q + - ||

@ Overview [Repositories 46 [Projects 1 @ Packages A Teams R People 6

PyMoDAQ

Modular Data Acquisition with Python

Axt6followers @ Toulouse - France & http://pymodaq.cnrs.fr/en/latest/

L "]
Pinned ® View as:
You sre vievi
£ PyMoDAQ | Public £ pymodaq_plugins mock | Public pinned reposi
Modular Dts Acquisition with Python Listof Mock hardware plugins o use vith You can creat
PyMoDAQ anyone.
@Python Y70 ¥es @Python ¥4 ¥ a0
People
1 pymodaq_plugins_template (3 pymodaq_spectro | Public

Template fro PyMoDAQ's plugin packaging ®
®Python Yr2 Y13 ®Python ¥ 2

_images/pmd_dev_site_packages.png
[+ ATIOSEIO » Anaconds3 » envs > pmddev » Lb > site-packages .

Nom

1 pyparsing-303.disinfo

] PyCts WebEngine Qt6-6.50.ist-info
] PyQts WebEngine-6.50dist-info

|| PyQt6-6.5.0.dist-
[l pyataraph

] pyatgraph-0.13 Ldist-info
] pyristent

] pyristent-0.181 dist-nfo.
] pyseral-3.5 st
] pySocket-035.di
] pytablewrter
] pytablewriter-0542.ist-nfo.
] python dateutl-28.2ist-
1 python_markdown_math-0.8.dist-info
] pythonnet

] pythonnet-3.00.postldist-info

1 pythonwin

ey

] pytz-2022 4 istinfo.

] pyusb-12.1.dist-
[pyvisa

] Pyisa-1.130is
1] pywin32_system32

Modfié le
07/10/2022 1348
07/10/2022 1352
07/10/2022 1352
07/10/2022 1352
07/10/2022 1352
25/04/2023 16:50
25/04/2023 16:47
25/04/2023 16:47
25/04/2023 16:50
25/04/2023 16:50
25/04/2023 16:47
07/10/2022 1400
07/10/2022 1400
07/10/2022 1348
07/10/2022 1348
13/02/2023 16:20
16/02/2023 16:38
07/10/2022 13:50
07/10/2022 13:50
07/10/2022 1349
25/04/2023 16:47
071072022 1421
071072022 1421
071072022 1421
07/10/2022 1348
07/10/2022 1348
13/02/2023 16:20
14/02/203 15:22
14/02/203 15:22
07/10/2022 14:21

Type

Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers
Dossier de fichiers

Dossier de fichiers

T

_images/pmd_repository_issue_V3.png
& [¢] O B https//github.com/PyMoDAQ/PyMoDAQ B

= O PyMoDAQ / PyMoDAQ Q Type (D to search
© cote 11 Pulrequess @ Disaussions © Actions [Proecs 2 (10 wi
@ PyMoDAQ e £ EdtPins + | @Unwetch 16 v | ¥
P oman - P 4benches ©69tags Gotofie || Addfie~ Abc
Mo
sebSg Merge pull request #150 from P.. . X 265cb68 2 weeks ago {0 1297 commits.
&
github/workflows. Update Testbaseym! 2 months ago m
docs Update indexrst 2weeksago | A
A
sic live mode and average of data 2 weeks ago
i
tests fve mode and average of data 2 weeks sgo
®
gitattributes Iniial commit Syeassgo g

_images/pmd_pr_tab.png
) erosa s pymonaa

(¢} O B https//github.com/PyMoDAQ/PyMoDAQ B %o%

Q Type [to search

3¢

<> code O issues Sl 11 pull requests Y Discussions ® Actions [Projets 2 0 wiki

@ PyMoDAQ e

2 EdtPins - © Unwatch 16 -

ety o e s 3 s |
“f sebsg Merge pull request #150 from PyMo... = X zescoss 2 weeks ago D 1297 commits
W gitubworkiows Update Testbaseyml 2 months ago
m doss Update indexrst 2 weels ago
- s tive mode and average of data 2 weeks ago
- otests live mode and average of data 2 weeks ago
[.gitatiributes Initial commit 5 years ago
D giignore update some pid bits 2years ago

¥

_images/pipython_documentation_communication.png
O @ hitpsy/pipython physikinstrumente.com/quickstart. html

PIPython
Home

Quick Start

Requirements
Establishing communication

Arguments

Setter functions
Getter functions
Return values

‘Some useful information

Helper functions
Debug logging

GCSError and error check

Bigdata

Textual interface

Device Connection
Data Recorder GCS 2.0
Data Recorder GCS 3.0
History

EULA

Quick Start

Requirements

Download these python packages with pip install:

« PyUsB
« PySocket
« PySerial

Using pipython.interfaces.piusb , you can connect to a USB device without needing the GCS DLL. This only works on Linux
and requires libusb, which comes with most Linux distributions.

Establishing communication

Communication with a Pl device can be established via the GCSDevice class which wraps the GCS DLL functions and provides
methods to connect to the device. Instantiate GCSDevice with the controller's product code up to the period as a string type
argument (e.g., 'C-884").

See Device Connection for further information.

The following example connects to a C-884 series controller, queries its identification string using the qIDN() function and closes
the connection.

from pipython import GCSDevice
pidevice = GCSDevice('C-884")
pidevice. InterfaceSetupDlg()
print(pidevice.qIDN())
pidevice.CloseConnection()

_images/data_femto_extracted.png
python

_images/data_femto_fs.png
1_00/MAG

10

20 30

024

Samples.

_images/data_femto.png
-
(7]
=

g

=

delay (mm)
200

— ROL00/MAG

580 600
Average (x1e-09)

012345
Samples ()

_images/data_femto_and_spread_axis.png
1 python

_images/data_femto_roi.png
5e-07 — roLog
. — ROLO:
— ROLO;
=
foe-06
3e-07
2e-06
2e-07
o , ,
100 200 ET) 0123 4
steps Samples (S)

_images/data_fft.png
Viewer _1

Viewer _3

ol

12006

1206

MAG
- o £y E]

] E]

deiay (05)

05 T

06 0402 0 02 04 06 05 1 L2 14 16 16 2 22 24 26
ficelay) (T20i/s)

ficelay) (T20i/s)

_images/detector_saver_file_content.png
oer= (o) s
Parameter Value

CLASS GROWP

VERSION 1.0
b'<Allsettings type="group"> <daq_viewer_se

Controller Status: Master
Rolling?: 1

)
Y
CY

detector
Save 2D datas and above:) -
Swerwdatasony: @ -
DoSove: 0 -
S
" Backend type ables
custom name: o -
showfile content? o e content:)
< Base path:
[|cpam L]
Base name: scan

— cHoo
— cHo1

0 00

_images/github_logo1.png

_images/viewer0D_simple.png
python - o x

1.060e+01
-4.600e+00

_images/detector_saver_file_content_bis.png
Node.

v
~ Rawbata
* Detectord00
© Data2d
~ cHoo
A0
Al
Bkg00
Datat0
“ ol
A0
Al
Bkg00
Datat0
Logger
T0penTree TzOpenselected

Hoose Tree

_images/viewer0D_min_max.png

_images/github_new_repository_2.png
= © O B hetpsi//github.com/quantumm?tab=repositories ERTRS o &

o
=) awnumm Q Type Do search ~ +- 0on '@

00 Overview E Repositories 17 [Projects @ Packages ¥ Stars 11

- Find a repository... Tyoe ~ | language ~ | Sort ~

_images/viewer1D.png
— a gaussian

~— another gaussian

_images/github_new_repository.png
O 8 httpsy//github.com/quantumm

[Projects & Packages ¥ Stars 11

Pinned

instrumente

[pymodaq_plugins_physi
Public

Forked from

PyMoDAQ/pymodaq_plugins physik instrumente

et of PyMoDAQ plugins for Actustors from Physik
Instumente (Al the ones compatible ith the GCS2
commands as wel s the old 32bits MMC controller.)

®ytnon

% © &
[
© Set status

A Your profile

A" Add account

[Your projects

D Your organizations
@ Your enterprises
¥ Your stars

Q© Your sponsors

[©] Your gists

_images/viewer0D_sinus.png
-6.279e-02
6.613e-01

_images/github_pull_request.png
Comparing changes
Choose two branches to see what's changed or to start a new pull request. If you need to, you can also compare across forks or learn more about diff comparisons.

upstream repository branch remote repository branch

T3] base repository: PyMoDAQ/PyMoDAQ ~ | base: pymodag-dev ~ | € | hezd repository: quantumm/PyMoDaQ ~ I compare: monkey-branch ~

+ Able to merge. These branches can be automatically merged.

_images/viewer1D_dot.png

_images/github_new_repository_3.png
Create a new repository

e

Rt e it on s

Repostorytamgias
[
[—

Repastornama-

e

[T —
D T ——
epton s

L= R

o e

s s rpostary ik

[apemesaey

s giignore
P

[———

o T

_images/viewer1D_crosshair.png

_images/github_add_ssh_public_key_form.png
Add new SSH Key
Give a title like
"Work computer"

Key type

Authentication Key *
Key Paste the key here

Jpegins with 'ssh-rsa', ‘ecdsa-sha2-nistp256’ ‘ecdsa-sha2-nistp384’, ‘ecdsa-sha2-nistp521", ssh-ed25519", 'sk-ecdsa-
Jsha2-nistp256@openssh.com’, or 'sk-ssh-ed25519@openssh.com’

_images/github_add_ssh_public_key.png
4P rakegithubaccountt (Fakegithubaccountt) Goto,

""" Your personal account

A public profile
8 Account

& Appearance
f Accessibility

2 Notifications

Access
5 Billing and plans v

& Emails

@ Password and authentication (1)
£ SSH and GPG keys

SSH keys (2)

Thisis a list of SSH keys assodiated with your account. Remove any keys that you do not recognize.

Authentication Keys

ssh_key_github
R
Added on Sep 20, 2023
Never used — Read/write

Delete.

SsH

Check out our guide to generating SSH keys or troubleshoot common SSH problems.

GPG keys

_images/template_repo_structure.png
~ |00 pymodaq_plugins_template |C:\U

> O github
~ Dsrc
oo e |
~ E1daq_move_plugins.
@ _init_py
> B dag_viewer_plugins
> Elexporters
> Blextensions
> B3 hardware
> BImodels
> Blresources
> Bascanners
@ _init_py
@ utils.py
> Ditests
gitattributes

@ .gitignore
& icon.ico
LICENSE
MANIFEST.i

@ setuppy

_images/github_file_online.png
= O quantumm / monkey_repository Q +~-[|O|In 9..

<> Code © Issues 1 Pullrequests (® Actions [Projects [Wiki @ Security | Insights & Settings

main ~ monkey_repository / my_first_amazing_file.txt (& Q Gotofile RS
@ auantumm Revert “The funny monkey has been added.” @3 d7e909 .20 hours sgo ¥D) History
[code | Blame 1 1ines (1 100) - 12 Bytes e D) (2]] @

1 Hello world!

_images/utils_module_layout.png
B ree layout
B Tuto innosetup

o _init_py

2 array_manipulation py
£ calibration_camers.py

t chrono
t configpy

t conftestzpy

6 daq utilspy

i data.py

£ enums.py

[—

o factorypy

i loggerpy

o math_utispy
[p——

t quarsntpy

2 sicingpy

o tep_semver clentpy
i

rpy

_images/github_commit_history.png
<« (¢] O 8 https://github.com/quantumm/monkey._repository/commits/main/ %A 3& ¥¥ 9 ©

=) cusntumm / monkey repository a |l +- 0/n

<> Code @ Issues 1 Pullrequests (© Actions [Projects [0 Wiki @ Security |+ Insights &8 Settin

Commits
main ~ A Alusers ~ | B

- Commits on Jan 3, 2024

Revert “The funny monkey has been added.” = careses

@ qusntumm committed 20 hours sgo.

The funny monkey has been added. P

@ quantumm committed 20 hours ago

Initial commit of my amazing project. Add my first amazing file and say Hello world! [

@ qusntumm commitied 20 hours sgo.

_images/github_logo.png

_images/github_get_commits.png
<« [¢] O B hitpsy/github.com/quantumm/monkey_reposi EN T3 o & g

.
) cvanumm / monkey.repository all+- on @

<> Code © Issues 1 Pullrequests (® Actions [Projects [Wiki @ Security | Insights & Settings

@ monkey_repository Pusic £ Pin | @Unatch 1+ | ¥ Fok 0+ | ¥ Sar 0~

main ~ F OO Gotofle + About B

No description, website, or topics

@ auantumm Revert “The funny monkey has b.. 8 ed7e309 .20 hours ago. provided.

“The funny monkey has bee.. 20 hours ago A Activity

O my_first_amazing file.txt Rever

_images/viewer0D_123.png
[=

_images/fit_electrons.png

_images/fork_pmd.png
< c O B hipsi/githubcomPyMoDAQMoDAQ ee/pymodaq-dev B 38 77

O PyMoDAQ / PyMoDAQ al|[+-

<> Code () Issues 5 11 Pullrequests) Discussions () Actions [Prqecl(z)m wiki @ s

B PyMoDAQ Fusic £ EdtPins + | ©Unwatch 16~

(1) couse - (8

1 pymoda B About
P Branches © Tags Modular Data A
Python
This branch is 11 commits ahead, 1 commit behind main. @ pymodag.cnrs.
0 Readme
“ sebsg Update viewerpy - X Sdaysago 1307 @B MTlicense
A Activity
W github/workfiows Update Testbaseyml Zmonthsage | e 70 e
» docs Update data_objects.rst lsstweek | ® 16 watching
- s Update viewerpy Sdaysago | ¥ 8Sforks
Report repository
P J I

_images/edit_config.png
7 Configuration entries

Parameter Value

Config path

local\config tom!

Check version:

Name: User name

Default:
Naverag

~ Hsfile:
Save_path: C\Data
‘Compression_level: 5

> Hsds:

=]
] [

_images/entrypoint.png
setup(
version=version,
packages=Find_packages(unhere="./src'),
package_dir={'': 'src'}
include_package_data=True,
entry_points:

*pymodaq.plugins': ' {SHORT_PLUGIN_NAME} = {PLUGIN_NAME}'
*pymodag pid_models’ : £"{SHORT_PLUGIN_NAME} c
ynodag.extensions' : F"{SHORT_PLUGIN_NAME} = {PLUGIN_NAME}"}.
install_requires=f —t iy pTUgIN=1nsTatC 11 packages-required']
*ksetupOpts

_images/git_add.png
dbresteagiran-Fb-004873 WINGH64 ~/MyLocalRepository (main)
s git add my_first_amazing_file.txt

dbresteasiran-Fb-004873 WINGH64 ~/MyLocalRepository (main)
s git status
on branch main

No commits yet
Changes to be committed:

(use "git rm --cached <files..." to unstage)
new File: my_first_amazing_file.txt

_images/git_add_monkey_in_file.png
) my_firstamazing_filext - Notepad

Ele Edit Format View Help
Hello world!

Hello monkey!

e/ ———\r—kh khe
~/==/"\\\t=—Khee khee

H /IIIIJI7

iy

_images/fork_pmd_on_quantumm.png
<« (] jthub.com/quantumm/PyMoDAQ/tree/pymodag B % v

= Q quantumm / PyMoDAQ al||+-

<> Code 11 Pullrequests @ Actions [Projects [Wik © Security | Insights %8 Settings

PyMoDAQ uic 2o ©wach 1 - | ¥ ok 85 | -
forked fom PyMoDAQ/PYMoDAQ

¥ pymodag-dev ~ Go to file Add file ~ About

P Branches © Taas Modular Data Ac
Python
This branch is up to date with 11 Contribute + QiSyncork + | & pymodag.cnrsd
PyMoDAQ/PyMoDAQ:pymodag-de.
[Resdme
& MIT license
“ sebsg Update viewerpy - X Sdaysago D107 | A actity
¥ Ostars
W ithub/morkiows Update Testbaseymi 2 months ago
@ 1watching
m docs Undate data_objects.rst lastweek | ..

_images/git-clone.png
<« [} O 8 httpsy//github.com/quantumm/monkey_repository 3%
= O quantumm / monkey_repository Q Type (7 to search >
<> Code © Issues 1 Pullrequests (® Actions [Projects [Wiki @ Security | Insights & Settings

< Pin ®Unwatch 1~ A4

(1

@ monkey repository Pusic

P main ~ P lbranch ©0tags Go to file Add file > About
Local Codespaces (New) Fake ref
@ auantumm Revert *The monkey has been added in our fle” . 21/09/2

(=R
O my_new_flemd Revert "The monkey has been & '2 Copy this ad reS®S W Acti
HTTPS SH G w 0st
itHub CLI

® 1wa

Help people interested in this repository understand your project by adding a | N
r

_images/git_bash.png
tealiran-fb-004873 MINGWE4

_images/ssh_keygen_in_ssh.png
. BRESTEAU David >

ssh

a
a
2

_images/git_textart.png
O 8 httpsy//textart.me/#animals and birds

Animals And Birds Text Art

/ \

717 \C)/
1m0\ -
1111111 = EREEE

n"irorr -

3%

_images/tcp_ip.png
cnd =

Sending messages (or commands):

"Hello world’
b'Hello world' #L=12

b'\xB0\xB0\X00\X0C" # integer on 4 bytes

Receiving messages (or commands):

i

False

‘4

True

cmd,

-Ell-

False

®

True

Send string

i
L

icmd

cm

i

False

‘4

True

i

False

‘4

True

-

Receive string

_images/git_status_2.png
dbresteatiran-Fb-004873 MINGW64 ~/MyLocalRepository (main)
s git status

on branch main

nothing to commit, working tree clean

_images/take_bkg.png
Take Bkg

_images/github_account_settings.png
a- Fakegithubaccountt
© set status
A Your profile

2 Your repositories
[Your projects

& Your codespaces
D Your organizations
@ Your enterprises
¥ Your stars

Q© Your sponsors

[©] Your gists

& Upgrade
@ Try Enterprise
& Try Copilot

J\ Feature preview

8 Settings

_images/template_repo.png
O PyMoDAQ / pymodaq_plugins_template

<> Code (lIssues 1 11 Pullrequests ® Actions

iZ pymodaq_plugins_template ?uic mpisie

S EditPins || OUnwatch 4 ~

¥ main ~ P © Go to file

all +-[o/n & -p

B Projects M Wiki @ Security | Insights =**

¥ Fork 21

+

T Str 2~

About @

_images/git_version.png
MINGHG4

s git —-version
git version 2.42.0.windows.2

_images/tcpip.png
Main computer: IP 10.47.0.11

DAQ Scan
DAQ Viewer DAQ Move DAQ Viewer DAQ Viewer
TCP Server TCP Server ||Local detector Local data logging
A A

Distant computer

DAQ Viewer

Local detector

Distant computer

DAQ Move

Por: o1

Local actuator

_images/software_layers_V2.png
PyMoDAQ PyMoDAQ Python controller

core plugin wrapper drivers
il
¢ USB driver
<+ [« [«
Python script Python
[&==77 wrapper
] le—|
Manufacturer

GUL

_images/snap.png

_images/do_bkg.png
0 Do Bkg

_images/git_clone.png
dbrestea@iram-fb-004873 MINGW64 ~
$ git clone https://github. con/quantumm/monkey_repository.git
Cloning into ‘monkey_repository’...

remote: Enumerating objects: 7, done.

Counting objects: 100% (7/7), done.

Compressing objects: 100% (6/6), done.

Total 7 (delta 0), reused 7 (delta 0), pack-reused 0
Receiving objects: 100% (7/7), done.

_images/git_clone_from_remote.png
EEEn -

ard Organize New open
] » BRESTEAU David » monkey_repository Vo] [sea
Name - Date modified
it 04/01/2024 1218

my_first_amazing file.txt 04/01/2024 1218

_images/git_diff1.png
cla:

- Plugin using the pipython package wrapper. It is compatible with :
- DLLDEVICES = {

"PI_GCS2 DLL': ['C-413", 'C-663.11°, 'C-863.11°, 'C-867°, 'C-877°, 'C-884", 'C-885', 'C-887",
- 'C-891, 'E-517°, 'E-518', 'E-545', 'E-709°, 'E-712', 'E-723', 'E-725',
"E-727°, 'E-753", E-754", E-755', 'E-85280676', 'E-861°, 'E-870°, 'E-871°,
- "E-8737, 'C-663.12'],
C7XX_GCS DLL': ['C-762°,],
- "csasacspLL': ['C-843°,],
"848 DLL: ['C-848°,],
- cssepLL: ['C-8se’,],
- CEB16DLL': ['E-621°, 'E-625°, 'E-665', 'E-816", 'E816’,],
- Esi6DLL': ['E-5167,],

*PI_Mercury_6CS_DLL":

[C-663.10°, "C-863.16", 'MERCURY', 'MERCURY_GCS1',],

|- "PI_HydraPollux GCS2 DLL': ['HYDRA', "POLLUX', "POLLUX2', "POLLUXNT',],
- "E7XX_GCS_DLL™: ['DIGITAL PIEZO CONTROLLER®, ‘E-716°, 'E-761', 1,
- "HEX_GCS_DLL': ['HEXAPOD', 'HEXAPOD_GCS1', 1,
- "PIG_GCS2 DLL': ['UNKNOWN',],
+class DAQ tove_PI_E878(DAQ_Move_base):
o ‘Minimalistic plugin for the PT E876 4G controller with PiezoMike actuators.
- _controller_units = ‘mm’ # dependent on the stage type so to be updated accordingly using self.controller_units =
new_unit
¢ Use the pipython package wrapper.
It works in open loop. There is no referencing. It considers only relative moves.
+ It does not consider the daisy chain option: only one controller.
+ only USB connexion is implemented.
[+ Tested with PI_E876_4G: we consider 4 axes.
N
+ _controller_units - ‘step’
Egcs_device = GCsDevice()
- devices - ges_device. Enumerateuss()
- devices.extend(gcs_device. EnumerateTcPIPDevices())
devices..extend([str(port) for port in list(list_ports.comports())])
¢ devices - gcs_device.EnumerateUSB() # we only look for the controllers that are plugged with USB.
is_multiaxes = True
- stage_names - []
_epsilon - 6.61
[+ axes_names - [1, 2, 3, 4]
[+ _epsilon = 1
parans = [
- {"title’: Connection_type:', 'name’: 'connect_type’, "type': 'list’,
- “value':"UsB’, ‘values': ['USB', 'TCP/IP' , 'RS232']},
{'title': 'Devices:’, 'name': 'devices’, 'type': 'list’, 'values': devices},
- {"title’: "Daisy Chain Options:', 'name': 'dc_options’, "type': 'group’, 'children’: [
- {'title’: "Use Daisy Chain:’, 'name’: 'is_daisy’, 'type': 'bool’, 'value': False},
- {'title’: 'Is master?:", 'name’: 'is_daisy master’, "type': 'bool’, 'value': False},
- {'title’: "Daisy Master Id:’, 'name’': 'daisy id’, 'type': 'int'},
- {'title’: "Daisy Devices:’, 'name’: 'daisy_devices’, "type': 'list'},
- {'title’: "Index in chain:’, 'name’: 'index_in_chain’, "type': 'int’, 'enabled’: True}]},
{'title’: "Use Joystick: ‘use_joystick’, "type': 'bool’, value': False},
{'title’: "Closed loop *closed_loop®, 'type’: 'bool’, ‘value': True},
{"title’: "Controller ID: *controller_id", "type': 'str’, ‘value': ', readonly’: True},

- {"title’: "Axis Info:', infos’, "Type': ‘group’, children': [
{"title’ . ‘name’: 'min’, "type': 'float'},
{"title: . ‘name’: ‘max, 'type': "float'},
1.

1 + comon_parameters_fun(is_multiaxes, stage_names, epsilon=_epsilon)
] + comon_parameters_fun(is_multiaxes, axes_names, epsilon=_epsilon)

4

_images/git_editor_selection.png
> Git24

Choosing the default editor used by Git
Vibich editor would you lke Gt to use?

Setup -

(U Neepade s G et e
Nocoad-+ie oper Ul eitor it o b sedy Gt

This editor is popular n part due to the vast number of avaiable plugins;
However, when configured via this opton, Git wil cal Notepad++ ith
plugins disabled (o open the edtor as quicly as possbl).

hitps:fatforvindons.org

[e

_images/git_commit.png
dbresteagiran-Fb-004873 WINGH64 ~/MyLocalRepository (main)

s git commit -am "Initial commit of my amazing project. Add my First amazing file and say Hello w
or1d!

[main (root-commit) 3378884] Initial commit of my amazing project. Add my first amazing file and
say Hello world!

1 file changed, 1 insertion(s)

create mode 100644 my_first_amazing_file.txt

_images/git_diff.png
dbresteagiran-fb-004873 MINGH64 ~/MyLocalRepository (main)
s git diff

4iF —-git a/my_first_anazing_file.txt b/my_first_anazing file.txt
index 6769dd6. . e53bead 100644

‘a/my_First_amazing_file. txt

+++ b/my_First_amazing_file. txt

e -1 +1,18 cd

-Hetlo wor1d!

\ No newline at end of file

+HeTlo world!

+HeTlo monkey!

TNk ke

/- - Khee khee

[

-t

_images/viewer2D_legend.png

_images/viewer2D_isocurve.png

_images/instrumental_page.png
—
Instrumental

Worki
FAQs

Advertising for Developers Reach your

instrumental-

» Instrumental

Instrumental \
Instrumental is a Python-based library for controlling lab hardware like -
cameras, DAQs, oscilloscopes, spectrometers, and more. It has high-level o

drivers for instruments from NI, Tektronix, Thorlabs, PCO, Photometrics,
Burleigh, and others.

As of version 0.7, Instrumental has dropped support for Python 2 and now requires Python
37+

Instrumental’s goal is to make common tasks simple to perform, while still providing the flexibility
to perform complex tasks with relative ease. It also makes it easy to mess around with instruments
in the shell. For example, to list the available instruments and open one of them:

>>> from Aimport instrument, list_instruments
>>> paramsets = list_instruments()

>>> paramsets

[<ParanSet[TSI_Camera] serial='05478' number=e>,
<paramSet [K16CR1] serial='55000247">

<ParamSet [NIDAQ] model='USB-6221 (BNC)' name='Devi'>]
>>> daq = instrument(paransets[2])

>>> daq.ai0.read()

<Quantity(5.04241962841, 'volt')>

_images/viewer2D_rgb.png

_images/ini.png

_images/viewer2D_orientation.png

_images/jurassic_park.png
Wt Mgy

_images/viewer2D_roi_select.png

_images/interferometer_scheme.png
Delay stage T

Noncollinear

beams

_images/viewer2D_roi.png

_images/logo_cemes.png
CEMES

_images/viewer2D_spread.png
python

-,

is (units)

_images/viewer2D_saturation.png
2

40

red gaussian
— green gaussian

40

38

E

30

(Pls)

10

20t

34

2

30

28

2

2

2

20

0 10 20

— Crosshairred gaussian
- -+ Crosshair/green gaussian

10 20 30
s (myunits)

22 20 18 16 14 12

_images/gui_settings.png
b
r— 8
VA

b
O

L ‘Camera - ROI_00/Integrated_ROI_00

_images/viewer2D_crosshair.png

_images/gui_act_sett.png

_images/viewer2D_autoscale.png

_images/import_new.png
~ 15 pymodaq plugins template

I pymodaq_plugins template C:\Usce e

> mLgithub

~ B8 pymodaq plugins template

BN daq_move._plugins
% _init_py
8 daq_move Template,

BN daq viewer_plugins

BN extension

BN hardware

BN models

% _init_py

& VERSION

rom,

odag.control_modules.move Utili

Classes inport DAQ Move base, comon_parameters fun, main #

from pymodag.utils.daq_utils inport ThreadCommand # object used to send info back to the main thread
from pymodag.utils.parameter import Parameter

class Pythonlirapper0fYourInstrument:

TODO Replace this fake class with the import of the real python wrapper of your instrument

pass

class

(DAQ_Move_base)

_images/hidden_import_new.png
~ G pymodag plugins template 9
v Ml pymodaq_plugins_template C:\Users\web 6 rom_pathlib import Path

> :xﬂmb 7 from pymodag.utils.logger import set_logger # to be imported by other modules.

~ B pymodaq_plugins template
v B daqr . with open(str(Path(__file__).parent.joinpath('VERSION')), 'r') as fvers:
#_init_py 1 __version__ = fvers.read().strip()
(e maiErey
> B daq viewer_plugins.
> B extension
> B hardware

(e

_images/viewer2D_histogram.png

_images/git_branch.png
dbresteatiran-Fb-004573 INGH64 ~/MyLocalRepository (main)
$ git branch develop

dbresteatiran-Fb-004873 INGW64 ~/MyLocalRepository (main)
$ git switch develop
Switched to branch 'develop’

dbresteatiran-Fb-004873 WINGWE4 ~/MyLocalRepository (develop)
s

_images/git_local_remote_repositories.png
github.com/quantumm

/monkey_repository

remote
repository

(9]

clone

push

C:\Users\dbrestea
\MyLocalRepository

local
repository

_images/git_log.png
dbresteagiran-fb-004873 MINGN64 ~/MyLocalRepository (main)
$ git Tog

commit 3378854d6a8994aeb07d10d8aa3c290 6515726 (HEAD -> main)
Author : quantumm <david.bresteauécea. fr>

Date: Wed Jan 3 15:12:49 2024 +0100

Tnitial commit of my amazing project. Add my first amazing file and say Hello world!

_images/git_install_path.png
4% Git 24202 Setup - X

Adjusting your PATH environment
How would you lke to use Git rom the command ne?

O Use Git from Git Bash only

This s the most cautious choice as your PATH wil not be modifed at al. You wil
only be able to use the Git command fine tools from Git Bash.

@ Git from the command line and also from 3rd-party software

(Recommendied) This option adds only some minimal Gt wrappers to your
PATH to avoid cuttering your environment with optional Unix toos.

You wil be able to use Git from Gt Bash, the Command Prompt and the Windows:
PowerShel 2s wel 2s any third-party software looking for Gitin PATH.

(O use Git and optional Unix tools from the Command Prompt

Both Git and the optional Liix tooks wil be added to your PATH.
Warring: This wil overrde Windows tool ke “find” and “Sort™. Only
use this opton i you understand the implcations.

https: {gitforwindows.oraf
o [] [s

_images/git_install_window.png
% Git 24202 Setup -

Select Components ‘?’

Which components should be nstalled? &

Select the components you want to instal; dear the components you do not want to
instal.ClckNext when you are ready to continue.

0] Additonl icons: ~
[Jin the Quick Launch
[On the Desktop.

(] Open GitBash here:
Dlopenitcurhere

Git LFS (Large File Support)

| Assodiate .git™ configuration files with the defauit text editor

assocte e les to berun with Bash

0] Check dai for Gt for Vindows updates .

Current selection requires atleast 321,5 M8 of disk space.

https: /gitforwindows. ora)
[Coe Thee]

_images/git_log_after_revert.png
dbresteatiran-Fb-004873 MINGW64 ~/MyLocalRepository (main)

$ git log —-oneline

ed7¢909 (HEAD —> main) Revert "The funny monkey has been added.”

6045Fb4 The Funny monkey has been added.

3378884 Initial commit of my amazing project. Add my First amazing File and say Hello worldi

_images/git_log_after_monkey.png
dbrestealiran-fb-004873 MINGW64 ~/MyLocalRepository (main)

$ git Tlog --oneline

6045b4 (HEAD —> main) The funny monkey has been added.

3378884 Initial commit of my amazing project. Add my First amazing File and say Hello world!

_images/viewer1D_roi_select.png

_images/github_settings.png
O B == htps//github.com/PyM:

DAQ/PyMoDAQ B %

= O PyMoDAQ / PyMoDAQ 4

<> Code (Issues 8 11 Pullrequests Y Discussions (Actions [Projects 2 00 Wiki @ Security |22 Insights [&3 Settings

_images/viewer1D_sort.png

_images/github_see_monkey_commit.png
& main

@ quantumm committed 20 hours ago

Showing 1 changed file with 18 additions and 1 deletion.

- my_first_amazing ile.txt (0

€8 -1 +1,15 @8
1 - Hello world!

GELREB camvawsune

555

1 parent 3378884

[e—

+ Hello wor1at
+ Hello morkey!

4 f——\—kh kne
/e f\\\|—Khee khee
- e T\
“F VTV b
R LI
VAT
S il

_images/viewer1D_shuffled.png
— a gaussian A\ a gaussian a gaussian

— another gaussian ¥ \ another gaussian * another gaussian

_images/goto.png

_images/viewer1D_xy.png

_images/github_sign_up.png
Welcome to GitHub!
Let’s begin the adventure

Enter your email®

. Already have an o

_images/viewer1D_with_roi_crosshair_dot.png
a gaussian

another gaussian

(kmy units)

ROI_00/a gaussian

ROI_00/another gaussian

ameter

Measurements:

ROls
v ROI00
Use cha... Al
Mathty... mean
Color
v position
left

_images/gui.png
Camera - ROL_O0/Integrated_ROL0D

_images/viewer2D_aspect.png

_images/green_light.png
&7 Form
test
Co—]]

Actuator: [PLEST0

o
Kait
@

current value:

0.000000

Parameter
' Main Settings:
Actuatortype: PI_ESTO
ControllerID: 0
TCP/IP options:
¥ Actuator Settings:
Devices:
Controller ID:
v MultiAxes:
s Multiaxes:

Value

PIE-870 SN 0116053707

Status:
Asis: 1
Units:
Epsilon: 1
Tmeout(s): 10

(12015 Physik Instrumente (P|

B

_images/viewer1D_zoom.png

_images/github_pull_request_2.png
« > C QO B nitps//github.com/PyMoDAQ/pymodaq_plugins_physik_instrumente/pull/4 B «

strumente _pubic 2 ot

& PyMoDAQ/ pymodaq_plugins_physik i

©code O ssues 1) pullrequests 1 O Adions [projecs @ security 1~ insghts

PIE-870 controller plugin #4

quantumm wants to merge 3 comits into FyseDAQ:main from quantum:£-s70 (C)

@ Conversation 0 - Commits 3

. ‘quantumm commented 3 hours ago

“This minimalistic plugin has been developped to control PiezoMike actuators with the P E870 4G controller. Only the USB
connexion is implemented, and we suppose 4 axis.

) Checks 0

Files changed 4

‘The particularity of this controller is that it works in open-loop operation. There is no encoder, no referencing. The original
Pl plugin was not adapted and would not initalize the controller because it assumes close-loop operation. For example, the
original plugin assumes that the SAI? GCS command is available, which is not the case for the E870 controller.

‘The development of this plugin has been taken as a support to write the *Story of a plugin development" documentation.

G quantumm added 3 commits last week
o @ First working version of the €870 controller plugin. abes198
o @ 2 docunentation of the controller and the OLL. 333139

o @ 20 672 user manual. e

_images/viewer1D_errors_plot.png
— a gaussian

another gaussian

_images/viewer1D_errors.png

_images/viewer1D_roi.png

_images/viewer1D_overlay.png

_images/github_secrets.png
& General Actions secrets and variables

Access Secrets and variables allow you to manage reusable configuration data. Secrets are encrypted and are used for sensitive data.

A\ Collaborators and teams Learn more about encrypted secrets. Variables are shown as plain text and are used for non-sensitive data. Learn more about
variables.

@ Moderation options. v

Anyone with collaborator access to this repository can use these secrets and variables for actions. They are not passed to

Klows that are triggered I t from a fork.
Code and automation workflows that are triggered by a pull request from a forl

¥ Branches

Secrets | Variables
© Tags
G Rules v
! Environment secre
® Actions v
& Webhooks

This repository has no environment secrets.
B3 Environments

5 Pages Manage environment secrets

& Custom properties

Security
@ Code security and analysis Repository secrets
£ Deploy keys 7 =08

() Secrets and variables ~ & covecov._token
Codespaces
Dependabot N\ Organization secrets Manage organization secrets
Last updated
Integrations
PYPI_PASSHORD 1 hour
@\ GitHub Apps e
PYPI_USERNANE 1 hour ago

B Email notifications

_images/git_install_init_configuration.png
4% Git 242.02 Setup - X

Adjusting the name of the initial branch in new repositories.
What woud you like Gt to name the inital branch after “Gitinit”?

OlLet it decide
Let Git use its defauit branch name (currently: ‘master") for the inital branch

in newly created repositories. The Git project intends to change tis defatit to
2 more indusive name i the near fuure.

(® Override the default branch name for new repositories

NEW! Many teams already renamed their defauit branches; common choices are
“main”, “runk” and “development”. Speafy the name "git it shouid use for the
initial branch:

This setting does not affect existing repositories.

hitps:fatforvindons.org

_images/git_install_line_ending.png
4% Git 24202 Setup - X

ok o et i e 2 €

@© Checkout Windows-style, commit Unix-style line endings

it wil convert LF to CRLF when checking out text fles. When committing
text fes, CRLF wil be converted to LF. For cross-platform projects,
this s the recommended setting on Windos (core.autoat” s set fo “rue’).

O Checkout as-is, commit Unix-style line endings
it wil not perform any conversion when checking out text fies. Vhen

committing text fles, CRLF wil be converted to LF. For cross-platform projects,
thisis the recommended seting on Unix ("core.autoais set o Tnput).

O Checkout as-is, commit as-is.

it wil not perform any conversions when checking out or committing
text fes. Choosing this option is not recommended for crossplatform
projects ("core.autoais set to “fakse).

itps: fgiforwindows.ora]

o [] [s

_images/git_full_repositories.png
github.com/pymodaq
/pymodaq

0

upstream
repository

(1)
fork
—>
<+

pull
request

(4)

github.com/<your name>

/pymodaq

remote
repository

0

(2)

clone

push

(3)

C:\Users\<OS username>
\pymodaq

local
repository

_images/Flyer_PyMoDAQ.png
A

Action Nationale
Formation

Développer PyMoDAQ

Les 17/18/19 juin
& Toul
(1aboratoire CEMES)

PyMoDAQ

Modular Data Acquisition with Python

Actions
2024

de Journées PyMoDAQ

Realisations, ables rondes et
évolutions du logiciel

Du2 tobre 2024
jon
(Campus

_images/DAQ_Viewer_pannel.png
Detector: Mock ®

[Do Bkg Take Bkg

Parameter Value & .

bl Main Setting: -
g Detector Settings i

Controller Stat... Master - g
Nimages colors: 1 L] w0
—Nimages pann... 1 -
[~Use ROISelect O - 6
Threshold 1 L)
~rolling 1 L]
Nx 100 -
Ny 200 L] 2 2
Amp 20 L)
-

Fx0 50

_images/GP.png
===-target function —— prediction
- training data 20 credible region
0.0 \ | . |)
=2 0 2 G 8 10

ENFN S

_images/HLM.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyMoDAQ’s documentation!

 		
 PyMoDAQ’s overview

 		
 What’s new in PyMoDAQ 4

 		
 Package hierarchy

 		
 Data Management

 		
 DAQ_Scan

 		
 User’s Guide

 		
 Installation

 		
 Preamble

 		
 Setting up a new environment

 		
 Installing PyMoDAQ

 		
 Creating shortcuts on Windows

 		
 Plugin Manager

 		
 What about the Hardware

 		
 How to Start

 		
 From command line tool:

 		
 Create windows’s shortcuts:

 		
 Configuration

 		
 Configs from Managers

 		
 PyMoDAQ configuration for default values

 		
 Plugins configuration for default values

 		
 DashBoard and Control Modules

 		
 DashBoard

 		
 Control Modules

 		
 Extensions

 		
 DAQ Scan

 		
 DAQ Logger

 		
 PID Module

 		
 Bayesian Optimisation

 		
 H5Browser

 		
 Console

 		
 Data Management

 		
 What is PyMoDAQ’s Data?

 		
 DataToExport

 		
 Saving and loading data

 		
 Plotting Data

 		
 Useful Modules

 		
 Introduction

 		
 Module Manager

 		
 H5Saver

 		
 Preset manager

 		
 Overshoot manager

 		
 ROI manager

 		
 DAQ_Measurement

 		
 Navigator

 		
 Remote Manager

 		
 ChronoTimer

 		
 TCP/IP communication

 		
 With PyMoDAQ

 		
 On another software

 		
 PyMoDAQ TCP/IP Communication protocol

 		
 Developer’s Guide

 		
 Contributing

 		
 How to contribute

 		
 Branch structure and release cycle

 		
 Where to contribute

 		
 Contributors

 		
 Plugins

 		
 Plugins package configuration file

 		
 Instrument Plugins

 		
 Extension Plugins

 		
 Custom App

 		
 Managers and Mixin Objects

 		
 Parameter Manager

 		
 Action Manager

 		
 Modules Manager

 		
 ROI Manager

 		
 Tutorials

 		
 Git/GitHub

 		
 Create an account & raise an issue on GitHub

 		
 Basics of Git and GitHub

 		
 Authenticate to GitHub with an SSH key

 		
 How to modify existing PyMoDAQ’s code?

 		
 Prerequisite

 		
 The PyMoDAQ repositories

 		
 PyMoDAQ branches

 		
 How to propose a modification of the code of PyMoDAQ?

 		
 How to create a new plugin/package for PyMoDAQ?

 		
 Prerequisite

 		
 The PyMoDAQ’s plugin template repository

 		
 Configuring a new plugin repository

 		
 Publishing on Pypi

 		
 Story of an instrument plugin development

 		
 The controller manual

 		
 The installer

 		
 The blue route: use the manufacturer GUI

 		
 A shortcut through an existing green route? Readily available PyMoDAQ instrument plugins

 		
 The gold route: control your device with a Python script

 		
 The green route: control your device with PyMoDAQ

 		
 Conclusion

 		
 How to contribute to PyMoDAQ’s documentation?

 		
 The documentation of PyMoDAQ

 		
 Sphinx

 		
 Preparation

 		
 Build the website locally

 		
 Add a new tutorial

 		
 reStructuredText (RST) language

 		
 Submit our documentation to the upstream repository

 		
 Updating your instrument plugin for PyMoDAQ 4

 		
 What’s new in PyMoDAQ 4

 		
 What should be modified

 		
 Tutorial On Data Manipulation and analysis

 		
 Loading Data

 		
 Plotting data

 		
 Data Analysis

 		
 Summary

 		
 Who use it?

 		
 Institutions using PyMoDAQ

 		
 What they think of PyMoDAQ?

 		
 Some Scientific publication on/using PyMoDAQ

 		
 Glossary Terms

 		
 Library Reference

 		
 Control modules

 		
 ControlModule base classes

 		
 DAQ_Viewer class

 		
 DAQ_Detector class

 		
 The Viewer UI class

 		
 The DAQ_Move Class

 		
 The DAQ_Move UI class

 		
 The DAQ_Move Plugin Class

 		
 Extensions

 		
 DAQ_Scan module

 		
 The Bayesian Extension and utilities

 		
 The CustomApp base class

 		
 Utility Modules

 		
 Hdf5 module and classes

 		
 Scanner module and classes

 		
 Managers

 		
 Data Viewers

 		
 Plotting utility classes

 		
 Utility Libraries

 		
 Utility Classes

 		
 TCP/IP related methods

 		
 Units conversion

 		
 Mathematical utilities

 		
 Scan utilities

 		
 File management

 		
 Data Management

 		
 parameter

_images/Open.png

_images/PI_E870&PiezoMike.png
PI E-870 controller

PiezoMike actuators on an optical mount

_images/PIDModelMock.png
What's the temperature ?

Set point = 40°C —— > Thermometer
-~
20°C (detector)
S| Ja
Send some AAA
current
Heater

(actuator)

_images/Refresh2.png

_images/SaveAs.png

_images/Semver.jpg
4.2.1

MAJOR Minor patch

_images/bash_mkdir.png
dbrresteadiran-Fb-004573 MINGW64 ~/MyLocalRepository (main)

_images/Snap&Save.png

_images/attolab_logo_carre.jpg
ATTO

_images/create_branch.png
« c O B httpsy/github.com/quantumm/PyMoDAQ/tree/pymodag-dev @ % &

5| @) cormmiera I

<> Code 11 Pullrequests @ Actions [Projects [0 Wiki @ Security | Insights & Settings

@ PyMoDAQ Fuic 0 bin | OWach 1 v | ¥ Fok 85~
forke from PYMaDAQ/PYMoDAQ

oo - cotone | e ([v

Switch branches/tags Modular Data Acq

Python
11 Contribute ~ Q3 Syncfork ~ @ pymodag.crs.fr
Bunches | Togs M Readme
P Create branch: monkey-branch from B MIT license
pymodacdev .
X Sdaysago D137 | A Aty
View il branches
? Ostars
2 months ago
@ 1watching
™ docs Update data_objects.rst astweek | o0 g

» s Update viewerpy 5 days ago

_images/chrono_timer.png

_images/conda_list_after_pipython_install.png
python
python-dateutil
python-markdown-math

he244533_@
pypi_e pypi
pypi’6 pypi
pypi’6 pypi
pypi’6 pypi
pypi’6 pypi
pypi’6 pypi
pypi’6 pypi
pypi’6 pypi
pypi’6 pypi
pypi’6 pypi
pypi’6 pypi
pypi’6 pypi
pypi’6 pypi
pypi 6 pypi
py38haa0s532_0
pypi_e pypi
pypi’6 pypi
pbypi 6 pypi
h2bbFF1b_0
pypi_e pypi
pypi’6 pypi
pypie pypi

SRR
3
i

u.m ..
op bt oRpnRonn
LoEbL"e

IS

simple-pid

six

spyder-kernels

sqlite

stack-data
abledata
ables

T oy

&
®

2

B

s
PWROWNRRAR®ENUNWRERERWONW

owoyr e,

Shah !

_images/setpoints_as_actuators_v2.png
PYMoDAQ Dashboard: preset_mock_pld_beam_steering_as_actuator o @ PID Controller - o

File Settings Preset Modes Overshoot Modes ROl Modes _Remote/Shortcuts Control _ Extensions 7

e e R] m 20 <1
[} Xpiezo Xaxis it odel @ IINCTREFOIIND ®©

o OB m e

CrEEr i ® i ® creveie 199.994 | 149.999
ROI file Xouit - Nouit
Remote file [—— Y Current value: ° Parameter value

Model cass POModelgeamsteering

7200.107768

Rl

Threshold 2
B 11ain settings:

= e e Acquisition Timeout (ms): 10000 -
B P == 2
e it vy Yeiez vexis T ———
e :
P Lanhe sw e e I
2023/01/09 11:23:06: Moving Actuator: | BeamSteer Actuator: PID Refresh plot time (ms): 200 -
[E— [—
* : ° output imit (mink: B Gl
Xout . Xt ok (m: 16403 B ;
e ° e ° [ouput it max: @ ® | _
ST e 0 |
: P
200 <\
|+ Prop. on measurement: () -
R . o ol
C cemememwee Camemuedonen L o0 [|
,, ; 8 -
|

Camera 0O B-m e Im I
= T rTed O 5

Camera: Continuaus Grab.

e e
bsabye ox

ucr o semsee] || - 1
e :

-Controller I0: 5166 . !
Foite— o

et 200

oz O

[orwms 0O

e

e i

- T e

_images/scanbatch.png
[®7 python - o X

Parameter Value scan00: [Xaxis' / [Det 0D']
Filename: T scan00: [Scan’D)/Linear] scanner with 101 positions and bounds (starts/stops/steps): [1.01/12.0/{001])
~ I ' 7 0)
scan01: [Scan’D/Linear] scanner with 101 positions and bounds (starts/stops/steps): [1.01/12.0/{001])
v Scan 00
I = . scan02: [Xaxis, Yaxis / [Det 0D
v et scan02: [Scan2D/Spiral] scanner with 121 positions and bounds (starts/stops/steps): [-5.0, -5.01/[0.5, 0.51/(0.1, 0.1])
Det 2D
Det 0D
Det 1D
v Actuators
Xaxis
Yaxis
theta axis
v Scanner Settings
Calculate positions:
N steps: 101
Scan type: Scan1D
v ScaniD settings
Scan subtype: Linear
Start: 1
stop: 2
Step: 001
Load settings
Save settings
> Scan 01
> Scan 02

_images/shortcut_creation.png
Propriétés graphiques

@ Configurer les graphiques commutables

Affichage »
Trier par »
Actualiser

Jupyter notebook here

@

Jupyter qtconsole here:
Coller

Collerle raccourci

Propriétés graphiques,

Options graphiques »
Nouveau » Dossier

Raccourci

Résolution d'écran

& Gadgets
& personnslser

IfanView BMP File

Contact

Dessin OpenDocument
Présentation OpenDocument
Classeur OpenDocument

Texte OpenDocument

EmEEED # b

Document au format RTF
ATL MFC Trace Tool settings file

Document texte

&

Dossier compressé
B Porte-documents

_images/setup.png
Platine de Translation

Microscope
Optique

Photodétecteur

Amplificateur &
détection synchrone

_images/run2.png

_images/run.png

_images/scan2D_subtypes.png
Scan2D subtypes

Linear Linear back and forth
~[7 ~
2! H———
sen |+ i)
pry il i
1
Sen Ax. 1 Sen Ax. 1

Ax 1 Ax 1

_images/running_gui.png
Settings Observable ProbedData

(-2.3e +01-6.9¢ +00) & g
[a— value Fitness iuoresein) | |4 » B @[
~ Main Settings —
> Utility Function: (nhate
Ini. State s - 0 8 © 2 o 0 ® @ ® w
Y Brorts o Jao
© Xpiezo
min -0 - 180 180
s w0 - -
~ Ypiezo “
min -0 - o o
max i =
~ Models I)
Models class: BayesantiodeiDefault
Ini Model 100 100
i Algo
~ Model params 80 80
~ Optimizing signal
Getdata 0 0
~ Optimize0.
© ©
Camera - ROLO0/Integrated_ROI_00]
! | o 2
Individual of 1o N
= G i » g
Parameter Value - -0
~ Actustors/Detectors Selection) N N
v detect. - -
(J PhotoDiode -10 80 80
| @ camens
-0 -0
- -
~ Actuat
oo -0 -0
jezo o
- 160 160
-0 -0
o o o -100 80 “ 2 0 20 4 60 8 100
Sample: uey

_images/scan_on_camera.png
(Ps)

260

220

220

200

180

160

140

120

100

80

20

4 20 o 20 4 e 100 120 140 160 180 200 220 240 260 280
20
N o A*»(ISO,ZOO)
Ax2 A
Y
A A \ A
Y Y
A A A
50
Y
e
>
Ax1
20 0 20 4 &0 100 120 140 160 180 200 220 240 260 280

ey

26(

24

224

204

18

16

144

12

104

80/

60/

40

20

_images/scan_configuration_v8.png
Fle settings
o) ©) e
plot. lot.
xon s s [
Parameter Valve General settings El B

B Actuators/Detectors Selection save settings
~ detectors scomersetings
(1)

Parameter Value
(4) Fakcuate positons
N steps: 2

~ | Actuators Scan type: Scan2

Scan2D settings

Xaxis
Yaxis

Xpiezo
Ypiezo

Scan subtype: Back&Forth
Selection: Manual
StartAxd 50
sartae 50
StepAxl: 20
StepAx2: 50

Stop Ax1

Stopax2

Moves done?
Detections done? @

33

M ata dimensions

1 pbe detcars dta
o

355555

Save settings

> DatalD list
 Data2D list:

Camera/Camera_Mock2DPID_CHO00

B o
(
Y

Yaxis: 100.00400297816154
Xaxis: 100.00713710223567

_images/scan_selector_settings.png
Scan type: Tabular
 Tabular settings
Scan subtype: Linear

Selecton: el]
~ Posiions |2
e —

_images/create_new_repo.png
Create a new repository
A repository contains all project files, including the revision history. Already have a project repository elsewhere?
Import a repository.

Required flelds are marked with an asterisk (*).

Repository template
@ PyMoDAQ/pymodag_plugins_template ~
Start your repository with a template repository’s contents.

[Include all branches
Copy al branches from PyMoDAQ/pymodaq_plugins template and not justthe default branch.

Owner Repository name *
@© PyMoDAQ - /| pymodaq_plugins_myrepo
© pymodaq_plugins myrepo i available.
Great repository names are short and memorable. Need inspiration? How about verbose-octo-pancake 7

Description (optional)

o (g Pulc

Anyone on the intemet can see this repository. You choose who can commit,
Private
o You choose who can see and commit to this repository.
Grant your Marketplace apps access to this repository
PyMOoDAQ is subscribed to 1 Marketplace app.

g & s Ol
Test and deploy with confidence

@ You are creating a public repository in the PyMoDAQ organization.

_images/daq_move_template.png
ERELEEBS vwuonewnn

[

RERRES

AEREBEAUHYS B R B EEERBYRY

from pymodaq. control_modules.move_utility_classes import DAQ Move_base, comon_parameters_fun, main # common set of parameters for sl actustors
fron pymodaq.daq_utils.daq_utils import Threadcomsand # object used o send info back to the main thread
#ron pymodaq.daq_utils.parameter import Parameter

Class pythonrapperofvournstrusen
70O Replace this fake class with the import of the real python wrapper of your instrusent
pass

Class D20 tove_Template(2Q_tove_base):
Plugin for the Template Instrunent

This object inherits a1l functionality to comunicate with PyoDAQ Module through inheritance via DaQ_Move_base
It then implements the particular comunication with the instrusent

attributes:

controller: object
The particular object that allo the comunication with the hardware, in general a python mrapper around the
hardware 1ibrary

7000 3dd your particular attributes here if any

_controller_units = ‘whatever' # 7000 for your plugin: put the correct unit here
1s_multiaxes - False # T000 for your plugin set o True 5f this plugin is controlled for a multiaxis controller
axes _names = [*Axis1’, 'Axis2’] # T000 for your plugin: complete the list

_epsilon = 6.1 # T000 replace this by 3 value that is correct depending on your controller

params - [# T000 for your custon plugin: elements to be added here as dicts In order to control your custom stage
1+ conon_parancters_fun(is_miltiaxes, axes_names, epsilon-_epsilon)

_epsilon is the initisl default value for the epsilon parameter allowing pymodaq to know if the controller reached

the target value. Tt is the developer responsibility to put here a meaningful value

def ini_attributes(self):
70O declare the type of the wrapper (and assign it to self.controller) you're going to use for easy
autocompletion
self.controller: PythonirapperofvourInstrusent = None

#7000 declare here attributes you want/need to init with a default value
pass

def get_actuator_value(self):
‘Get the current value from the hardware with scaling conversion.

_images/data.png
What is data?

Axis 3

Actual data as numbers
Metadata:

«title

-axes

-shape

Easy to manipulate:
ROl

«lineouts
«averaging

_images/dashboard_menu.png
PyMoDAQ Dashboard

File | Settings PresetModes Overshoot Modes ROl Modes Remote/Shortcuts Control _Extensions

Show log file
Show configuration file

@ 1 ——

Restart

_images/dashboard_preset_loaded.png
PyMoDAQ Dashboard: preset_mock_pid_beam_steering - o ®

File Settings PresetModes OvershootModes ROIModes Remote/Shortcuts Control Extensions

Parameter Value
Log level DEBUG &)

B Loaded presets

Presetfile preset mock_pid_beam_
Overshoot file
Layout file
ROl file
Remote file

2023/01/06 10:44:43: Preset mode (preset_moc
2023/01/06 10:44:51: Camera: Continuous Grak
2023/01/06 10:48:55: Moving
2023/01/06 10:48:57: Moving
2023/01/06 10:49:00: Moving
2023/01/06 10:49:02: Moving
2023/01/06 10:49:05: Moving
2023/01/06 10:49:06: Moving
2023/01/06 10:49:06: Moving
2023/01/06 10:49:07: Moving
2023/01/06 10:49:07- Movina

preset mock_pid_beam_

Camera
[I) L]
Camera: Continuous Grab

Parameter Value
B Main settings:
B etector settings

Controller Status: ~ Slave)
Amplitude: 20 -
dx 20 -
dy: 10 -
Noise level: a []
Threshold 4 -
Drift (=] -

Xpiezo
o S>@Ed

Actuator: | Beamsteering

Current value:

0.000000

Abs value: -A-Find Home
o Set Abs
Rel increment iset Rel (+)
1000 Zset Rel ()
[stop 9 Update Value?
L
a0

?
Ypiezo

o 5@Y |

I

Actuator: | Beamsteering

ion

®
Xauit
L

Current value:

0.000000 |

Abs value: -A-Find Home
o Set Abs ;
Rel increment isetrel (+)
1000 IsetRel ()

[“stop

9 Update Value?

140

140}

a0

_images/release_cycle_pymodaq3.png
Time

Main

Branches for Branch Branches for
bug fixes new stuff
Fix branches Stable Development Feature
"bugfix/bug_name" branch branch branches
"hotfix/important_bug_name" "4.1.x" "4.2.X_d ev" "features/feature_name"

a bug is found in dev

i bugfix merged into dev

New stable
branch
"4.2.x"

oo
~

w feature >
g§de}; to dev :

gdded t0 dev

New dev
branch
"4.3.x_dev"

_images/resources.png
~ BN pymodaq_plugi

>

>
>
>
>

s_template

BN daq_move_plugins

BN daq viewer_plugins

BN extensions

BN hardare

BN models

BN resources
% _init_py

 config_templatetom!

& VERSION

nit_py

Py

[

_images/require.png
3 pymodaq_plugins_template
M pymodag_plugins_template C:\

> I github €
v Msc 1
> BN pymodag_plugins_templ; 12
& gitattributes 13

i .gitignore
p 14

% _init_py
iconico 43
16

& LICENSE
[17

E toxini

author = 'Author Name'
author-email = 'Author email'
license = 'MIT'

[plugin-install]
#packages required
packages-required =

for your plugin
['pymodag>=4.0 1

_images/pylablib_page.png
CONTENTS:
Installation
Devices oven

Data processing

Highly targeted ads for devs Reach
‘your exact developer niche with powerful
EthicalAds

pylablib.readthed

» PyLabLib: Python package for device control and experiment automation

PyLabLib: Python package for device control and
experiment automation

PyLabLib aims to provide support for device control and experiment automation. It interfaces with
lots of different , including several different y 5
5 5 . and more. The interface is implemented in a natural way through

Python objects, and is easy to understand. For example, here is a complete script which steps
stage by 10000 steps ten times, and each time grabs a frame with

from inport Thorlabs, Andor
import as
with Thorlabs.KinesisMotor() as stage, Andor.AndorSDK2Camera() as cam

cam. set_exposure(50E-3)
cam.set_roi(, 128, 0, 128, hbin=2, vbin=2)

images = []

for _ in range(10)
stage.move_by(10000)
stage.wait_move()
img = cam.snap()
images..append(ing)

np.array(inages) . astype("<u2"). tofile()

_images/pymodaq_diagram.png
Control Modules

i EAQ Move DAQ Viewer

Remote
Manager

5 Ctrl+X

17

PID Actuator ’ Detector
Controller Dashboard

B e 1 e |) o
joc

DAQ Logger

X
Data logging
+, 0D, 1D, 2D, ND
. data acquisition

Online .
Data Browsing H5Browser Extension

- - Modules

_images/pymeasure_website.png
<« > C O & hiips

Search docs

LEARNING PYMEASURE

Introduction

pymeasure.display

pymeasu

GETTING INVOLVED

Contributing

Reporting an error

Coding Standa

ABOUT PYMEASURE
Authors

ise

Changelog

pymeasure readthedocs.io/e

» PyMeasure scientific package

PyMeasure scientific package

| PyMeasure

PyMeasure makes scientific measurements easy to set up and run. The package contains a
repository of instrument classes and a system for running experiment procedures, which provides
graphical interfaces for graphing live data and managing queues of experiments. Both parts of the
package are independent, and when combined provide all the necessary requirements for advanced
measurements with only limited coding.

Installing Python and PyMeasure are demonstrated in the . From there, checkout
the existing

PyMeasure is currently under active development, so please report any issues you experience on

our

The main documentation for the site is organized into a couple sections:

_images/pymodaq_local.png
batch_configs
layout_configs
log
overshoot_configs
pid_configs
preset_configs

remote_configs

oi_configs
I spectrometer_configs
1/ config.tom!

_images/pypi_account.png
8 https://pypi.org/account/login/ x % L In © B & B €

Rechercher des projets Aide Sponsors Seconnecter S'inscrire

Se connecter a PyPI

Nom de profil (obligatoire)

‘ Votre nom de profil o ‘

Mot de passe (obligatoire)

[Afficher le mot de passe

Mot de passe oublié ?

‘ Votre mot de passe

_images/quit.png

_images/pycharm_configure_environment.png
Settings

> Appearance & Behavior

 Keymap
> i
~ Plugins

Project: monkey_repository > Python Interpreter For current praject

Python nterpreter) Python 310 (pmd) (2) s doretes Anacon i enve s pytnon exc

snaoo0aaaaan

-

interpreter

& Virtuslenv Environment

[—

Sysem ntepreter
% Pipen Environment

New environment

Python versior 8~

Conds executsble: | C:\Users\dbrestea\ Anaconda3\Scripts\

Existing environment
ing

Interpreter (CAUsers\dbrestea\Anacondad\envs\pmdd\python.exe

Conda executable: | CA\Users\dbrestea\Anacondad\Scripts\conds.exe

Meake availableto all projects

(2)

(5

Cancel

Kl -

pply

_images/pycharm_configuration.png
B File Edit View Navigate Code Refactor Run Tools Git Window Help

PyMoDAQ ' [src

5 [Project + ERr -
£ PyMoDAQ Ci\Users\dbrestes\PycharmProject\PyMoDA
- github
docs

B
g pymodag
|5 control modules
1 examples

extensions
& post treatment
2 resources
|Z utils
\ & _init_py

H Gt ZT0DO © Problems B Terminal % Python Console

[0 Checked out new branch monkey-branch from origin/monkey-branch (4 minutes ago)

‘Add Configuration.

Search Everywhere Double Shift
Go to File Ctrl+Shift+N

Recent Files Ctrl+E

Navigation Bar Alt+Home

Drop files here to open

Gt & v 2O Q

Bython 310 (amd) G)

_images/pycharm_git_interface.png
B Eie Edt View Novgate Code Refactor Run Toos| Gt |Window Help monkey.eposiory
‘monkey_repository i my_newflemd GIt MaIN MENU agd onfigurstion..

= Project ~ i my_new_file.md
W monkey_repository C:\Users\dbrestes\Pycharmrol B F 2
s my_new file.md Hello world!
> Il Extemnal Libraries
7 Scratches and Consales —/\—kn khe

~/—/"\\\ —Knee knee
I~/ \A—
B AAY
=140 IP—
=V aT\N—

PyCharm project panel

: Git bottom panel

000 © Problems B Teminal @ Python Console
D Pushed 1 commit to origin/main (a minute ago)

Python
interpreter

181 CRLF UTF-8 4 spaces | Python 3.10 (pmad)

Git
branch

_images/pycharm_git_commit.png
‘my_new_file.md (C:\Users\dbrestea\PycharmProject\monkey_repository) [Default Changelist] X

14 £ = = Sdebysideviewer ¥ || Donotignore v || Highlightwords ¥ | £ I £ > 1diference
8 613 19edca7aabAbedafdTbfcicTaf